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What is Molecular Raman Scattering?

Suppose we shine light on a molecule, and suppose the light

has frequency high enough to interact significantly with the electrons

in the molecule (typically, visible or ultraviolet).

The molecule may produce light of the same or a different frequency.

If the frequency is the same, we have Rayleigh scattering.

It causes the sky to be blue.

If the frequency is different, we have Raman scattering.

To conserve energy, the molecule must change its state.

Typically, the molecule changes its vibrational state,

although there is also a rotational Raman effect.

In Resonance Raman scattering the energy of the incident photons

is tuned to an electronic transition energy of the molecule.
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Our Model

We can handle more general situations, but for today,

assume the molecule’s nuclei have just one degree of freedom,

and the electrons have just two electronic states.

The molecule’s Hamiltonian

Assume the nuclear masses are proportional to ε−4, so the

molecule’s Hamiltonian is H0(ε) = −
ε4

2

∂2

∂x2
+

(
V0(x) 0

0 V1(x)

)
.

Assume V0 has unique global minimum at x = 0,

V0(0) = V ′0(0) = 0, V ′′0 (0) = ω2
0 > 0, lim inf

|x|→∞
V0(x) > 0,

V1(0) = γ > 0, and V ′1(0) = β 6= 0.

5



The molecule with the laser pulse.

Our goal is to study solutions to the time–dependent

Schrödinger equation

i ε2
∂ψ

∂t
= H0(ε)ψ + µ f(t) cos

(
ω t

ε2

)  0 g(x)
g(x) 0

 ψ.
The function f(t) ≥ 0 is the envelope for the laser pulse.

The time–scale for the electronic motion is ε2.

The laser frequency ω/ε2 is tuned to be close to the transition

energy for the electrons.

The function g(x) is the laser coupling between the electronic

levels. It can depend on the nuclear position x.
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Remarks

1. The electromagnetic field is not quantized.

2. We study molecular state changes instead of the scattered light.

3. We shall start with the molecule in its ground state.

Its final state is the same or higher energy.

4. We assume f is smooth, with compact support in [−T, T ].

We shall assume T is sufficiently small. For realistic applications,

this may mean a femtosecond laser pulse.

5. We assume both ε and µ are small parameters, and we assume

we are at least close to the resonance condition ω = γ.

6. We obtain explicit formulas for the Rayleigh scattering amplitude

and Raman scattering amplitudes to leading order in µ and ε.
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Results for Short Laser Pulses in the Resonance Case ω = γ.

Assume

• the above situation with g(0) 6= 0 and ω = γ.

•
2T

τ
≤ C < 1, where τ is the period of the solution to

ẍ = −V ′1(x) with x(0) = x′(0) = 0.

• µ � ε2 � 1.

Then the resonance Rayleigh transition amplitude is

T0(µ, ε) = −
µ2

4 ε3

√
π ω0 g(0)2

|β|

∫ ∞
−∞

f(t)2 dt

+ O

(
µ2

ε2

)
+ O

(
µ4

ε8

)
.
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If j is odd, the resonance Raman transition amplitude to

vibrational state j is

Tj(µ, ε) =
µ2

4 ε3
i (−1)

j−1
2
√
ω0 g(0)2

β

2j/2
((
j−1

2

)
!
)

(j!)1/2

∫ ∞
−∞

eijω0t f(t)2 dt

+ O

(
µ2

ε2

)
+ O

(
µ4

ε8

)
.

If j ≥ 2 is even, the resonance Raman transition amplitude to

vibrational state j is

Tj(µ, ε) =
µ2

4ε3
(−1)

j+2
2
√
ω0 g(0)2

|β|

√
π (j!)1/2

2j/2
((
j
2

)
!
) ∫ ∞
−∞

eijω0t f(t)2 dt

+ O

(
µ2

ε2

)
+ O

(
µ4

ε8

)
.
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Comparisons with a Numerical Simulation

For µ = 0.001, ε = 0.05, β = 1, ω = γ = 1, ω0 = 1, g(0) = 1

and f(t) = e−5t2/2 (cut off for |t| > 1.5), and j = 0, 1, · · · , 9,

the following chart compares these second order theoretical values

for 105 |Tj(µ, ε)| with computer simulations for 105 |Tj(µ, ε)|.

Theory 281 213 162 117 77.3 46.9 26.0 13.1 5.99 2.49

Simulation 280 211 159 113 74.3 44.7 24.5 12.2 5.52 2.26

For the smallest values of j, the differences are about 1%,

and the percent errors increase as j increases (as one would expect).

The behavior is qualitatively correct, and the behavior of the phases

is also qualitatively correct.
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Results for Short Laser Pulses in the Non–Resonance Case

but with the light frequency ω close to γ

The non–resonance Rayleigh scattering amplitude to leading order is

T0(µ, ε) ≈ −
µ2

ε3
g(0)2

(
1 + erf

(
i
√
ω0 (ω − γ)

|β| ε

))

× exp

(
−
ω0 (ω − γ)2

β2 ε2

) √
π ω0

4 |β|

∫ ∞
−∞

f(s)2 ds.

Similar, rather messy formulas can be obtained for the leading order

non–resonance Raman scattering amplitudes.

All of these formulas agree with the simpler resonance results if one

takes the limit ω → γ.
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Here are plots of the absolute value of the Rayleigh

transition amplitude for a numerical simulation (blue)

and our leading order formula above (red).
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Comparison plot for |T0|.
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Here are plots of the absolute value of the Raman

transition amplitude to the j = 1 state

for a numerical simulation (blue)

and our leading order formula (red).
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Comparison plot for |T1|.
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Outline of the Proof in the Resonance Case

We do a formal perturbation expansion in powers of µ.

ψ(x, t) = ψ0(x, t) + µψ1(x, t) + µ2ψ2(x, t) + · · · .

If g is bounded, this series is convergent for our simple model.

We substitute this expansion into the Schrödinger equation and

equate terms of the same order in µ.

Order 0 in µ

ψ0(x, t) = e−i(t+T )H0(ε)/ε2 ψ0(x, −T )

The ground state is known to any given order in powers of ε,

so we know ψ0(x, −T ) up to an O
(
εN
)

error.

We also know how to propagate this state with an O
(
εN
)

error.

Thus, we know ψ0(x, t) up to an O
(
εN
)

error, uniformly for t ∈ [−T, T ].
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Explicitly, ψ0(x, s) = e−isE0(ε)/ε2 φ0(x), where

φ0(x) =

(
1
0

)
π−1/4 ε−1/2 ω

1/4
0 e−ω0 x

2/(2ε2) + O(ε).

The other low-lying bound states (which we shall need) are

φj(x) = 2−j/2 (j!)−1/2Hj

(√
ω0 x

ε

)
φ0(x) + O(ε), where j > 0.

The energy of the jth state is

Ej(ε) =
(
j +

1

2

)
ω0 ε

2 + O
(
ε4
)
.

The φj are precisely the states we know how to propagate quite

explicitly to order εN by semiclassical methods. Even if the two

electronic levels have non–trivial coupling, we have similar results

by time–dependent Born–Oppenheimer methods.
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Order 1 in µ

ψ1(x, t)

=
− i
ε2

∫ t
−T

f(r) cos
(
ω r

ε2

)
e−i(t−r)H0(ε)/ε2

(
0 g(x)

g(x) 0

)
ψ0(x, r) dr.

Order 2 in µ

ψ2(x, t)

=
− i
ε2

∫ t
−T

f(s) cos
(
ω s

ε2

)
e−i(t−s)H0(ε)/ε2

(
0 g(x)

g(x) 0

)
ψ1(x, s) ds

=
−1

ε4

∫ t
−T

ds
∫ s
−T

dr f(s) f(r) cos
(
ω s

ε2

)
cos

(
ω r

ε2

)
e−i(t−s)H0(ε)/ε2

×
(

0 g(x)
g(x) 0

)
e−i(s−r)H0(ε)/ε2

(
0 g(x)

g(x) 0

)
ψ0(x, r).
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The Rayleigh scattering amplitude is obtained by taking the

inner product of the solution at any time t ≥ T with ψ0(x, t).

(The laser is off after time T , and there is no spontaneous

emission in our model.)

The lowest order non-zero term in µ comes from the O(µ2) term

in the expansion above. That term is explicitly

T0(ε, µ)

≈ 〈ψ0(x, T ), µ2ψ2(x, T ) 〉

=
−µ2

ε4

∫ T
−T

ds
∫ s
−T

dr f(s) f(r) cos
(
ω s

ε2

)
cos

(
ω r

ε2

)

×
〈(

0 g(x)
g(x) 0

)
e−i(s−T )H0(ε)/ε2 ψ0(x, T ),

e−i(s−r)H0(ε)/ε2
(

0 g(x)
g(x) 0

)
ψ0(x, r)

〉
.
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We now begin approximating this term.

We first note that the e−i(s−T )H0(ε)/ε2 ψ0(x, T ) on the left hand side

of the inner product and the ψ0(x, r) on the right hand side

of the inner product are both highly localized around x = 0.

Some estimates with Taylor series show that we obtain the leading

order in ε if we replace g(x) everywhere in the integrand by g(0).

After we do that, we can do the e−i(s−r)H0(ε)/ε2 propagation

to arbitrarily high order in ε. (To leading order, this is semiclassical

propagation in the upper potential V1.)
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Next, we write the product of cosines in terms of complex exponentials:

cos
(
ω s

ε2

)
cos

(
ω r

ε2

)

=
1

4

(
eiω(s+r)/ε2 + eiω(s−r)/ε2 + eiω(−s+r)/ε2 + e−iω(s+r)/ε2

)
.

When we substitute this into the integral, three of the four resulting

terms are rapidly oscillating integrals without stationary phase points.

Integrations by parts show that they do not contribute to leading order.

The remaining term (which intuitively corresponds to absorbing

and then later emitting a photon) is not rapidly oscillating. It yields

T0(µ, ε)

≈
−µ2 g(0)2

4 ε4

∫ T
−T

ds
∫ s
−T

dr f(s) f(r) ei(s−r)ω0/2

× 〈ψ0(x, 0), e−i(s−r)(H(1)
0 (ε)−ω)/ε2ψ0(x, 0)〉.
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To leading order in ε, the inner product in this integrand is an

inner product of two complex Gaussians at each s and r.

It can be computed explicitly, and it is
2 ε
√
π ω0

|β|
times an

approximate Dirac delta in s− r.

Because the approximate Dirac delta is symmetric and the r

integral has upper limit s, we obtain only half of the Dirac delta.

Thus, we obtain our expression for the leading order Rayleigh

scattering amplitude

T0(µ, ε) = −
µ2

4 ε3

√
π ω0 g(0)2

|β|

∫ ∞
−∞

f(t)2 dt

+ O

(
µ2

ε2

)
+ O

(
µ4

ε8

)
.
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The analysis of the leading order resonance Raman transition

amplitudes follows exactly the same reasoning.

Remarks

1. We could handle laser pulses longer than the period of vibration

in the upper level by evaluating the double integral numerically.

However, this would require knowing the excited potential

energy surface V1(x), its derivative, and second derivative,

accurately for a large range of values of x.

Such detailed information is rarely available.

The results would involve some complicated interferences.

2. Allowing more degrees of freedom for the nuclei is not

a significant problem.
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Proof Modifications for the Non–Resonance Case

We assume we are close to resonance. In this situation, all four

of the terms from the product of cosines involve oscillatory integrals.

However, one oscillates much more slowly than the others;

it gives the leading term.

The double integral to leading order has the integrand

f(s) f(r) exp
(
i (ω − γ)(s− r)/ε2

)
exp

(
−
β2 (s− r)2

4 ε2

)
instead of

f(s) f(r) exp

(
−
β2 (s− r)2

4 ε2

)
,

and again we have s > r.
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This change gives rise to

ε
√
π

|β|

(
1 + erf

(
i (ω − γ)

|β| ε

))
exp

(
−

(ω − γ)2

β2 ε2

)

times the approximate Dirac delta in (s− r) instead of ε
√
π /|β|

times the approximate Dirac delta.

The more complicated factor arises from the integral

∫ 0

−∞
ei(ω−γ)t/ε2 e−β

2 t2/(4 ε2) dt.

Otherwise, the analysis is the same as in the resonance case.
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Summary

• For this simple, two level model, we have simple formulas

for the Rayleigh and Raman scattering amplitudes in the

resonance case for short laser pulses.

• When the laser is only close to resonance, we still have

formulas, but they are somewhat more complicated.

• We are unaware of any such simple formulas in the

mathematics, physics, or chemistry literatures.

• The main drawback to our results is that the laser pulse

must be very short.

24



Thank you!
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