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Multiconfiguration time-dependent Hartree, MCTDH

The ansatz for the MCTDH wavefunction reads

Ψ(q1, · · · , qf , t) =

n1∑
j1=1

· · ·
nf∑

jf =1

Aj1,··· ,jf (t)
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ϕ
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=
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MCTDH equations of motion

i ȦJ =
∑

L

〈ΦJ |Ĥ|ΦL〉AL

iϕ̇
(κ)
j =

(
1− P(κ)

)∑
k,l

ρ
(κ)−1

j ,k 〈Ĥ〉(κ)k,l ϕ
(κ)
l

The computation of the Hamiltonian matrix 〈ΦJ | Ĥ | ΦL〉 and the

mean-fields 〈Ĥ〉(κ)k,l requires the evaluation of multi-dimensional
integrals. It is essential that these integrals are done fast.



Product representation of the Hamiltonian

We require the Hamiltonian to be in product form

Ĥ =
s∑

r=1

cr

f∏
κ=1

ĥ(κ)
r

where ĥ
(κ)
r operates on the κ-th degree of freedom only.

The multi-dimensional integrals can then be written as a sum of
products of one- or low-dimensional integrals

〈ΦJ | Ĥ | ΦL〉 =
s∑

r=1

cr 〈ϕ(1)
j1
| ĥ

(1)
r | ϕ(1)

l1
〉 . . . 〈ϕ(f )

jf
| ĥ

(f )
r | ϕ(f )

lf
〉

An alternative fast algorithm is the CDVR method of U. Manthe.

See also Ávila and Carrington JCP 134 (2011) 054126. (Smolyak)
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(1)
r | ϕ(1)

l1
〉 . . . 〈ϕ(f )

jf
| ĥ

(f )
r | ϕ(f )

lf
〉

An alternative fast algorithm is the CDVR method of U. Manthe.
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(f )
r | ϕ(f )

lf
〉

An alternative fast algorithm is the CDVR method of U. Manthe.
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Potfit

The most direct way to the product form is an expansion in a
product basis. Hence we approximate some given potential V by

V PF
(

q(1), . . . , q(f )
)

=

m1∑
j1=1

. . .

mf∑
jf =1

Cj1...jf v
(1)
j1

(q(1)) . . . v
(f )
jf

(q(f ))

working with grids we set:

V (q
(1)
i1
, . . . , q

(f )
if

) = Vi1...if and v
(κ)
ij = v

(κ)
j (q

(κ)
i )

This yields:

V PF
i1...if

=
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j1=1

. . .

mf∑
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Tucker decomposition iκ = 1 · · ·Nκ jκ = 1 · · ·mκ
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Potfit

The coefficients are given by overlap

Cj1...jf =

N1∑
i1=1

. . .

Nf∑
ip=1

v
(1)
i1j1
· · · v (f )

if jf
Vi1...if

More difficult is to find optimal single-particle potentials (SPPs).
We define the SPPs as eigenvectors of the potential density
matrices

%
(κ)
kk ′ =

∑
Iκ

Vi1...iκ−1kiκ+1...if Vi1...iκ−1k ′iκ+1...if

Eigenvalues: λ
(κ)
jκ

Eigenvectors: v
(κ)
jκ
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The approximated potential

The natural potentials will be the taken as SPPs for the
approximated potential expansion:

V PF
i1...if

=

m1∑
j1=1

. . .

mf∑
jf =1

Cj1...jf v
(1)
i1j1

. . . v
(f )
if jf

The natural weights (λ
(κ)
jκ

) provide us an estimation of the number
of expansion functions or expansion orders (mκ ≤ Nκ) that we
need to describe our potential up to a certain accuracy:

POTFIT (1996), HOSVD
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Error estimation

The L2-error is defined as: ∆2 =
∑

I

(
VI − V PF

I

)2
.

The error is bound by:

1

f − 1

f∑
κ=1
κ6=ν

Nκ∑
j=mκ+1

λ
(κ)
j ≤ ∆2

opt ≤ ∆2 ≤
f∑

κ=1
κ6=ν

Nκ∑
j=mκ+1

λ
(κ)
j

The error is determined by the eigenvalues of the neglected SPPs.
For mκ = Nκ one recovers the exact potential on the grid.



POTFIT problems

The applicability of POTFIT is limited by the computation of the
density matrix and the overlaps, which run over the complete grid:

ρ
(κ)
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N1∑
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. . .

Nκ−1∑
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. . .
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Vi1...iκ−1kiκ+1if Vi1...iκ−1k ′iκ+1if

CJ = Cj1...jf =

N1∑
i1=1

. . .

Nf∑
if =1

v
(1)
i1j1
· · · v (f )

if jf
Vi1...if

We cannot deal with problems with more than
109 grid points (6-8 DOFs).

Multigrid POTFIT (MGPF) has been conceived to
(partially) overcome these difficulties.
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From coarse to fine grid

Let us consider a system which requires to be described by an
exceedingly large primitive grid (hereafter fine grid, Ĩ ) such that
it cannot be potfitted. Let us define a coarse grid (I ), which is
subset of the fine grid (I ⊂ Ĩ ) and which is small enough (with nκ
rather than Nκ grid points) to be potfittable. We first potfit the
PES on the coarse grid and then, DOF after DOF we replace the
coarse grid SPPs (v) with fine grid SPPs (ṽ).



Approximated potential on the fine grid

V PF
I =

∑
J

CJ

f∏
κ=1

v
(κ)
iκjκ

M
(κ)
Iκ,jκ

=
∑
Jκ

CJ

∏
κ′ 6=κ

v
(κ′)
iκ′ jκ′

min

∑
Iκ

∑
ĩκ

VIκ
ĩκ
−
∑

jκ

M
(κ)
Iκ,jκ

ṽ
(κ)

ĩκ,jκ

2
V MGPF

Ĩ
=
∑

J

CJ

f∏
κ=1

ṽ
(κ)

ĩκ,jκ



MGPF working equations

A full-representation on the coarse grid (m = n) implies that
V PF

I ≡ VI and then the equations for the fine grid SPPs read

ṽ(κ) = ρ(κ)′ρ(κ)−1
v(κ)

MGPF is a function-driven interpolation ρ(κ)′ρ(κ)−1
,

MGPF potential is EXACT on ALL coarse grid points.

MGPF SPPs are NOT natural potentials, but one can
transform them to orthonormal, importance ordered natural
potentials.



MGPF Computational effort

Total effort # Potential evaluations

POTFIT f · N f +1 N f

MGPF 2 · f · N · nf f · N · nf−1

Note that MGPF is linear in N.

gaineffort =
1

2

(
N

n

)f

gaineval =
1

f

(
N

n

)f−1

f = 12, N = 25, n = 4 or 3

POTFIT MGPF(4) MGPF(3)

Evaluations 6.0 · 1016 1.3 · 109 5.3 · 107

Operations 1.8 · 1019 1.0 · 1010 3.2 · 108
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The two flavours of MGPF

Two approaches to MGPF
Bottom-up, make a nice guess of a small coarse grid:

- ...tedious, choose a coarse grid, optimize it, (start over and
check),

- ...usually, this will not be as accurate (depends on our needs),
- ...but, nevertheless, is fast!

Top-down, use a very large coarse grid and trim the resulting
expansion:

- ...more expensive,
- ...but more accurate!
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H3O
−
2 , Coordinates

Choice of the coordinates

Combination scheme: [r1, r2], [x , y , φ], [u1, u2], [R, zred]
Number of SPFs: [11/55/25/18].



rms-errors

Rms-errors in cm−1 for a series of Jacobi td-MGPF expansions.
kBT(cm−1)

λred
thrs SPP Terms Λ

1/2
red 400 4000 10000

8520 [5/8/8/c] 320 234.84 59.587 102.925 123.416
852 [10/14/10/c] 1400 85.81 30.403 42.088 50.354
85.2 [13/24/16/c] 4992 29.96 9.576 14.220 17.504
8.52 [18/37/21/c] 13986 11.11 2.889 5.371 6.546
0.85 [25/58/27/c] 40716 4.63 1.287 2.102 2.617

Rms-errors in cm−1 for a series of Valence td-MGPF expansions.
kBT(cm−1)

λred
thrs SPP Terms Λ

1/2
red 400 4000 10000

12150 [5/7/7/c] 245 260.50 58.675 106.644 128.209
1215 [8/12/9/c] 864 120.59 29.437 53.548 64.068
121.5 [12/21/15/c] 3780 39.35 9.151 17.506 21.171
12.15 [18/35/20/c] 12600 14.12 3.128 6.615 7.947
1.215 [25/57/25/c] 35625 5.47 1.429 2.750 3.345

Total fine-grid size: 1.79× 1010 (Jac.) or 1.12× 1010 (Val.)



Ground State Energy (ZPE)

. Ground state energies (cm−1)

. Maximum natural population

Coord. 10−1 10−2 10−3 10−4 10−5

Jacobi 6594.53 6604.07 6600.05 6601.60 6602.48
Valence 6597.46 6600.95 6600.33 6602.14 6602.50
Terms J 320 1,400 4,992 13,986 40,716
Terms V 245 864 3,780 12,600 35,625



Excitation Energies, Fundamentals

MCTDH DMC Lanczos VSCF/CI
Mode even odd even odd even odd even odd

GS 0.00 18.13 0 14 0.0 13.3 0 22
φ 131.71 217.88 131 224 132.5 214.9 132 215

u1 + u2 439.90 480.45 479 517 460.6 490.2 465 528
R 485.07 503.34 505 521 499.2 519.0 515 540

u1 − u2 573.07 583.82 588 602 598.9 603.9 576 606
z 691.69 721.40 644 665 759.9 758.8 741 785

DMC: McCoy, JCP 123 064317 (2005)
Lanczos: Yu, JCP 125 204306 (2006)
VSCF/CI: Bowman, Carter, JCP 123 064317 (2005)
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Summary and Outlook

MGPF can bring a high dimensional PES (9D and hopefully
12D) into product form (here: Tucker format).

It does this efficiently and accurately.

However, the expansion may consist of (too) many terms.

There are several possible strategies to reduce the number of
terms:

Introduce weights in MGPF.

Transform the MGPF potential tensor to a CANDECOMP

format: V app
i1,...,if

=
∑R

r=1 Cr v
(1)
i1,r
. . . v

(f )
if ,r

Transform the MGPF potential tensor to multilayer form.
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THE END

Thank you!
http://mctdh.uni-hd.de/
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