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C(K)-spaces

For a compact Hausdorff space K , consider the Banach space

C(K) = {f : K → C : f is continuous}.

Fact. C(K) separable ⇐⇒ K metrizable.

Classification. Let K be a compact metric space. Then:

(i) K has n ∈ N elements ⇐⇒ C(K) ∼= `n∞;

(ii) (Milutin) K is uncountable ⇐⇒ C(K) ∼= C [0, 1];

(iii) (Bessaga and Pełczyński) K is countably infinite ⇐⇒
C(K) ∼= C [0, ωω

α

] for a unique countable ordinal α.

Here, for an ordinal σ,

[0, σ] = {α ordinal : α 6 σ}

is equipped with the order topology, which is determined by the basis

[0, β), (α, β), (α, σ] (0 6 α < β 6 σ).
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Introducing our main character: the Loy–Willis ideal

Let ω1 be the first uncountable ordinal, so that C [0, ω1] is the “next”
C(K)-space after the separable ones C [0, ωω

α

] for countable α.

Theorem (Semadeni 1960). The Banach space C [0, ω1] is not isomorphic to its
square C [0, ω1]⊕ C [0, ω1].

Theorem (Loy and Willis 1989). The Banach algebra B(C [0, ω1]) of (bounded)
operators on C [0, ω1] contains a maximal ideal M of codimension one.

We call M the Loy–Willis ideal.

It is defined using a representation of operators on C [0, ω1] as scalar-valued
[0, ω1]× [0, ω1]-matrices; an operator belongs to M if and only if its final
column is continuous. The precise definition will follow later.

Motivation. Loy and Willis’ aim was to show that each derivation from
B(C [0, ω1]) into a Banach B(C [0, ω1])-bimodule is automatically continuous.

Key step: M has a bounded right approximate identity.
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Main result: a coordinate-free characterization of M

Theorem (Kania+NJL 2011). An operator on C [0, ω1] belongs to the
Loy–Willis ideal if and only if the identity operator on C [0, ω1] does not factor
through it;

M = {T ∈ B(C [0, ω1]) : ∀R, S ∈ B(C [0, ω1]) : I 6= STR}.

Corollary. The Loy–Willis ideal is the unique maximal ideal of B(C [0, ω1]).

Proof. The theorem implies that the identity operator belongs to the ideal
generated by any operator not in M . 2

Remark. Many Banach spaces X share with C [0, ω1] the property that

MX := {T ∈ B(X ) : ∀R, S ∈ B(X ) : I 6= STR}

is the unique maximal ideal of B(X ).

Fact (Dosev and Johnson 2010). Suppose that MX is closed under addition.
Then MX is the unique maximal ideal of B(X ).
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Banach spaces X such that MX is the unique maximal ideal

(i) X = `p for 1 6 p <∞ and X = c0 (Gohberg, Markus and Feldman 1960);
(ii) X = Lp[0, 1] for 1 6 p <∞

(Dosev, Johnson and Schechtman 2011; known implicitly before);
(iii) X = `∞

∼= L∞[0, 1]

(NJL and Loy 2005, using Pełczyński and Rosenthal);
(iv) X = `∞/c0 (follows from Drewnowski and Roberts 1991);
(v) X = dw,p, the Lorentz sequence space determined by a decreasing,

non-summable sequence w = (wn) in (0, 1] and p ∈ [1,∞)
(Kamińska, Popov, Spinu, Tcaciuc and Troitsky 2011);

(vi) X =
(⊕

`n2
)
c0

and X =
(⊕

`n2
)
`1

(NJL, Loy and Read 2004;

NJL, Schlumprecht and Zsák 2006);

(vii) X =
(⊕

N `q
)
`p

for 1 6 q < p <∞ (Chen, Johnson and Zheng 2011);

(viii) X = C [0, 1] (Brooker 2010, using Pełczyński and Rosenthal);
(ix) X = C [0, ωω] and X = C [0, ωα], where α is a countable epsilon number,

that is, a countable ordinal satisfying α = ωα

(Brooker (unpublished), using Bourgain and Pełczyński).

Note: C [0, ω1] differs from all these Banach spaces because
C [0, ω1] � C [0, ω1]⊕ C [0, ω1].

Recall: MX = {T ∈ B(X ) : ∀R, S ∈ B(X ) : I 6= STR}.
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Operators on C [0, ω1] with separable range

Theorem (Kania+NJL 2011). The following are equivalent for
T ∈ B(C [0, ω1]) :

(a) T has separable range,

(b) T does not fix a copy of the Banach space

c0(ω1) =
{
f : [0, ω1)→ C : {α ∈ [0, ω1) : |f (α)| > ε} is finite for each ε > 0

}
,

(c) T = PσTPσ for some σ ∈ [0, ω1), where

(Pσf )(α) =

{
f (α) for α ∈ [0, σ]

f (ω1) for α ∈ [σ + 1, ω1]
(f ∈ C [0, ω1]),

(d) T ∈ GC [0,σ](C [0, ω1]) for some σ ∈ [0, ω1),
(e) T ∈ G C [0,σ](C [0, ω1]) for some σ ∈ [0, ω1),
where, for Banach spaces X and Y ,

GY (X ) := span{TS : S ∈ B(X ,Y ), T ∈ B(Y ,X )}
This is always an ideal of B(X ), and G Y (X ) is its closure.
Note: if Y contains a complemented copy of Y ⊕ Y , then the ‘span’ is not
needed; {TS : S ∈ B(X ,Y ), T ∈ B(Y ,X )} is already closed under addition.
Warning! This theorem does not imply that the ideal GC [0,σ](C [0, ω1]) is closed
for each σ ∈ [0, ω1), despite the equivalence of (d) and (e).
Reason: for given τ ∈ [0, ω1) and T ∈ G C [0,τ ](C [0, ω1]), the ordinal σ such
that (d) holds may be much larger than τ and depend on T .
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Partial structure of the lattice of closed ideals of B = B(C [0, ω1])
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Conventions

(i) We suppress C [0, ω1] everywhere, thus writing K instead of K (C [0, ω1])
for the ideal of compact operators on C [0, ω1], etc.;

(ii) I
� � // J means that the ideal I is properly contained in the

ideal J ;

(iii) a double-headed arrow indicates that there are no closed ideals between I
and J ;

(iv) α denotes a countable ordinal; and

(v) Kα = [0, ωω
α

].
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The definition of the Loy–Willis ideal

Fact. [0, ω1] is scattered: each non-empty subset contains an isolated point.

Theorem (Rudin 1957). C [0, ω1]∗ ∼= `1[0, ω1].
More precisely, for each µ ∈ C [0, ω1]∗, there are unique scalars (cα) such that

‖µ‖ =
∑

α∈[0,ω1]

|cα| <∞ and µ =
∑

α∈[0,ω1]

cαδα,

where δα is the evaluation map at α, that is, δα(f ) = f (α).

Corollary. For each T ∈ B(C [0, ω1]), there is a unique scalar-valued matrix
(Tα,β)α,β∈[0,ω1] such that∑

β∈[0,ω1]

|Tα,β | <∞ and Tf (α) =
∑

β∈[0,ω1]

Tα,βf (β)

for each f ∈ C [0, ω1] and α ∈ [0, ω1].

Notation. For T ∈ B(C [0, ω1]) and β ∈ [0, ω1], let kT
β : [0, ω1]→ C denote

the βth column of the matrix of T , that is, kT
β (α) = Tα,β .

Theorem (Loy and Willis 1989). The set

M = {T ∈ B(C [0, ω1]) : kT
ω1 is continuous at ω1}

is a maximal ideal of codimension one in B(C [0, ω1]).
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Sketch proof: M is a maximal ideal of codimension one

Recall: M = {T ∈ B(C [0, ω1]) : kT
ω1 is continuous at ω1}.

Loy and Willis’ Key Lemma. For each S ∈ B(C [0, ω1]), the restriction of kS
ω1

to [0, ω1) is continuous, and limα→ω1 k
S
ω1(α) exists.

I M is a left ideal because, for S ∈ B(C [0, ω1]) and T ∈M ,

kST
ω1 = S(kT

ω1)

∈ C [0, ω1].

I M is proper because k I
ω1 = 1{ω1} is discontinuous, so I /∈M .

I M has codimension one. Given S ∈ B(C [0, ω1]), define

c = lim
α→ω1

Sα,ω1 − Sω1,ω1 and T = c · I + S .

Then T ∈M because kT
ω1 is continuous at ω1:

kT
ω1(α) = ck I

ω1(α) + kS
ω1(α)

=

Sα,ω1 for α < ω1

c + Sω1,ω1

= lim
β→ω1

Sβ,ω1

for α = ω1.

Hence S = T − c · I ∈M + C · I .

I M is a right ideal and maximal: automatic!
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Further work (in progress with Kania and Piotr Koszmider)

Let L0 be the one-point compactification of the disjoint union of the intervals
[0, σ], where σ ∈ [0, ω1).

Theorem (Kania, Koszmider and NJL). M = GC(L0)(C [0, ω1]); that is,

T ∈M ⇐⇒ ∃V ∈ B(C [0, ω1],C(L0)), U ∈ B(C(L0),C [0, ω1]) : T = UV .

A topological space is Eberlein compact if it is homeomorphic to a weakly
compact subset of c0(Γ) for some index set Γ.

Fact. L0 is Eberlein compact (Lindenstrauss), whereas [0, ω1] is not.

Theorem (Amir and Lindenstrauss 1968). A compact Hausdorff space K is
Eberlein compact if and only if C(K) is weakly compactly generated (that is,
C(K) = spanW for some weakly compact subset W ).
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