Modular Approach to Diophantine Equations J

Samir Siksek

University of Warwick

June 13, 2012

SETUTTEST U (VA TVETE YR RN TET TS S Bl Mo dular Approach to Diophantine Equation: June 13, 2012 1/17



|
Objectives

Galois representations and modularity led to Wiles' proof of
Fermat's Last Theorem. A similar strategy can be used to study
many other Diophantine equations. To understand the ideas
behind this method properly you need to know:
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|
Objectives

Galois representations and modularity led to Wiles' proof of
Fermat's Last Theorem. A similar strategy can be used to study
many other Diophantine equations. To understand the ideas
behind this method properly you need to know:

© a lot about elliptic curves,
@ a lot about modular forms,
© a lot about Galois representations.

Instead, we want to see how to use the method with:
@ knowing only a few things about elliptic curves,
@ knowing even less about modular forms,

© knowing nothing about Galois representations.

Samir Siksek (University of Warwick Modular Approach to Diophantine Equation: June 13, 2012 2 /17



I
Facts About Newforms |

Definition for the cognescenti. By the newforms of level N |

mean a normalized eigenbasis for 53V (N).
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mean a normalized eigenbasis for 53V (N).

For everyone else.
@ N > 1is an integer called the level.
@ There are finitely many newforms of level N.

© There are algorithms implemented in SAGE and MAGMA for
computing the newforms of level N.
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Facts About Newforms |

Definition for the cognescenti. By the newforms of level N |

mean a normalized eigenbasis for 53V (N).

For everyone else.
@ N > 1is an integer called the level.
@ There are finitely many newforms of level N.

© There are algorithms implemented in SAGE and MAGMA for
computing the newforms of level N.

@ A newform is normally given in terms of its g-expansion

f:q+2cnq".

n>2
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@ A newform is normally given in terms of its g-expansion

f:q+2cnq".

n>2

Q@ K=Q(c,c3,...) is a totally real finite extension of Q.
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f:q+2cnq".

n>2

Q@ K=Q(c,c3,...) is a totally real finite extension of Q.
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I
Facts About Newforms Il

@ A newform is normally given in terms of its g-expansion

f:q+2cnq".

n>2

Q@ K=Q(c,c3,...) is a totally real finite extension of Q.
O ¢ <€ Ok.
Q If £ is a prime then

|cf| <2V for all embeddings o : K < R.

Theorem

There are no newforms at levels

1,2,3,4,5,6,7,8,9,10,12,13,16,18, 22, 25,28, 60.
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-
Example

The newforms at a fixed level N can be computed using the
modular symbols algorithm implemented in MAGMA and SAGE. For
example, the newforms at level 110 are

A=q-a+¢+q" —¢°—q"+5¢" + -,
h=q+@+¢+q" - +q"—q" +---,
B=q+¢ - +q" +¢ —¢°+3q" + -,
fa=q—q +0q>+q"+q —0q°—0q" +---
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Example

The newforms at a fixed level N can be computed using the
modular symbols algorithm implemented in MAGMA and SAGE. For
example, the newforms at level 110 are

A=q-a+¢+q" —¢°—q"+5¢" + -,
h=q+@+¢+q" - +q"—q" +---,
B=q+¢ - +q" +¢ —¢°+3q" + -,
fa=q—q +0q>+q"+q —0q°—0q" +---

fi, f, f3 have coefficients in Z
f4 has coefficients in Z[6] where 6§ = (—1 ++/33)/2.
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-
Example

The newforms at a fixed level N can be computed using the
modular symbols algorithm implemented in MAGMA and SAGE. For
example, the newforms at level 110 are

A=q-a+¢+q" —¢°—q"+5¢" + -,
h=q+¢@+q+q" —®+¢®—q"+--,
B=q+¢ - +q" +¢ —¢°+3q" + -,
fa=q—q +0q>+q"+q —0q°—0q" +---

fi, >, f3 have coefficients in Z

fa has coefficients in Z[f] where § = (-1 + v/33)/2.
there is a fifth newform at level 110 which is the conjugate of f;.
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Correspondence between rational newforms and elliptic
curves

We call a newform rational if its coefficients are all in Q, otherwise
we call it irrational.
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Correspondence between rational newforms and elliptic
curves

We call a newform rational if its coefficients are all in Q, otherwise
we call it irrational.

The Modularity Theorem for Elliptic Curves (Wiles and many
others). There is a bijection

rational newforms of level N <— isogeny classes of elliptic curves

of conductor N

f=q+> cnq"—E/Q,
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Correspondence between rational newforms and elliptic
curves

We call a newform rational if its coefficients are all in Q, otherwise
we call it irrational.

The Modularity Theorem for Elliptic Curves (Wiles and many
others). There is a bijection

rational newforms of level N <— isogeny classes of elliptic curves

of conductor N
f=q-+ Z cnq" —Ef/Q,
such that for all primes £+ N

c = ag(Er)  ar(Er) =L+ 1—HE(F0).
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‘arises from’

Definition
Let E/Q be an elliptic curve and

f=q+> " K=Qacs,...)
n>2

a newform.
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Let E/Q be an elliptic curve and

f=q+> " K=Qacs,...)
n>2

a newform. We say that the curve E arises modulo p from the
newform f if there is some prime ideal P | p of Ok such that

a(E)=¢ (mod P) for almost all primes ¢.
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‘arises from’

Definition
Let E/Q be an elliptic curve and

f=q+> " K=Qacs,...)
n>2

a newform. We say that the curve E arises modulo p from the
newform f if there is some prime ideal P | p of Ok such that

a(E)=¢ (mod P) for almost all primes ¢.

Notation: E ~, f.
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More Precise ‘Arises From'

Proposition
Let E/Q have conductor N, and f have level N'. Suppose E ~, f.
Then there is some prime ideal B | p of Ok such that for all
primes /

(i) if £+ pNN’ then as(E) = ¢; (mod ‘B), and

(it) if ¢4 pN" and ¢ || N then ¢ +1 = +¢; (mod P).
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]
More Precise ‘Arises From'

Proposition

Let E/Q have conductor N, and f have level N'. Suppose E ~, f.
Then there is some prime ideal B | p of Ok such that for all
primes {

(i) if £+ pNN’ then as(E) = ¢; (mod ‘B), and

(it) if ¢4 pN" and ¢ || N then ¢ +1 = +¢; (mod P).

If E ~p f and f is rational then we write E ~, Ef.
Proposition

Let E, F have conductors N and N’ respectively. If E ~, F then
for all primes ¢

(i) if £+ NN then a;(E) = ay(F) (mod p), and
(it) if ¢4 N" and £ || N then £ + 1 = tay(F) (mod p).
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Ribet's Level-Lowering Theorem

Let

e E/Q an elliptic curve,

@ A = Ay be the discriminant for a minimal model of E,
@ N be the conductor of E,
@ for a prime p let

=N/ T[] a

q|IN,
plordg(A)
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Ribet's Level-Lowering Theorem

Let

e E/Q an elliptic curve,

@ A = Ay be the discriminant for a minimal model of E,
@ N be the conductor of E,

@ for a prime p let

=N/ T[] a

q|IN,
plordg(A)

Theorem

(A simplified special case of Ribet's Level-Lowering Theorem) Let
p > 5 be a prime such that E does not have any p-isogenies. Let

Ny be as defined above. Then there exists a newform f of level N,
such that E ~, f.
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Example

Let

Then

E: y>’=x*>-x>-T77x+330  (132B1).

Apmin = 2% x 310 x 11, N =132=2%x3x1l.

The only isogeny the curve E has is a 2-isogeny. Recall

So

Np:N/ 1 «

qlIN,
plordg(A)
22 x3x11
N5:f:44, N, =132 for p > 7.
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-
Example Continued

Apply Ribet Theorem with p =5. Then E ~5 f for some newform
of level N5 = 44. There is only one newform at level 44 which
corresponds to the elliptic curve

F: y?=x34x24+3x—1  (44A1).

Thus E ~5 F.

¢ [2[ 35 [7[11]13]17 |19
a(E) 1] 6 | -4 2
a(F)|0| 1 [=3[2[-1|-4| 6 | 8

o
|
—_
N
N
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-
Example Continued

Apply Ribet Theorem with p =5. Then E ~5 f for some newform
of level N5 = 44. There is only one newform at level 44 which
corresponds to the elliptic curve

F: y?=x34x24+3x—1  (44A1).

Thus E ~5 F.

¢ [2[ 35 [7[11]13]17 |19
aE) [0 -1 2 [2]-1] 6 | -4 =2
a(F)|0| 1 [=3[2[-1|-4| 6 | 8

For p > 7, we have N, = N, and Ribet’'s Theorem tells us the
E ~, E which is not interesting.
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|
Absence of Isogenies

Theorem

(Mazur) Let E/Q be an elliptic curve satisfying at least one of
the following conditions holds.

o p>17 and j(E) ¢ Z[3],
@ or p > 11 and E is a semi-stable elliptic curve,
@ or p>5, #E(Q)[2] = 4, and E is a semi-stable elliptic curve,

Then E does not have any p-isogenies.
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Absence of Isogenies

Theorem
(Mazur) Let E/Q be an elliptic curve satisfying at least one of
the following conditions holds.

o p>17 and j(E) ¢ Z[3],

@ or p > 11 and E is a semi-stable elliptic curve,

@ or p>5, #E(Q)[2] = 4, and E is a semi-stable elliptic curve,
Then E does not have any p-isogenies.

Theorem

(Diamond and Kramer) If orda(N) = 3, 5, 7 then E does not have
any isogenies of odd degree.

Samir Siksek (University of Warwick Modular Approach to Diophantine Equation: June 13, 2012 12 / 17



|
Absence of Isogenies

Theorem
(Mazur) Let E/Q be an elliptic curve satisfying at least one of
the following conditions holds.

o p>17 and j(E) ¢ Z[3],

@ or p > 11 and E is a semi-stable elliptic curve,

e orp>5, #E(Q)[2] =4, and E is a semi-stable elliptic curve,
Then E does not have any p-isogenies.

Theorem

(Diamond and Kramer) If orda(N) = 3, 5, 7 then E does not have
any isogenies of odd degree.

If all else fails,

E has no p-isogenies <= p-th division poly is.irreducible.
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]
Fermat's Last Theorem

Theorem

(Wiles) Suppose p > 5 is prime. The equation

xP+yP+2P =0 (1)

has no solutions with xyz # 0.

Proof. Suppose xyz # 0. Without loss of generality: x, y, z are
coprime, and

2|y, xP=-1 (mod 4), zP =1 (mod 4).
Associate to this solution the elliptic curve (called a Frey curve)

E: Y?=X(X-xP)(X+yP).
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|
Proof of FLT (continued)

Without loss of generality: x, y, z are coprime, and
21y, xP=-1 (mod 4), zP=1 (mod 4).
Associate to this solution the elliptic curve (called a Frey curve)

E: Y2=X(X-xP)X+yP).
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Proof of FLT (continued)

Without loss of generality: x, y, z are coprime, and
2y, xP=-1 (mod 4), zP =1 (mod 4).
Associate to this solution the elliptic curve (called a Frey curve)
E: Y2=X(X-xP)X+yP).

(For Y2 = X(X + a)(X + b), the discriminant is 16a%b?(a — b)?.)
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|
Proof of FLT (continued)

Without loss of generality: x, y, z are coprime, and
2y, xP=-1 (mod 4), zP =1 (mod 4).
Associate to this solution the elliptic curve (called a Frey curve)
E: Y2=X(X-xP)X+yP).
(For Y2 = X(X + a)(X + b), the discriminant is 16ab%(a — b)?2.)
> A= 16X2py2p(xp + y”)2 = 16x2Py2P 2P

using xP + yP 4+ zP = 0.
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|
Proof of FLT (continued)

Without loss of generality: x, y, z are coprime, and
2y, xP=-1 (mod 4), zP =1 (mod 4).
Associate to this solution the elliptic curve (called a Frey curve)
E: Y2=X(X-xP)X+yP).

(For Y2 = X(X + a)(X + b), the discriminant is 16ab%(a — b)?2.)
So
A= 16x2py2P(XP + yP)2 — 16X2py2p22p

using xP + yP 4+ zP = 0.
Also
c = 16(2°P — xPyP), ged(cq, A) = 16.
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I
FLT continued

Applying Tate's algorithm to compute the minimal discriminant
and conductor:

Amin = 2*8(xyz)2p, N = H ‘.
L) xyz
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FLT continued

Applying Tate's algorithm to compute the minimal discriminant
and conductor:

Amin = 2*8(xyz)2p, N = H ‘.
L) xyz

N,,:/v/ [[ t=m=2

N,
plord,(A)

E(Q)[2] = 4 and N squarefree => no p-isogenies.

Mazur
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FLT continued

Applying Tate's algorithm to compute the minimal discriminant
and conductor:

Amin = 2*8(xyz)2p, N = H ‘.
L) xyz

N,,:/v/ [[ t=m=2
din,
plord,(A)

E(Q)[2] = 4 and N squarefree => no p-isogenies.

Mazur

By Ribet, there is a newform f of level N, = 2 such that E ~ f.
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I
FLT continued

Applying Tate's algorithm to compute the minimal discriminant
and conductor:

Amin = 2*8(xyz)2p, N = H ‘.
L) xyz

N,,:/v/ [[ t=m=2
din,
plord,(A)

E(Q)[2] = 4 and N squarefree => no p-isogenies.

Mazur

By Ribet, there is a newform f of level N, = 2 such that E ~ f.
CONTRADICTION.
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Frey Curves

Given a Diophantine equation, suppose that it has a solution
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Frey Curves

Given a Diophantine equation, suppose that it has a solution and
associate the solution somehow to an elliptic curve E called a Frey
curve, if possible.
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Frey Curves

Given a Diophantine equation, suppose that it has a solution and
associate the solution somehow to an elliptic curve E called a Frey
curve, if possible. The key properties of a ‘Frey curve' are

o the coefficients of E depend on the solution to the
Diophantine equation;
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Frey Curves

Given a Diophantine equation, suppose that it has a solution and
associate the solution somehow to an elliptic curve E called a Frey
curve, if possible. The key properties of a ‘Frey curve' are

o the coefficients of E depend on the solution to the
Diophantine equation;

@ the minimal discriminant of the elliptic curve can be written in
the form A = C - DP where D is an expression that depends
on the solution of the Diophantine equation. The factor C
does not depend on the solutions but only on the
equation itself.
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Frey Curves

Given a Diophantine equation, suppose that it has a solution and
associate the solution somehow to an elliptic curve E called a Frey
curve, if possible. The key properties of a ‘Frey curve' are
o the coefficients of E depend on the solution to the
Diophantine equation;
@ the minimal discriminant of the elliptic curve can be written in
the form A = C - DP where D is an expression that depends
on the solution of the Diophantine equation. The factor C
does not depend on the solutions but only on the
equation itself.

@ E has multiplicative reduction at primes dividing D.
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|
Frey Curves Il

@ the coefficients of E depend on the solution to the
Diophantine equation;

@ the minimal discriminant of the elliptic curve can be written in
the form A = C - DP where D is an expression that depends
on the solution of the Diophantine equation. The factor C
does not depend on the solutions but only on the
equation itself.

@ E has multiplicative reduction at primes dividing D.

The conductor N of E will be divisible by the primes dividing C
and D, and those dividing D will be removed when we write down
Np. In other words we can make a finite list of possibilities for N,
that depend on the equation. Thus we are able to list a finite set
of newforms f such that E ~, f.
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