Modular Approach to Diophantine Equations

Samir Siksek

University of Warwick

June 13, 2012

Samir Siksek (University of Warwick) Modular Approach to Diophantine Equation

3

< □ > < □

• • • • • • • • • • • •

- a lot about elliptic curves,
- 2 a lot about modular forms,
- **③** a lot about Galois representations.

- a lot about elliptic curves,
- 2 a lot about modular forms,
- **③** a lot about Galois representations.

Instead, we want to see how to use the method with:

- a lot about elliptic curves,
- 2 a lot about modular forms,
- **③** a lot about Galois representations.

Instead, we want to see how to use the method with:

- I knowing only a few things about elliptic curves,
- knowing even less about modular forms,
- In the second second

A (10) A (10)

A B A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

• $N \ge 1$ is an integer called the level.

A B A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- $N \ge 1$ is an integer called the level.
- **2** There are finitely many newforms of level N.

A B A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- $N \ge 1$ is an integer called the level.
- **2** There are finitely many newforms of level *N*.
- There are algorithms implemented in SAGE and MAGMA for computing the newforms of level *N*.

- $N \ge 1$ is an integer called the level.
- **2** There are finitely many newforms of level N.
- There are algorithms implemented in SAGE and MAGMA for computing the newforms of level N.
- **4** A newform is normally given in terms of its *q*-expansion

$$f=q+\sum_{n\geq 2}c_nq^n.$$

1 A newform is normally given in terms of its *q*-expansion

$$f=q+\sum_{n\geq 2}c_nq^n.$$

3

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

1 A newform is normally given in terms of its *q*-expansion

$$f=q+\sum_{n\geq 2}c_nq^n.$$

• $\mathcal{K} = \mathbb{Q}(c_2, c_3, \ldots)$ is a totally real **finite** extension of \mathbb{Q} .

3

イロト イヨト イヨト イヨト

1 A newform is normally given in terms of its *q*-expansion

$$f=q+\sum_{n\geq 2}c_nq^n.$$

2 K = Q(c₂, c₃,...) is a totally real finite extension of Q.
3 c_i ∈ O_K.

イロト 不得下 イヨト イヨト

1 A newform is normally given in terms of its *q*-expansion

$$f=q+\sum_{n\geq 2}c_nq^n.$$

- 2 K = Q(c₂, c₃,...) is a totally real finite extension of Q.
 3 c_i ∈ O_K.
- ${\small \bigcirc } \ \ \, \text{If} \ \ \, \ell \ \, \text{is a prime then}$

$$|c_\ell^\sigma| \leq 2\sqrt{\ell}$$
 for all embeddings $\sigma: K \hookrightarrow \mathbb{R}$.

3

(日) (同) (三) (三)

1 A newform is normally given in terms of its *q*-expansion

$$f=q+\sum_{n\geq 2}c_nq^n.$$

- 2 K = Q(c₂, c₃,...) is a totally real finite extension of Q.
 3 c_i ∈ O_K.
- ${\small \bigcirc } \ \ \, \text{If} \ \ \, \ell \ \, \text{is a prime then}$

$$|c_\ell^\sigma| \leq 2\sqrt{\ell}$$
 for all embeddings $\sigma: \mathcal{K} \hookrightarrow \mathbb{R}$.

Theorem

There are no newforms at levels

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 16, 18, 22, 25, 28, 60.

Example

The newforms at a fixed level N can be computed using the modular symbols algorithm implemented in MAGMA and SAGE. For example, the newforms at level 110 are

$$\begin{split} f_1 &= q - q^2 + q^3 + q^4 - q^5 - q^6 + 5q^7 + \cdots, \\ f_2 &= q + q^2 + q^3 + q^4 - q^5 + q^6 - q^7 + \cdots, \\ f_3 &= q + q^2 - q^3 + q^4 + q^5 - q^6 + 3q^7 + \cdots, \\ f_4 &= q - q^2 + \theta q^3 + q^4 + q^5 - \theta q^6 - \theta q^7 + \cdots. \end{split}$$

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

The newforms at a fixed level N can be computed using the modular symbols algorithm implemented in MAGMA and SAGE. For example, the newforms at level 110 are

$$\begin{split} f_1 &= q - q^2 + q^3 + q^4 - q^5 - q^6 + 5q^7 + \cdots, \\ f_2 &= q + q^2 + q^3 + q^4 - q^5 + q^6 - q^7 + \cdots, \\ f_3 &= q + q^2 - q^3 + q^4 + q^5 - q^6 + 3q^7 + \cdots, \\ f_4 &= q - q^2 + \theta q^3 + q^4 + q^5 - \theta q^6 - \theta q^7 + \cdots. \end{split}$$

 f_1 , f_2 , f_3 have coefficients in $\mathbb Z$

The newforms at a fixed level N can be computed using the modular symbols algorithm implemented in MAGMA and SAGE. For example, the newforms at level 110 are

$$\begin{split} f_1 &= q - q^2 + q^3 + q^4 - q^5 - q^6 + 5q^7 + \cdots, \\ f_2 &= q + q^2 + q^3 + q^4 - q^5 + q^6 - q^7 + \cdots, \\ f_3 &= q + q^2 - q^3 + q^4 + q^5 - q^6 + 3q^7 + \cdots, \\ f_4 &= q - q^2 + \theta q^3 + q^4 + q^5 - \theta q^6 - \theta q^7 + \cdots. \end{split}$$

 f_1 , f_2 , f_3 have coefficients in \mathbb{Z} f_4 has coefficients in $\mathbb{Z}[\theta]$ where $\theta = (-1 + \sqrt{33})/2$.

The newforms at a fixed level N can be computed using the modular symbols algorithm implemented in MAGMA and SAGE. For example, the newforms at level 110 are

$$f_{1} = q - q^{2} + q^{3} + q^{4} - q^{5} - q^{6} + 5q^{7} + \cdots,$$

$$f_{2} = q + q^{2} + q^{3} + q^{4} - q^{5} + q^{6} - q^{7} + \cdots,$$

$$f_{3} = q + q^{2} - q^{3} + q^{4} + q^{5} - q^{6} + 3q^{7} + \cdots,$$

$$f_{4} = q - q^{2} + \theta q^{3} + q^{4} + q^{5} - \theta q^{6} - \theta q^{7} + \cdots.$$

 f_1 , f_2 , f_3 have coefficients in \mathbb{Z} f_4 has coefficients in $\mathbb{Z}[\theta]$ where $\theta = (-1 + \sqrt{33})/2$. there is a fifth newform at level 110 which is the conjugate of f_4 .

Correspondence between rational newforms and elliptic curves

We call a newform *rational* if its coefficients are all in \mathbb{Q} , otherwise we call it *irrational*.

Correspondence between rational newforms and elliptic curves

We call a newform *rational* if its coefficients are all in \mathbb{Q} , otherwise we call it *irrational*.

The Modularity Theorem for Elliptic Curves (Wiles and many others). There is a bijection

rational newforms of level $N \longleftrightarrow$ isogeny classes of elliptic curves

of conductor N

$$f = q + \sum c_n q^n \mapsto E_f/\mathbb{Q},$$

Correspondence between rational newforms and elliptic curves

We call a newform *rational* if its coefficients are all in \mathbb{Q} , otherwise we call it *irrational*.

The Modularity Theorem for Elliptic Curves (Wiles and many others). There is a bijection

rational newforms of level $N \longleftrightarrow$ isogeny classes of elliptic curves

of conductor N

$$f=q+\sum c_nq^n\mapsto E_f/\mathbb{Q},$$

such that for all primes $\ell \nmid N$

$$c_\ell = a_\ell(E_f) \qquad a_\ell(E_f) := \ell + 1 - \# E(\mathbb{F}_\ell).$$

Definition

Let E/Q be an elliptic curve and

$$f = q + \sum_{n \geq 2} c_n q^n$$
 $\mathcal{K} = \mathbb{Q}(c_2, c_3, \dots)$

a newform.

Definition

Let E/Q be an elliptic curve and

$$f = q + \sum_{n \geq 2} c_n q^n$$
 $K = \mathbb{Q}(c_2, c_3, \dots)$

a newform. We say that the curve *E* arises modulo *p* from the **newform** *f* if there is some prime ideal $\mathfrak{P} \mid p$ of $\mathcal{O}_{\mathcal{K}}$ such that

A D N A B N A B N

Definition

Let E/Q be an elliptic curve and

$$f = q + \sum_{n \geq 2} c_n q^n$$
 $K = \mathbb{Q}(c_2, c_3, \dots)$

a newform. We say that the curve *E* arises modulo *p* from the newform *f* if there is some prime ideal $\mathfrak{P} \mid p$ of $\mathcal{O}_{\mathcal{K}}$ such that

 $a_\ell(E) \equiv c_\ell \pmod{\mathfrak{P}}$ for almost all primes ℓ .

イロト イポト イヨト イヨト

Definition

Let E/Q be an elliptic curve and

$$f = q + \sum_{n \geq 2} c_n q^n$$
 $K = \mathbb{Q}(c_2, c_3, \dots)$

a newform. We say that the curve *E* arises modulo *p* from the **newform** *f* if there is some prime ideal $\mathfrak{P} \mid p$ of $\mathcal{O}_{\mathcal{K}}$ such that

 $a_\ell(E) \equiv c_\ell \pmod{\mathfrak{P}}$ for almost all primes ℓ .

Notation: $E \sim_p f$.

= ~~~

・ロト ・四ト ・ヨト ・ヨト

Proposition

Let E/\mathbb{Q} have conductor N, and f have level N'. Suppose $E \sim_p f$. Then there is some prime ideal $\mathfrak{P} \mid p$ of \mathcal{O}_K such that for all primes ℓ

(i) if $\ell \nmid pNN'$ then $a_{\ell}(E) \equiv c_{\ell} \pmod{\mathfrak{P}}$, and

(ii) if $\ell \nmid pN'$ and $\ell \parallel N$ then $\ell + 1 \equiv \pm c_{\ell} \pmod{\mathfrak{P}}$.

Proposition

Let E/\mathbb{Q} have conductor N, and f have level N'. Suppose $E \sim_p f$. Then there is some prime ideal $\mathfrak{P} \mid p$ of \mathcal{O}_K such that for all primes ℓ

(i) if $\ell \nmid pNN'$ then $a_{\ell}(E) \equiv c_{\ell} \pmod{\mathfrak{P}}$, and

(ii) if $\ell \nmid pN'$ and $\ell \parallel N$ then $\ell + 1 \equiv \pm c_{\ell} \pmod{\mathfrak{P}}$.

If $E \sim_p f$ and f is rational then we write $E \sim_p E_f$.

Proposition

Let E/\mathbb{Q} have conductor N, and f have level N'. Suppose $E \sim_p f$. Then there is some prime ideal $\mathfrak{P} \mid p$ of \mathcal{O}_K such that for all primes ℓ

(i) if $\ell \nmid pNN'$ then $a_{\ell}(E) \equiv c_{\ell} \pmod{\mathfrak{P}}$, and

(ii) if $\ell \nmid pN'$ and $\ell \parallel N$ then $\ell + 1 \equiv \pm c_{\ell} \pmod{\mathfrak{P}}$.

If $E \sim_p f$ and f is rational then we write $E \sim_p E_f$.

Proposition

Let E, F have conductors N and N' respectively. If E \sim_p F then for all primes ℓ

(i) if $\ell \nmid NN'$ then $a_{\ell}(E) \equiv a_{\ell}(F) \pmod{p}$, and

(ii) if $\ell \nmid N'$ and $\ell \parallel N$ then $\ell + 1 \equiv \pm a_{\ell}(F) \pmod{p}$.

Ribet's Level-Lowering Theorem

Let

- *E*/ \mathbb{Q} an elliptic curve,
- $\Delta = \Delta_{\min}$ be the discriminant for a minimal model of *E*,
- N be the conductor of E,
- for a prime p let

$$N_{p} = N \left/ \prod_{\substack{q \mid \mid N, \ p \mid \operatorname{ord}_{q}(\Delta)}} q.
ight.$$

3

(日) (同) (三) (三)

Ribet's Level-Lowering Theorem

Let

- E/\mathbb{Q} an elliptic curve,
- $\Delta = \Delta_{\min}$ be the discriminant for a minimal model of *E*,
- N be the conductor of E,
- for a prime p let

$$N_{p} = N \Big/ \prod_{\substack{q \mid \mid N, \ p \mid \operatorname{ord}_{q}(\Delta)}} q.$$

Theorem

(A simplified special case of Ribet's Level-Lowering Theorem) Let $p \ge 5$ be a prime such that E does not have any p-isogenies. Let N_p be as defined above. Then there exists a newform f of level N_p such that $E \sim_p f$.

Example

Let

$$E: y^2 = x^3 - x^2 - 77x + 330$$
 (132B1).

Then

$$\Delta_{\min} = 2^4 \times 3^{10} \times 11, \qquad N = 132 = 2^2 \times 3 \times 11.$$

The only isogeny the curve E has is a 2-isogeny. Recall

$$N_p = N \Big/ \prod_{\substack{q \mid N, \ p \mid \operatorname{ord}_q(\Delta)}} q.$$

So

$$N_5 = rac{2^2 imes 3 imes 11}{3} = 44, \qquad N_p = 132 ext{ for } p \geq 7.$$

æ

A D > A B > A B >

Apply Ribet Theorem with p = 5. Then $E \sim_5 f$ for some newform of level $N_5 = 44$. There is only one newform at level 44 which corresponds to the elliptic curve

$$F : y^2 = x^3 + x^2 + 3x - 1 \qquad (44A1).$$

Thus $E \sim_5 F$.

l	2	3	5	7	11	13	17	19
$a_\ell(E)$	0	-1	2	2	-1	6	-4	-2
$a_{\ell}(F)$	0	1	-3	2	-1	-4	6	8

3

(日) (同) (三) (三)

Apply Ribet Theorem with p = 5. Then $E \sim_5 f$ for some newform of level $N_5 = 44$. There is only one newform at level 44 which corresponds to the elliptic curve

$$F : y^2 = x^3 + x^2 + 3x - 1 \qquad (44A1).$$

Thus $E \sim_5 F$.

l	2	3	5	7	11	13	17	19
$a_{\ell}(E)$	0	-1	2	2	-1	6	-4	-2
$a_{\ell}(F)$	0	1	-3	2	-1	-4	6	8

For $p \ge 7$, we have $N_p = N$, and Ribet's Theorem tells us the $E \sim_p E$ which is not interesting.

June 13, 2012 11 / 17

3

ヘロト 不良 トイヨト イヨト

Absence of Isogenies

Theorem

(Mazur) Let E/\mathbb{Q} be an elliptic curve satisfying at least one of the following conditions holds.

- $p \geq 17$ and $j(E) \notin \mathbb{Z}[\frac{1}{2}]$,
- or $p \ge 11$ and E is a semi-stable elliptic curve,
- or $p \ge 5$, $\#E(\mathbb{Q})[2] = 4$, and E is a semi-stable elliptic curve,

Then E does not have any p-isogenies.

Absence of Isogenies

Theorem

(Mazur) Let E/\mathbb{Q} be an elliptic curve satisfying at least one of the following conditions holds.

- $p \geq 17$ and $j(E) \notin \mathbb{Z}[\frac{1}{2}]$,
- or $p \ge 11$ and E is a semi-stable elliptic curve,
- or $p \ge 5$, $\#E(\mathbb{Q})[2] = 4$, and E is a semi-stable elliptic curve,

Then E does not have any p-isogenies.

Theorem

(Diamond and Kramer) If $\operatorname{ord}_2(N) = 3$, 5, 7 then E does not have any isogenies of odd degree.

・ロン ・聞と ・ ほと ・ ほと

Absence of Isogenies

Theorem

(Mazur) Let E/\mathbb{Q} be an elliptic curve satisfying at least one of the following conditions holds.

- $p \geq 17$ and $j(E) \notin \mathbb{Z}[\frac{1}{2}]$,
- or $p \ge 11$ and E is a semi-stable elliptic curve,
- or $p \ge 5$, $\#E(\mathbb{Q})[2] = 4$, and E is a semi-stable elliptic curve,

Then E does not have any p-isogenies.

Theorem

(Diamond and Kramer) If $\operatorname{ord}_2(N) = 3$, 5, 7 then E does not have any isogenies of odd degree.

If all else fails,

E has no *p*-isogenies \iff *p*-th division poly is irreducible.

June 13, 2012

12 / 17

Theorem

(Wiles) Suppose $p \ge 5$ is prime. The equation

$$x^{p} + y^{p} + z^{p} = 0 \tag{1}$$

has no solutions with $xyz \neq 0$.

Proof. Suppose $xyz \neq 0$. Without loss of generality: *x*, *y*, *z* are coprime, and

$$2 \mid y, \qquad x^p \equiv -1 \pmod{4}, \qquad z^p \equiv 1 \pmod{4}.$$

Associate to this solution the elliptic curve (called a Frey curve)

$$E : Y^2 = X(X - x^p)(X + y^p).$$

3

イロト 不得下 イヨト イヨト

Without loss of generality: x, y, z are coprime, and

$$2 \mid y, \qquad x^p \equiv -1 \pmod{4}, \qquad z^p \equiv 1 \pmod{4}.$$

Associate to this solution the elliptic curve (called a Frey curve)

$$E: Y^2 = X(X - x^p)(X + y^p).$$

3

イロト 不得下 イヨト イヨト

Without loss of generality: x, y, z are coprime, and

$$2 \mid y, \qquad x^p \equiv -1 \pmod{4}, \qquad z^p \equiv 1 \pmod{4}.$$

Associate to this solution the elliptic curve (called a Frey curve)

$$E: Y^2 = X(X - x^p)(X + y^p).$$

(For $Y^2 = X(X + a)(X + b)$, the discriminant is $16a^2b^2(a - b)^2$.)

▲ロ ▶ ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ■ ∽ � � �

Without loss of generality: x, y, z are coprime, and

$$2 \mid y, \qquad x^p \equiv -1 \pmod{4}, \qquad z^p \equiv 1 \pmod{4}.$$

Associate to this solution the elliptic curve (called a Frey curve)

$$E : Y^2 = X(X - x^p)(X + y^p).$$

(For $Y^2 = X(X + a)(X + b)$, the discriminant is $16a^2b^2(a - b)^2$.) So

$$\Delta = 16x^{2p}y^{2p}(x^p + y^p)^2 = 16x^{2p}y^{2p}z^{2p}$$

using $x^p + y^p + z^p = 0$.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ・ ・ シ へ ()

Without loss of generality: x, y, z are coprime, and

$$2 \mid y, \qquad x^p \equiv -1 \pmod{4}, \qquad z^p \equiv 1 \pmod{4}.$$

Associate to this solution the elliptic curve (called a Frey curve)

$$E : Y^2 = X(X - x^p)(X + y^p).$$

(For $Y^2 = X(X + a)(X + b)$, the discriminant is $16a^2b^2(a - b)^2$.) So

$$\Delta = 16x^{2p}y^{2p}(x^p + y^p)^2 = 16x^{2p}y^{2p}z^{2p}$$

using $x^{p} + y^{p} + z^{p} = 0$. Also

$$c_4 = 16(z^{2p} - x^p y^p), \qquad \gcd(c_4, \Delta) = 16.$$

▲口 ▶ ▲圖 ▶ ▲臣 ▶ ▲臣 ▶ ─ 臣 ─ 釣Aで

FLT continued

Applying Tate's algorithm to compute the minimal discriminant and conductor:

$$\Delta_{\min} = 2^{-8} (xyz)^{2p}, \qquad N = \prod_{\ell \mid xyz} \ell.$$

3

-

A B > A B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

FLT continued

Applying Tate's algorithm to compute the minimal discriminant and conductor:

$$\Delta_{\min} = 2^{-8} (xyz)^{2p}, \qquad N = \prod_{\ell \mid xyz} \ell.$$

$$N_p = N \Big/ \prod_{\substack{\ell \mid N, \\ p \mid \operatorname{ord}_{\ell}(\Delta)}} \ell \Longrightarrow N_2 = 2.$$

3

A D > A B > A B >

FLT continued

Applying Tate's algorithm to compute the minimal discriminant and conductor:

$$\Delta_{\min} = 2^{-8} (xyz)^{2p}, \qquad N = \prod_{\ell \mid xyz} \ell.$$

$$N_p = N / \prod_{\substack{\ell \mid \mid N, \\ p \mid \operatorname{ord}_{\ell}(\Delta)}} \ell \Longrightarrow N_2 = 2.$$

 $E(\mathbb{Q})[2] = 4$ and N squarefree $\underset{Mazur}{\longrightarrow}$ no p-isogenies.

Samir Siksek (University of Warwick) Modular Approach to Diophantine Equation

E 990

・ロト ・聞ト ・ヨト ・ヨト

Applying Tate's algorithm to compute the minimal discriminant and conductor:

$$\Delta_{\min} = 2^{-8} (xyz)^{2p}, \qquad N = \prod_{\ell \mid xyz} \ell.$$

$$N_p = N / \prod_{\substack{\ell \mid \mid N, \\ p \mid \operatorname{ord}_{\ell}(\Delta)}} \ell \Longrightarrow N_2 = 2.$$

 $E(\mathbb{Q})[2] = 4$ and N squarefree $\underset{Mazur}{\longrightarrow}$ no p-isogenies.

By Ribet, there is a newform f of level $N_p = 2$ such that $E \sim_p f$.

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > → Ξ = ・ のへで

Applying Tate's algorithm to compute the minimal discriminant and conductor:

$$\Delta_{\min} = 2^{-8} (xyz)^{2p}, \qquad N = \prod_{\ell \mid xyz} \ell.$$

$$N_p = N / \prod_{\substack{\ell \mid \mid N, \\ p \mid \operatorname{ord}_{\ell}(\Delta)}} \ell \Longrightarrow N_2 = 2.$$

 $E(\mathbb{Q})[2] = 4$ and N squarefree $\underset{Mazur}{\longrightarrow}$ no p-isogenies.

By Ribet, there is a newform f of level $N_p = 2$ such that $E \sim_p f$. CONTRADICTION.

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > → Ξ → のへで

Given a Diophantine equation, suppose that it has a solution

Samir Siksek (University of Warwick) Modular Approach to Diophantine Equation

æ

・ロン ・日ン ・ヨン・

Given a Diophantine equation, suppose that it has a solution and associate the solution somehow to an elliptic curve E called a *Frey curve*, **if possible**.

3

3

A D N A B N A B N

• the coefficients of *E* depend on the solution to the Diophantine equation;

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- the coefficients of *E* depend on the solution to the Diophantine equation;
- the minimal discriminant of the elliptic curve can be written in the form Δ = C · D^p where D is an expression that depends on the solution of the Diophantine equation. The factor C does not depend on the solutions but only on the equation itself.

3

イロト 不得下 イヨト イヨト

- the coefficients of *E* depend on the solution to the Diophantine equation;
- the minimal discriminant of the elliptic curve can be written in the form $\Delta = C \cdot D^p$ where D is an expression that depends on the solution of the Diophantine equation. The factor C does not depend on the solutions but only on the equation itself.
- *E* has multiplicative reduction at primes dividing *D*.

(日) (同) (日) (日) (日)

Frey Curves II

- the coefficients of *E* depend on the solution to the Diophantine equation;
- the minimal discriminant of the elliptic curve can be written in the form Δ = C · D^p where D is an expression that depends on the solution of the Diophantine equation. The factor C does not depend on the solutions but only on the equation itself.
- *E* has multiplicative reduction at primes dividing *D*.

The conductor N of E will be divisible by the primes dividing Cand D, and those dividing D will be removed when we write down N_p . In other words we can make a finite list of possibilities for N_p that depend on the equation. Thus we are able to list a finite set of newforms f such that $E \sim_p f$.

3