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For a compact Hausdorff space K, consider the Banach space
C(K)={f: K — C: f is continuous}.
Fact. C(K) separable <= K metrizable.

Classification. Let K be a compact metric space. Then:
(i) K has n € N elements <= C(K)=/Z;
(i1) (Milutin) K is uncountable <«<— C(K) = C[0,1];
(iii) (Bessaga and Petczynski) K is countably infinite <=
C(K) 2 C[0,w“"] for a unique countable ordinal c.

Here, for an ordinal o,
[0, 0] = {a ordinal : a < 0}
is equipped with the order topology, which is determined by the basis

0,8), (a,8), (o] (0<a<B<o)
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Key step: .# has a bounded right approximate identity.
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Main result: a coordinate-free characterization of .#Z

Theorem (Kania+NJL 2011). An operator on C[0,w1]| belongs to the
Loy—Willis ideal if and only if the identity operator on C[0,w1]| does not factor
through it;

M ={T € B(C[0,w1]) :VR,S € B(C[0,w1]): | # STR}.

Corollary. The Loy—Willis ideal is the unique maximal ideal of Z(C[0, w1]).

Proof. The theorem implies that the identity operator belongs to the ideal
generated by any operator not in .Z . O

Remark. Many Banach spaces X share with C[0,w1] the property that
Mx ={T € B(X):VR,S € B(X) : | # STR}
is the unique maximal ideal of Z(X).

Fact (Dosev and Johnson 2010). Suppose that .#x is closed under addition.
Then .#x is the unique maximal ideal of Z(X).
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Theorem (Kania+NJL 2011). The following are equivalent for
T € #(C[0,w1]):

(a) T has separable range,

(b) T does not fix a copy of the Banach space
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Conventions

(i) We suppress C[0,w1] everywhere, thus writing 7" instead of # (C[0, w1])
for the ideal of compact operators on C[0,w1], etc.;

(i) #“——= # means that the ideal .# is properly contained in the
ideal #7;

(iii) a double-headed arrow indicates that there are no closed ideals between .#
and 7;

(iv) « denotes a countable ordinal; and
(v) Ko =[0,w”"].
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Fact. [0,w1] is scattered: each non-empty subset contains an isolated point.
Theorem (Rudin 1957). C[0,w1]* = ¢1]0, w1].
More precisely, for each p € C[0,w1]", there are unique scalars (¢, ) such that
ll= > lcal<oo and  p= > cada,
a€[0,ws] a€[0,w1]
where J,, is the evaluation map at «, that is, d,(f) = f(a).

Corollary. For each T € #(C[0,w1]), there is a unique scalar-valued matrix
(Ta,8)a,B€[0,wqa] SUch that

> |Tapl<oo and  Tf(a)= > Tasf(B)
IBE[Oawl] IBE[O’wl]
for each f € C[0,w1] and «a € [0, w1].

Notation. For T € #(C[0,w:]) and B8 € [0,w1], let kj : [0,w1] — C denote
the 8™ column of the matrix of T, that is, kj () = Ta,s.

Theorem (Loy and Willis 1989). The set
M ={T € B(C[0,w1]) : k..

, is continuous at w1}

is a maximal ideal of codimension one in Z(C[0, w1]).
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Then T € .# because k[, is continuous at wi:
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Recall: M ={T € B(C[0,w1]) : k..

, is continuous at ws }.

Loy and Willis' Key Lemma. For each S € %(C|[0,w1]), the restriction of k2,
to [0, w1) is continuous, and limq_,., kf,l () exists.

» ./ is a left ideal because, for S € Z(C[0,w1]) and T € .#,
kot = S(ki,) € C[0,w].

» ./ is proper because k(f,l = 14,1 is discontinuous, so | ¢ .4 .

» / has codimension one. Given S € %(C[0,w1]), define
c= lim Sq.w, — Suq.we and T=c-I+5S.

a—r w1

Then T € .# because k[, is continuous at wi:

Sawq for a < wrq

T, N s _
kwl (Oé) = Ckw:l (Oé) + kw1 (Oé) — c + 5w1,w1 — 6||m Sﬁ,w:l for oo = w1i.
— w1

Hence S=T —c-le.#+C-1.
» ./ is a right ideal and maximal: automatic!
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Let Lo be the one-point compactification of the disjoint union of the intervals
[0, o], where o € [0, w1).

Theorem (Kania, Koszmider and NJL). M = Y1) (C[O, wi)); that is,

TeHN <— IV € %’(C[O,wl], C(Lo)), U e %(C(Lo),C[O,wl]): T =UV.

A topological space is Eberlein compact if it is homeomorphic to a weakly
compact subset of ¢o(I') for some index set I'.

Fact. Lo is Eberlein compact (Lindenstrauss), whereas [0, w1] is not.

Theorem (Amir and Lindenstrauss 1968). A compact Hausdorff space K is
Eberlein compact if and only if C(K) is weakly compactly generated (that is,
C(K) = span W for some weakly compact subset W).
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