POTFIT and Multigrid POTFIT Transforming general multi-dimensional potential energy surfaces to product form Applications to $H_3O_2^-$

Hans-Dieter Meyer

Theoretische Chemie Universität Heidelberg

Banff, May 2nd, 2013

- 1 Multiconfiguration time-dependent Hartree, MCTDH
- 2 POTFIT
- 3 Multigrid POTFIT (MGPF)
- 4 Results, $H_3O_2^-$
- 5 Summary, Outlook, and Acknowledgments

1 Multiconfiguration time-dependent Hartree, MCTDH

- MCTDH wavefunction and equations of motion
- Product representation of the Hamiltonian

2 POTFIT

- 3 Multigrid POTFIT (MGPF)
- 4 Results, $H_3O_2^-$
- 5 Summary, Outlook, and Acknowledgments

The ansatz for the MCTDH wavefunction reads

$$\begin{split} \Psi(q_1,\cdots,q_f,t) &= \sum_{j_1=1}^{n_1}\cdots\sum_{j_f=1}^{n_f}A_{j_1,\cdots,j_f}(t)\,\prod_{\kappa=1}^f\varphi_{j_\kappa}^{(\kappa)}(q_\kappa,t)\\ &= \sum_J A_J\,\Phi_J \end{split}$$

The ansatz for the MCTDH wavefunction reads

$$\begin{split} \Psi(q_1,\cdots,q_f,t) &= \sum_{j_1=1}^{n_1}\cdots\sum_{j_f=1}^{n_f}A_{j_1,\cdots,j_f}(t)\prod_{\kappa=1}^f\varphi_{j_\kappa}^{(\kappa)}(q_\kappa,t)\\ &= \sum_J A_J\,\Phi_J \end{split}$$

Single-particle functions:

$$arphi_{j_\kappa}^{(\kappa)}(q_\kappa,t) = \sum_{l=1}^{N_\kappa} c_{j_\kappa l}^{(\kappa)}(t) \; \chi_l^{(\kappa)}(q_\kappa)$$

MCTDH equations of motion

$$i\dot{A}_{J} = \sum_{L} \langle \Phi_{J} | \hat{H} | \Phi_{L} \rangle A_{L}$$
$$i\dot{\varphi}_{j}^{(\kappa)} = \left(1 - P^{(\kappa)} \right) \sum_{k,l} \rho_{j,k}^{(\kappa)^{-1}} \langle \hat{\mathbf{H}} \rangle_{k,l}^{(\kappa)} \varphi_{l}^{(\kappa)}$$

The computation of the Hamiltonian matrix $\langle \Phi_J | \hat{H} | \Phi_L \rangle$ and the mean-fields $\langle \hat{\mathbf{H}} \rangle_{k,l}^{(\kappa)}$ requires the evaluation of multi-dimensional integrals. It is essential that these integrals are done fast.

Product representation of the Hamiltonian

We require the Hamiltonian to be in product form

$$\hat{H} = \sum_{r=1}^{s} c_r \prod_{\kappa=1}^{f} \hat{h}_r^{\kappa}$$

where $\hat{h}_r^{(\kappa)}$ operates on the κ -th degree of freedom only.

Product representation of the Hamiltonian

We require the Hamiltonian to be in product form

$$\hat{H} = \sum_{r=1}^{s} c_r \prod_{\kappa=1}^{f} \hat{h}_r^{(\kappa)}$$

where $\hat{h}_r^{(\kappa)}$ operates on the κ -th degree of freedom only.

The multi-dimensional integrals can then be written as a sum of products of one- or low-dimensional integrals

$$\langle \Phi_J \mid \hat{H} \mid \Phi_L \rangle = \sum_{r=1}^{s} c_r \langle \varphi_{j_1}^{(1)} \mid \hat{h}_r^{(1)} \mid \varphi_{l_1}^{(1)} \rangle \dots \langle \varphi_{j_f}^{(f)} \mid \hat{h}_r^{(f)} \mid \varphi_{l_f}^{(f)} \rangle$$

Product representation of the Hamiltonian

We require the Hamiltonian to be in product form

$$\hat{H} = \sum_{r=1}^{s} c_r \prod_{\kappa=1}^{f} \hat{h}_r^{(\kappa)}$$

where $\hat{h}_{r}^{(\kappa)}$ operates on the κ -th degree of freedom only.

The multi-dimensional integrals can then be written as a sum of products of one- or low-dimensional integrals

$$\langle \Phi_J \mid \hat{H} \mid \Phi_L \rangle = \sum_{r=1}^{s} c_r \langle \varphi_{j_1}^{(1)} \mid \hat{h}_r^{(1)} \mid \varphi_{l_1}^{(1)} \rangle \dots \langle \varphi_{j_f}^{(f)} \mid \hat{h}_r^{(f)} \mid \varphi_{l_f}^{(f)} \rangle$$

An alternative fast algorithm is the CDVR method of U. Manthe. See also Ávila and Carrington JCP **134** (2011) 054126. (Smolyak)

1 Multiconfiguration time-dependent Hartree, MCTDH

2 POTFIT

- 3 Multigrid POTFIT (MGPF)
- 4 Results, $H_3O_2^-$
- 5 Summary, Outlook, and Acknowledgments

Potfit

The most direct way to the product form is an expansion in a product basis. Hence we approximate some given potential V by

$$V^{\mathsf{PF}}\left(q^{(1)},\ldots,q^{(f)}\right) = \sum_{j_1=1}^{m_1}\ldots\sum_{j_f=1}^{m_f}C_{j_1\ldots j_f}\,v_{j_1}^{(1)}(q^{(1)})\ldots v_{j_f}^{(f)}(q^{(f)})$$

Potfit

The most direct way to the product form is an expansion in a product basis. Hence we approximate some given potential V by

$$V^{\mathsf{PF}}\left(q^{(1)},\ldots,q^{(f)}\right) = \sum_{j_1=1}^{m_1}\ldots\sum_{j_f=1}^{m_f}C_{j_1\ldots j_f} v_{j_1}^{(1)}(q^{(1)})\ldots v_{j_f}^{(f)}(q^{(f)})$$

working with grids we set:

$$V(q_{i_1}^{(1)},\ldots,q_{i_f}^{(f)})=V_{i_1\ldots i_f}$$
 and $v_{ij}^{(\kappa)}=v_j^{(\kappa)}(q_i^{(\kappa)})$

This yields:

$$V_{i_1...i_f}^{\mathsf{PF}} = \sum_{j_1=1}^{m_1} \dots \sum_{j_f=1}^{m_f} C_{j_1...j_f} v_{i_1j_1}^{(1)} \dots v_{i_fj_f}^{(f)}$$

Tucker decomposition $i_{\kappa} = 1 \cdots N_{\kappa}$ $j_{\kappa} = 1 \cdots m_{\kappa}$

The coefficients are given by overlap

$$C_{j_1...j_f} = \sum_{i_1=1}^{N_1} \dots \sum_{i_p=1}^{N_f} v_{i_1j_1}^{(1)} \cdots v_{i_fj_f}^{(f)} V_{i_1...i_f}$$

The coefficients are given by overlap

$$C_{j_1...j_f} = \sum_{i_1=1}^{N_1} \dots \sum_{i_p=1}^{N_f} v_{i_1j_1}^{(1)} \cdots v_{i_fj_f}^{(f)} V_{i_1...i_f}$$

More difficult is to find optimal single-particle potentials (SPPs). We define the SPPs as eigenvectors of the potential density matrices

$$\begin{split} \varrho_{kk'}^{(\kappa)} &= \sum_{I^{\kappa}} V_{i_1 \dots i_{\kappa-1} k i_{\kappa+1} \dots i_f} V_{i_1 \dots i_{\kappa-1} k' i_{\kappa+1} \dots i_f} \\ \text{Eigenvalues: } \lambda_{j_{\kappa}}^{(\kappa)} & \text{Eigenvectors: } \mathbf{v}_{j_{\kappa}}^{(\kappa)} \end{split}$$

The *natural potentials* will be the taken as SPPs for the approximated potential expansion:

$$V_{i_1...i_f}^{\mathsf{PF}} = \sum_{j_1=1}^{m_1} \dots \sum_{j_f=1}^{m_f} C_{j_1...j_f} v_{i_1j_1}^{(1)} \dots v_{i_fj_f}^{(f)}$$

The *natural weights* $(\lambda_{j_{\kappa}}^{(\kappa)})$ provide us an estimation of the number of expansion functions or *expansion orders* $(m_{\kappa} \leq N_{\kappa})$ that we need to describe our potential up to a certain accuracy:

The *natural potentials* will be the taken as SPPs for the approximated potential expansion:

$$V_{i_1...i_f}^{\mathsf{PF}} = \sum_{j_1=1}^{m_1} \dots \sum_{j_f=1}^{m_f} C_{j_1...j_f} v_{i_1j_1}^{(1)} \dots v_{i_fj_f}^{(f)}$$

The *natural weights* $(\lambda_{j_{\kappa}}^{(\kappa)})$ provide us an estimation of the number of expansion functions or *expansion orders* $(m_{\kappa} \leq N_{\kappa})$ that we need to describe our potential up to a certain accuracy:

The *natural potentials* will be the taken as SPPs for the approximated potential expansion:

$$V_{i_1...i_f}^{\mathsf{PF}} = \sum_{j_1=1}^{m_1} \dots \sum_{j_f=1}^{m_f} C_{j_1...j_f} v_{i_1j_1}^{(1)} \dots v_{i_fj_f}^{(f)}$$

The *natural weights* $(\lambda_{j_{\kappa}}^{(\kappa)})$ provide us an estimation of the number of expansion functions or *expansion orders* $(m_{\kappa} \leq N_{\kappa})$ that we need to describe our potential up to a certain accuracy:

POTFIT (1996), HOSVD

Error estimation

The L²-error is defined as: $\Delta^2 = \sum_{I} (V_{I} - V_{I}^{PF})^2$.

The error is bound by:

$$\frac{1}{f-1}\sum_{\substack{\kappa=1\\\kappa\neq\nu}}^{f}\sum_{j=m_{\kappa}+1}^{N_{\kappa}}\lambda_{j}^{(\kappa)} \leq \Delta_{opt}^{2} \leq \Delta^{2} \leq \sum_{\substack{\kappa=1\\\kappa\neq\nu}}^{f}\sum_{j=m_{\kappa}+1}^{N_{\kappa}}\lambda_{j}^{(\kappa)}$$

The error is determined by the eigenvalues of the *neglected* SPPs. For $m_{\kappa} = N_{\kappa}$ one recovers the exact potential on the grid.

POTFIT problems

The applicability of POTFIT is limited by the computation of the density matrix and the overlaps, which run over the **complete** grid:

$$\rho_{kk'}^{(\kappa)} = \sum_{i_1=1}^{N_1} \dots \sum_{i_{\kappa-1}=1}^{N_{\kappa-1}} \sum_{i_{\kappa+1}=1}^{N_{\kappa+1}} \dots \sum_{i_f=1}^{N_f} V_{i_1 \dots i_{\kappa-1} k i_{\kappa+1} i_f} V_{i_1 \dots i_{\kappa-1} k' i_{\kappa+1} i_f}$$

$$C_J = C_{j_1...j_f} = \sum_{i_1=1}^{N_1} \dots \sum_{i_f=1}^{N_f} v_{i_1j_1}^{(1)} \cdots v_{i_fj_f}^{(f)} V_{i_1...i_f}$$

We cannot deal with problems with more than 10^9 grid points (6-8 DOFs).

POTFIT problems

The applicability of POTFIT is limited by the computation of the density matrix and the overlaps, which run over the **complete** grid:

$$\rho_{kk'}^{(\kappa)} = \sum_{i_1=1}^{N_1} \dots \sum_{i_{\kappa-1}=1}^{N_{\kappa-1}} \sum_{i_{\kappa+1}=1}^{N_{\kappa+1}} \dots \sum_{i_f=1}^{N_f} V_{i_1 \dots i_{\kappa-1} k i_{\kappa+1} i_f} V_{i_1 \dots i_{\kappa-1} k' i_{\kappa+1} i_f}$$

$$C_J = C_{j_1...j_f} = \sum_{i_1=1}^{N_1} \dots \sum_{i_f=1}^{N_f} v_{i_1j_1}^{(1)} \cdots v_{i_fj_f}^{(f)} V_{i_1...i_f}$$

We cannot deal with problems with more than 10^9 grid points (6-8 DOFs).

Multigrid POTFIT (MGPF) has been conceived to (*partially*) overcome these difficulties.

1 Multiconfiguration time-dependent Hartree, MCTDH

2 POTFIT

3 Multigrid POTFIT (MGPF)

- Fine and coarse grids
- SPPs on the fine grid
- MGPF working equations
- Computational effort

4 Results, $H_3O_2^-$

5 Summary, Outlook, and Acknowledgments

Let us consider a system which **requires** to be described by an **exceedingly large** primitive grid (hereafter **fine grid**, \tilde{I}) such that it cannot be *potfitted*. Let us define a coarse grid (I), which is subset of the fine grid ($I \subset \tilde{I}$) and which is small enough (with n_{κ} rather than N_{κ} grid points) to be potfittable. We first potfit the PES on the coarse grid and then, DOF after DOF we replace the coarse grid SPPs (\mathbf{v}) with fine grid SPPs ($\tilde{\mathbf{v}}$).

Approximated potential on the fine grid

$$V_{I}^{\mathsf{PF}} = \sum_{J} C_{J} \prod_{\kappa=1}^{f} v_{i_{\kappa}j_{\kappa}}^{(\kappa)}$$
$$M_{I^{\kappa},j_{\kappa}}^{(\kappa)} = \sum_{J^{\kappa}} C_{J} \prod_{\kappa'\neq\kappa} v_{i_{\kappa'}j_{\kappa'}}^{(\kappa')}$$

$$\min\left\{\sum_{I^{\kappa}}\sum_{\tilde{i}_{\kappa}}\left(V_{I^{\kappa}_{\tilde{i}_{\kappa}}}-\sum_{j_{\kappa}}M^{(\kappa)}_{I^{\kappa},j_{\kappa}}\tilde{v}^{(\kappa)}_{\tilde{i}_{\kappa},j_{\kappa}}\right)^{2}\right\}$$

$$V_{\tilde{I}}^{\mathsf{MGPF}} = \sum_{J} C_{J} \prod_{\kappa=1}^{f} \tilde{v}_{\tilde{i}_{\kappa}, j_{\kappa}}^{(\kappa)}$$

A **full-representation** on the coarse grid (m = n) implies that $V_I^{PF} \equiv V_I$ and then the equations for the fine grid SPPs read

$$\mathbf{\widetilde{v}}^{(\kappa)}=oldsymbol{
ho}^{(\kappa)'}oldsymbol{
ho}^{(\kappa)^{-1}}\mathbf{v}^{(\kappa)}$$

- MGPF is a *function-driven* interpolation $\rho^{(\kappa)'}\rho^{(\kappa)^{-1}}$,
- MGPF potential is EXACT on ALL coarse grid points.
- MGPF SPPs are NOT natural potentials, but one can transform them to orthonormal, importance ordered natural potentials.

MGPF Computational effort

	Total effort	# Potential evaluations		
POTFIT	$f \cdot N^{f+1}$	N ^f		
MGPF	$2 \cdot f \cdot N \cdot n^f$	$f \cdot N \cdot n^{f-1}$		

Note that MGPF is linear in N.

$$\boxed{\text{gain}_{effort} = \frac{1}{2} \left(\frac{N}{n}\right)^{f}} \qquad \boxed{\text{gain}_{eval} = \frac{1}{f} \left(\frac{N}{n}\right)^{f-1}}$$

MGPF Computational effort

	Total effort	# Potential evaluations		
POTFIT	$f \cdot N^{f+1}$	N ^f		
MGPF	$2 \cdot f \cdot N \cdot n^f$	$f \cdot N \cdot n^{f-1}$		

Note that MGPF is linear in N.

$$gain_{effort} = \frac{1}{2} \left(\frac{N}{n}\right)^{f} \qquad gain_{eval} = \frac{1}{f} \left(\frac{N}{n}\right)^{f-1}$$

$$f = 12, N = 25, n = 4 \text{ or } 3$$

	POTFIT	MGPF(4)	MGPF(3)	
Evaluations	$6.0\cdot10^{16}$	$1.3\cdot 10^9$	$5.3\cdot 10^7$	
Operations	$1.8\cdot 10^{19}$	$1.0\cdot 10^{10}$	3.2 · 10 ⁸	

The two flavours of MGPF

Two approaches to MGPF

- Bottom-up, make a nice guess of a *small* coarse grid:
 - ...tedious, choose a coarse grid, optimize it, (start over and check),
 - ...usually, this will not be as accurate (depends on our needs),
 - ...but, nevertheless, is fast!
- Top-down, use a very large coarse grid and trim the resulting expansion:
 - ...more expensive,
 - ...but more accurate!

- 1 Multiconfiguration time-dependent Hartree, MCTDH
- 2 POTFIT
- 3 Multigrid POTFIT (MGPF)
- 4 Results, $H_3O_2^-$
- 5 Summary, Outlook, and Acknowledgments

Choice of the coordinates

Combination scheme: $[r_1, r_2]$, $[x, y, \phi]$, $[u_1, u_2]$, $[R, z_{red}]$ Number of SPFs: [11/55/25/18]. rms-errors

Rms-errors in cm^{-1} for a series of Jacobi td-MGPF expansions.							
k _B T(cr					k _B T(cm ^{−1})	
$oldsymbol{\lambda}_{thrs}^{red}$	SPP	Terms	$\Lambda_{\rm red}^{1/2}$	400	4000	10000	
8520	[5/8/8/c]	320	234.84	59.587	102.925	123.416	
852	[10/14/10/c]	1400	85.81	30.403	42.088	50.354	
85.2	[13/24/16/c]	4992	29.96	9.576	14.220	17.504	
8.52	[18/37/21/c]	13986	11.11	2.889	5.371	6.546	
0.85	[25/58/27/c]	40716	4.63	1.287	2.102	2.617	

Rms-errors in cm^{-1} for a series of Valence td-MGPF expansions.

				k _B T(cm ^{−⊥})		
λ_{thrs}^{red}	SPP	Terms	$\Lambda_{\rm red}^{1/2}$	400	4000	10000
12150	[5/7/7/c]	245	260.50	58.675	106.644	128.209
1215	[8/12/9/c]	864	120.59	29.437	53.548	64.068
121.5	[12/21/15/c]	3780	39.35	9.151	17.506	21.171
12.15	[18/35/20/c]	12600	14.12	3.128	6.615	7.947
1.215	[25/57/25/c]	35625	5.47	1.429	2.750	3.345

Total fine-grid size: 1.79×10^{10} (Jac.) or 1.12×10^{10} (Val.)

	Ground state energies (cm^{-1})					
	•	Maximum natural population				
Coord.	10^{-1}	10^{-2}	10^{-3}	10^{-4}	10^{-5}	
Jacobi	6594.53	6604.07	6600.05	6601.60	6602.48	
Valence	6597.46	6600.95	6600.33	6602.14	6602.50	
Terms J	320	1,400	4,992	13,986	40,716	
Terms V	245	864	3,780	12,600	35,625	

	MCTDH		DMC		Lanczos		VSCF/CI	
Mode	even	odd	even	odd	even	odd	even	odd
GS	0.00	18.13	0	14	0.0	13.3	0	22
ϕ	131.71	217.88	131	224	132.5	214.9	132	215
$u_1 + u_2$	439.90	480.45	479	517	460.6	490.2	465	528
R	485.07	503.34	505	521	499.2	519.0	515	540
$u_1 - u_2$	573.07	583.82	588	602	598.9	603.9	576	606
Ζ	691.69	721.40	644	665	759.9	758.8	741	785

DMC: McCoy, JCP **123** 064317 (2005) Lanczos: Yu, JCP **125** 204306 (2006) VSCF/CI: Bowman, Carter, JCP **123** 064317 (2005)

- 1 Multiconfiguration time-dependent Hartree, MCTDH
- 2 POTFIT
- 3 Multigrid POTFIT (MGPF)
- 4 Results, $H_3O_2^-$
- 5 Summary, Outlook, and Acknowledgments

Summary and Outlook

- MGPF can bring a high dimensional PES (9D and hopefully 12D) into product form (here: Tucker format).
- It does this efficiently and accurately.
- However, the expansion may consist of (too) many terms.
- There are several possible strategies to reduce the number of terms:
 - Introduce weights in MGPF.
 - Transform the MGPF potential tensor to a CANDECOMP format: $V_{i_1,...,i_f}^{app} = \sum_{r=1}^{R} C_r v_{i_1,r}^{(1)} \dots v_{i_r,r}^{(f)}$
 - Transform the MGPF potential tensor to multilayer form.

- Daniel Pelaez
- Keyvan Sadri
- Joel Bowman, for sending us the PES routine.

Thank you!

http://mctdh.uni-hd.de/