POTFIT and Multigrid POTFIT
 Transforming general multi-dimensional potential energy surfaces to product form Applications to $\mathrm{H}_{3} \mathrm{O}_{2}^{-}$

Hans-Dieter Meyer

Theoretische Chemie Universität Heidelberg

$$
\text { Banff, May 2nd } 2013
$$

1 Multiconfiguration time-dependent Hartree, MCTDH

2 POTFIT

3 Multigrid POTFIT (MGPF)

4 Results, $\mathrm{H}_{3} \mathrm{O}_{2}^{-}$

5 Summary, Outlook, and Acknowledgments

1 Multiconfiguration time-dependent Hartree, MCTDH
■ MCTDH wavefunction and equations of motion

- Product representation of the Hamiltonian

2 POTFIT

3 Multigrid POTFIT (MGPF)

4 Results, $\mathrm{H}_{3} \mathrm{O}_{2}^{-}$

5 Summary, Outlook, and Acknowledgments

The ansatz for the MCTDH wavefunction reads

$$
\begin{aligned}
\Psi\left(q_{1}, \cdots, q_{f}, t\right) & =\sum_{j_{1}=1}^{n_{1}} \cdots \sum_{j_{f}=1}^{n_{f}} A_{j_{1}, \cdots, j_{f}}(t) \prod_{\kappa=1}^{f} \varphi_{j_{\kappa}}^{(\kappa)}\left(q_{\kappa}, t\right) \\
& =\sum_{J} A_{J} \Phi_{J}
\end{aligned}
$$

The ansatz for the MCTDH wavefunction reads

$$
\begin{aligned}
\Psi\left(q_{1}, \cdots, q_{f}, t\right) & =\sum_{j_{1}=1}^{n_{1}} \cdots \sum_{j_{f}=1}^{n_{f}} A_{j_{1}, \cdots, j_{f}}(t) \prod_{\kappa=1}^{f} \varphi_{j_{\kappa}}^{(\kappa)}\left(q_{\kappa}, t\right) \\
& =\sum_{J} A_{J} \Phi_{J}
\end{aligned}
$$

Single-particle functions:

$$
\varphi_{j_{\kappa}}^{(\kappa)}\left(q_{\kappa}, t\right)=\sum_{l=1}^{N_{\kappa}} c_{j_{\kappa} l}^{(\kappa)}(t) \chi_{l}^{(\kappa)}\left(q_{\kappa}\right)
$$

$$
\begin{aligned}
i \dot{A}_{J} & =\sum_{L}\left\langle\Phi_{J}\right| \hat{H}\left|\Phi_{L}\right\rangle A_{L} \\
i \dot{\varphi}_{j}^{(\kappa)} & =\left(1-P^{(\kappa)}\right) \sum_{k, l} \rho_{j, k}^{(\kappa)^{-1}}\langle\hat{H}\rangle_{k, l}^{(\kappa)} \varphi_{l}^{(\kappa)}
\end{aligned}
$$

The computation of the Hamiltonian matrix $\left\langle\Phi_{J}\right| \hat{H}\left|\Phi_{L}\right\rangle$ and the mean-fields $\langle\hat{\boldsymbol{H}}\rangle_{k, l}^{(\kappa)}$ requires the evaluation of multi-dimensional integrals. It is essential that these integrals are done fast.

We require the Hamiltonian to be in product form

$$
\hat{H}=\sum_{r=1}^{s} c_{r} \prod_{\kappa=1}^{f} \hat{h}_{r}^{(\kappa)}
$$

where $\hat{h}_{r}^{(\kappa)}$ operates on the κ-th degree of freedom only.

We require the Hamiltonian to be in product form

$$
\hat{H}=\sum_{r=1}^{s} c_{r} \prod_{\kappa=1}^{f} \hat{h}_{r}^{(\kappa)}
$$

where $\hat{h}_{r}^{(\kappa)}$ operates on the κ-th degree of freedom only.
The multi-dimensional integrals can then be written as a sum of products of one- or low-dimensional integrals

$$
\left\langle\Phi_{J}\right| \hat{H}\left|\Phi_{L}\right\rangle=\sum_{r=1}^{s} c_{r}\left\langle\varphi_{j_{1}}^{(1)}\right| \hat{h}_{r}^{(1)}\left|\varphi_{l_{1}}^{(1)}\right\rangle \ldots\left\langle\varphi_{j_{f}}^{(f)}\right| \hat{h}_{r}^{(f)}\left|\varphi_{l_{f}}^{(f)}\right\rangle
$$

We require the Hamiltonian to be in product form

$$
\hat{H}=\sum_{r=1}^{s} c_{r} \prod_{\kappa=1}^{f} \hat{h}_{r}^{(\kappa)}
$$

where $\hat{h}_{r}^{(\kappa)}$ operates on the κ-th degree of freedom only.
The multi-dimensional integrals can then be written as a sum of products of one- or low-dimensional integrals

$$
\left\langle\Phi_{J}\right| \hat{H}\left|\Phi_{L}\right\rangle=\sum_{r=1}^{s} c_{r}\left\langle\varphi_{j_{1}}^{(1)}\right| \hat{h}_{r}^{(1)}\left|\varphi_{l_{1}}^{(1)}\right\rangle \ldots\left\langle\varphi_{j_{f}}^{(f)}\right| \hat{h}_{r}^{(f)}\left|\varphi_{l_{f}}^{(f)}\right\rangle
$$

An alternative fast algorithm is the CDVR method of U . Manthe.
See also Ávila and Carrington JCP 134 (2011) 054126. (Smolyak)

1 Multiconfiguration time-dependent Hartree, MCTDH

2 POTFIT

3 Multigrid POTFIT (MGPF)

4 Results, $\mathrm{H}_{3} \mathrm{O}_{2}^{-}$

5 Summary, Outlook, and Acknowledgments

The most direct way to the product form is an expansion in a product basis. Hence we approximate some given potential V by

$$
V^{\mathrm{PF}}\left(q^{(1)}, \ldots, q^{(f)}\right)=\sum_{j_{1}=1}^{m_{1}} \ldots \sum_{j_{f}=1}^{m_{f}} C_{j_{1} \ldots j_{f}} v_{j_{1}}^{(1)}\left(q^{(1)}\right) \ldots v_{j_{f}}^{(f)}\left(q^{(f)}\right)
$$

The most direct way to the product form is an expansion in a product basis. Hence we approximate some given potential V by

$$
V^{\mathrm{PF}}\left(q^{(1)}, \ldots, q^{(f)}\right)=\sum_{j_{1}=1}^{m_{1}} \ldots \sum_{j_{f}=1}^{m_{f}} C_{j_{1} \ldots j_{f}} v_{j_{1}}^{(1)}\left(q^{(1)}\right) \ldots v_{j_{f}}^{(f)}\left(q^{(f)}\right)
$$

working with grids we set:

$$
V\left(q_{i_{1}}^{(1)}, \ldots, q_{i_{f}}^{(f)}\right)=V_{i_{1} \ldots i_{f}} \quad \text { and } \quad v_{i j}^{(\kappa)}=v_{j}^{(\kappa)}\left(q_{i}^{(\kappa)}\right)
$$

This yields:

$$
V_{i_{1} \ldots i_{f}}^{\mathrm{PF}}=\sum_{j_{1}=1}^{m_{1}} \ldots \sum_{j_{f}=1}^{m_{f}} C_{j_{1} \ldots j_{f}} v_{i_{1} j_{1}}^{(1)} \ldots v_{i_{f} j_{f}}^{(f)}
$$

Tucker decomposition $\quad i_{\kappa}=1 \cdots N_{\kappa} \quad j_{\kappa}=1 \cdots m_{\kappa}$

The coefficients are given by overlap

$$
C_{j_{1} \ldots j_{f}}=\sum_{i_{1}=1}^{N_{1}} \ldots \sum_{i_{p}=1}^{N_{f}} v_{i_{1} j_{1}}^{(1)} \cdots v_{i_{f} j_{f}}^{(f)} V_{i_{1} \ldots i_{f}}
$$

The coefficients are given by overlap

$$
C_{j_{1} \ldots j_{f}}=\sum_{i_{1}=1}^{N_{1}} \ldots \sum_{i_{p}=1}^{N_{f}} v_{i_{1} j_{1}}^{(1)} \cdots v_{i_{f} j_{f}}^{(f)} V_{i_{1} \ldots i_{f}}
$$

More difficult is to find optimal single-particle potentials (SPPs). We define the SPPs as eigenvectors of the potential density matrices

$$
\varrho_{k k^{\prime}}^{(\kappa)}=\sum_{I^{\kappa}} V_{i_{1} \ldots i_{\kappa-1} k i_{\kappa+1} \ldots i_{f}} V_{i_{1} \ldots i_{\kappa-1} k^{\prime} i_{\kappa+1} \ldots i_{f}}
$$

Eigenvalues: $\lambda_{j_{\kappa}}^{(\kappa)} \quad$ Eigenvectors: $\mathbf{v}_{j_{\kappa}}^{(\kappa)}$

The natural potentials will be the taken as SPPs for the approximated potential expansion:

$$
V_{i_{1} \ldots i_{f}}^{\mathrm{PF}}=\sum_{j_{1}=1}^{m_{1}} \ldots \sum_{j_{f}=1}^{m_{f}} C_{j_{1} \ldots j_{f}} v_{i_{1} j_{1}}^{(1)} \ldots v_{i_{f} j_{f}}^{(f)}
$$

The natural weights $\left(\lambda_{j_{\kappa}}^{(\kappa)}\right)$ provide us an estimation of the number of expansion functions or expansion orders $\left(m_{\kappa} \leq N_{\kappa}\right)$ that we need to describe our potential up to a certain accuracy:

The natural potentials will be the taken as SPPs for the approximated potential expansion:

$$
V_{i_{1} \ldots i_{f}}^{\mathrm{PF}}=\sum_{j_{1}=1}^{m_{1}} \ldots \sum_{j_{f}=1}^{m_{f}} C_{j_{1} \ldots j_{f}} v_{i_{1} j_{1}}^{(1)} \ldots v_{i_{f} j_{f}}^{(f)}
$$

The natural weights $\left(\lambda_{j_{\kappa}}^{(\kappa)}\right)$ provide us an estimation of the number of expansion functions or expansion orders $\left(m_{\kappa} \leq N_{\kappa}\right)$ that we need to describe our potential up to a certain accuracy:

The natural potentials will be the taken as SPPs for the approximated potential expansion:

$$
V_{i_{1} \ldots i_{f}}^{\mathrm{PF}}=\sum_{j_{1}=1}^{m_{1}} \ldots \sum_{j_{f}=1}^{m_{f}} C_{j_{1} \ldots j_{f}} v_{i_{1} j_{1}}^{(1)} \ldots v_{i_{f} j_{f}}^{(f)}
$$

The natural weights $\left(\lambda_{j_{\kappa}}^{(\kappa)}\right)$ provide us an estimation of the number of expansion functions or expansion orders $\left(m_{\kappa} \leq N_{\kappa}\right)$ that we need to describe our potential up to a certain accuracy:

The L^{2}-error is defined as: $\Delta^{2}=\sum_{l}\left(V_{l}-V_{l}^{P F}\right)^{2}$.
The error is bound by:

$$
\frac{1}{f-1} \sum_{\substack{\kappa=1 \\ \kappa \neq \nu}}^{f} \sum_{j=m_{\kappa}+1}^{N_{\kappa}} \lambda_{j}^{(\kappa)} \leq \Delta_{o p t}^{2} \leq \Delta^{2} \leq \sum_{\substack{\kappa=1 \\ \kappa \neq \nu}}^{f} \sum_{j=m_{\kappa}+1}^{N_{\kappa}} \lambda_{j}^{(\kappa)}
$$

The error is determined by the eigenvalues of the neglected SPPs.
For $m_{\kappa}=N_{\kappa}$ one recovers the exact potential on the grid.

Natural weights

The applicability of POTFIT is limited by the computation of the density matrix and the overlaps, which run over the complete grid:

$$
\begin{gathered}
\rho_{k k^{\prime}}^{(\kappa)}=\sum_{i_{1}=1}^{N_{1}} \ldots \sum_{i_{\kappa-1}=1}^{N_{\kappa-1}} \sum_{i_{\kappa+1}=1}^{N_{\kappa+1}} \ldots \sum_{i_{f}=1}^{N_{f}} V_{i_{1} \ldots i_{\kappa-1} k i_{\kappa+1} i_{f}} V_{i_{1} \ldots i_{\kappa-1} k^{\prime} i_{\kappa+1} i_{f}} \\
C_{J}=C_{j_{1} \ldots j_{f}}=\sum_{i_{1}=1}^{N_{1}} \ldots \sum_{i_{f}=1}^{N_{f}} v_{i_{1} j_{1}}^{(1)} \cdots v_{i_{f} j_{f}}^{(f)} V_{i_{1} \ldots i_{f}}
\end{gathered}
$$

We cannot deal with problems with more than 10^{9} grid points (6-8 DOFs).

The applicability of POTFIT is limited by the computation of the density matrix and the overlaps, which run over the complete grid:

$$
\begin{gathered}
\rho_{k k^{\prime}}^{(\kappa)}=\sum_{i_{1}=1}^{N_{1}} \ldots \sum_{i_{\kappa-1}=1}^{N_{\kappa-1}} \sum_{i_{\kappa+1}=1}^{N_{\kappa+1}} \ldots \sum_{i_{f}=1}^{N_{f}} V_{i_{1} \ldots i_{\kappa-1} k_{i_{k+1} i_{f}}} V_{i_{1} \ldots i_{\kappa-1} k^{\prime} i_{\kappa+1} i_{f}} \\
C_{J}=C_{j_{1} \ldots j_{f}}=\sum_{i_{1}=1}^{N_{1}} \ldots \sum_{i_{f}=1}^{N_{f}} v_{i_{1} j_{1}}^{(1)} \ldots v_{i_{f} j_{f}}^{(f)} V_{i_{1} \ldots i_{f}}
\end{gathered}
$$

We cannot deal with problems with more than 10^{9} grid points (6-8 DOFs).
Multigrid POTFIT (MGPF) has been conceived to (partially) overcome these difficulties.

1 Multiconfiguration time-dependent Hartree, MCTDH

2 POTFIT

3 Multigrid POTFIT (MGPF)
■ Fine and coarse grids

- SPPs on the fine grid

■ MGPF working equations

- Computational effort

4 Results, $\mathrm{H}_{3} \mathrm{O}_{2}^{-}$

5 Summary, Outlook, and Acknowledgments

Let us consider a system which requires to be described by an exceedingly large primitive grid (hereafter fine grid, \tilde{l}) such that it cannot be potfitted. Let us define a coarse grid (I), which is subset of the fine grid $(I \subset \tilde{I})$ and which is small enough (with n_{κ} rather than N_{κ} grid points) to be potfittable. We first potfit the PES on the coarse grid and then, DOF after DOF we replace the coarse grid SPPs (v) with fine grid SPPs ($\mathbf{v})$.

$$
\begin{aligned}
& v_{l}^{\mathrm{PF}}=\sum_{J} c_{J} \prod_{k=1}^{f} v_{i, j_{k}}^{(k)} \\
& M_{\kappa_{k}, j_{k}}^{(\kappa)}=\sum_{J^{\kappa}} c_{J} \prod_{\kappa^{\prime} \neq \kappa} V_{k}^{\left(k_{k} j_{j k^{\prime}}^{\prime}\right)}
\end{aligned}
$$

$$
\begin{aligned}
& V_{i}^{\text {MGPF }}=\sum_{J} c_{J} \prod_{k=1}^{f} \nabla_{i=j, j j_{k}}^{(k)}
\end{aligned}
$$

A full-representation on the coarse grid $(m=n)$ implies that $V_{l}^{P F} \equiv V_{l}$ and then the equations for the fine grid SPPs read

$$
\tilde{\mathbf{v}}^{(\kappa)}=\boldsymbol{\rho}^{(\kappa)^{\prime}} \boldsymbol{\rho}^{(\kappa)^{-1}} \mathbf{v}^{(\kappa)}
$$

- MGPF is a function-driven interpolation $\boldsymbol{\rho}^{(\kappa)^{\prime}} \boldsymbol{\rho}^{(\kappa)^{-1}}$,
- MGPF potential is EXACT on ALL coarse grid points.
- MGPF SPPs are NOT natural potentials, but one can transform them to orthonormal, importance ordered natural potentials.

	Total effort	\# Potential evaluations
POTFIT	$f \cdot N^{f+1}$	N^{f}
MGPF	$2 \cdot f \cdot N \cdot n^{f}$	$f \cdot N \cdot n^{f-1}$

Note that MGPF is linear in N.

$$
\text { gain }_{\text {effort }}=\frac{1}{2}\left(\frac{N}{n}\right)^{f} \quad \text { gain }_{\text {eval }}=\frac{1}{f}\left(\frac{N}{n}\right)^{f-1}
$$

	Total effort	\# Potential evaluations
POTFIT	$f \cdot N^{f+1}$	N^{f}
MGPF	$2 \cdot f \cdot N \cdot n^{f}$	$f \cdot N \cdot n^{f-1}$

Note that MGPF is linear in N.

$$
\text { gain }_{\text {effort }}=\frac{1}{2}\left(\frac{N}{n}\right)^{f} \quad \text { gain }_{\text {eval }}=\frac{1}{f}\left(\frac{N}{n}\right)^{f-1}
$$

$$
f=12, N=25, n=4 \text { or } 3
$$

	POTFIT	MGPF(4)	MGPF(3)
Evaluations	$6.0 \cdot 10^{16}$	$1.3 \cdot 10^{9}$	$5.3 \cdot 10^{7}$
Operations	$1.8 \cdot 10^{19}$	$1.0 \cdot 10^{10}$	$3.2 \cdot 10^{8}$

Two approaches to MGPF

■ Bottom-up, make a nice guess of a small coarse grid:

- ...tedious, choose a coarse grid, optimize it, (start over and check),
- ...usually, this will not be as accurate (depends on our needs),
- ...but, nevertheless, is fast!
- Top-down, use a very large coarse grid and trim the resulting expansion:
- ...more expensive,
- ...but more accurate!

1 Multiconfiguration time-dependent Hartree, MCTDH

2 POTFIT

3 Multigrid POTFIT (MGPF)

4 Results, $\mathrm{H}_{3} \mathrm{O}_{2}^{-}$

5 Summary, Outlook, and Acknowledgments

Choice of the coordinates

Combination scheme: $\left[r_{1}, r_{2}\right],[x, y, \phi],\left[u_{1}, u_{2}\right],\left[R, z_{\text {red }}\right]$ Number of SPFs: [11/55/25/18].

rms-errors

Rms-errors in cm^{-1} for a series of Jacobi td-MGPF expansions. $\mathrm{k}_{\mathrm{B}} \mathrm{T}\left(\mathrm{cm}^{-1}\right)$

$\boldsymbol{\lambda}_{\text {thrs }}^{\text {red }}$	SPP	Terms	$\boldsymbol{\Lambda}_{\text {red }}^{\mathbf{1 / 2}}$	$\mathbf{4 0 0}$	$\mathbf{4 0 0 0}$	$\mathbf{1 0 0 0 0}$
8520	$[5 / 8 / 8 / c]$	320	234.84	59.587	102.925	123.416
852	$[10 / 14 / 10 / c]$	1400	85.81	30.403	42.088	50.354
85.2	$[13 / 24 / 16 / c]$	4992	29.96	9.576	14.220	17.504
8.52	$[18 / 37 / 21 / c]$	13986	11.11	2.889	5.371	6.546
0.85	$[25 / 58 / 27 / c]$	40716	4.63	1.287	2.102	2.617

Rms-errors in cm^{-1} for a series of Valence td-MGPF expansions.

				$\mathbf{k}_{\mathbf{B}} \mathbf{T}\left(\mathbf{c m}^{-\mathbf{1}}\right)$		
$\boldsymbol{\lambda}_{\text {thrs }}^{\text {red }}$	SPP	Terms	$\boldsymbol{\Lambda}_{\text {red }}^{\mathbf{1 / 2}}$	$\mathbf{4 0 0}$	$\mathbf{4 0 0 0}$	$\mathbf{1 0 0 0 0}$
12150	$[5 / 7 / 7 / \mathrm{c}]$	245	260.50	58.675	106.644	128.209
1215	$[8 / 12 / 9 / c]$	864	120.59	29.437	53.548	64.068
121.5	$[12 / 21 / 15 / c]$	3780	39.35	9.151	17.506	21.171
12.15	$[18 / 35 / 20 / c]$	12600	14.12	3.128	6.615	7.947
1.215	$[25 / 57 / 25 / \mathrm{c}]$	35625	5.47	1.429	2.750	3.345

Total fine-grid size: 1.79×10^{10} (Jac.) or 1.12×10^{10} (Val.)

Ground State Energy (ZPE)

Ground state energies (cm^{-1})

	Maximum natural population					
Coord.	$\mathbf{1 0}^{-\mathbf{1}}$	$\mathbf{1 0}^{-\mathbf{2}}$	$\mathbf{1 0}^{-\mathbf{3}}$	$\mathbf{1 0}^{-\mathbf{4}}$	$\mathbf{1 0}^{\mathbf{- 5}}$	
Jacobi	6594.53	6604.07	6600.05	6601.60	6602.48	
Valence	6597.46	6600.95	6600.33	6602.14	6602.50	
Terms J	320	1,400	4,992	13,986	40,716	
Terms V	245	864	3,780	12,600	35,625	

	MCTDH		DMC		Lanczos		VSCF/CI	
Mode	even	odd	even	odd	even	odd	even	odd
GS	0.00	18.13	0	14	0.0	13.3	0	22
ϕ	131.71	217.88	131	224	132.5	214.9	132	215
$u_{1}+u_{2}$	439.90	480.45	479	517	460.6	490.2	465	528
R	485.07	503.34	505	521	499.2	519.0	515	540
$u_{1}-u_{2}$	573.07	583.82	588	602	598.9	603.9	576	606
\boldsymbol{z}	691.69	721.40	644	665	759.9	758.8	741	785

DMC: McCoy, JCP 123064317 (2005)
Lanczos: Yu, JCP 125204306 (2006)
VSCF/CI: Bowman, Carter, JCP 123064317 (2005)

1 Multiconfiguration time-dependent Hartree, MCTDH

2 POTFIT

3 Multigrid POTFIT (MGPF)

4 Results, $\mathrm{H}_{3} \mathrm{O}_{2}^{-}$

5 Summary, Outlook, and Acknowledgments

- MGPF can bring a high dimensional PES (9D and hopefully 12D) into product form (here: Tucker format).
- It does this efficiently and accurately.
- However, the expansion may consist of (too) many terms.
- There are several possible strategies to reduce the number of terms:
- Introduce weights in MGPF.
- Transform the MGPF potential tensor to a CANDECOMP format: $V_{i_{1}, \ldots, i_{f}}^{\text {app }}=\sum_{r=1}^{R} C_{r} v_{i_{1}, r}^{(1)} \ldots v_{i_{f}, r}^{(f)}$
- Transform the MGPF potential tensor to multilayer form.
- Daniel Pelaez
- Keyvan Sadri

■ Joel Bowman, for sending us the PES routine.

Thank you!

http://mctdh.uni-hd.de/

