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Objectives

Galois representations and modularity led to Wiles’ proof of
Fermat’s Last Theorem. A similar strategy can be used to study
many other Diophantine equations. To understand the ideas
behind this method properly you need to know:

1 a lot about elliptic curves,

2 a lot about modular forms,

3 a lot about Galois representations.

Instead, we want to see how to use the method with:

1 knowing only a few things about elliptic curves,

2 knowing even less about modular forms,

3 knowing nothing about Galois representations.
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Facts About Newforms I

Definition for the cognescenti. By the newforms of level N I
mean a normalized eigenbasis for Snew

2 (N).

For everyone else.

1 N ≥ 1 is an integer called the level.

2 There are finitely many newforms of level N.

3 There are algorithms implemented in SAGE and MAGMA for
computing the newforms of level N.

4 A newform is normally given in terms of its q-expansion

f = q +
∑
n≥2

cnqn.
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Facts About Newforms II

1 A newform is normally given in terms of its q-expansion

f = q +
∑
n≥2

cnqn.

2 K = Q(c2, c3, . . .) is a totally real finite extension of Q.

3 ci ∈ OK .

4 If ` is a prime then

|cσ` | ≤ 2
√
` for all embeddings σ : K ↪→ R.

Theorem

There are no newforms at levels

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 16, 18, 22, 25, 28, 60.
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Example

The newforms at a fixed level N can be computed using the
modular symbols algorithm implemented in MAGMA and SAGE. For
example, the newforms at level 110 are

f1 = q − q2 + q3 + q4 − q5 − q6 + 5q7 + · · · ,
f2 = q + q2 + q3 + q4 − q5 + q6 − q7 + · · · ,

f3 = q + q2 − q3 + q4 + q5 − q6 + 3q7 + · · · ,
f4 = q − q2 + θq3 + q4 + q5 − θq6 − θq7 + · · · .

f1, f2, f3 have coefficients in Z
f4 has coefficients in Z[θ] where θ = (−1 +

√
33)/2.

there is a fifth newform at level 110 which is the conjugate of f4.
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Correspondence between rational newforms and elliptic
curves

We call a newform rational if its coefficients are all in Q, otherwise
we call it irrational.

The Modularity Theorem for Elliptic Curves (Wiles and many
others). There is a bijection

rational newforms of level N ←→ isogeny classes of elliptic curves

of conductor N

f = q +
∑

cnqn 7→Ef /Q,

such that for all primes ` - N

c` = a`(Ef ) a`(Ef ) := `+ 1−#E (F`).
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‘arises from’

Definition

Let E/Q be an elliptic curve and

f = q +
∑
n≥2

cnqn K = Q(c2, c3, . . . )

a newform.

We say that the curve E arises modulo p from the
newform f if there is some prime ideal P | p of OK such that

a`(E ) ≡ c` (mod P) for almost all primes `.

Notation: E ∼p f .
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More Precise ‘Arises From’

Proposition

Let E/Q have conductor N, and f have level N ′. Suppose E ∼p f .
Then there is some prime ideal P | p of OK such that for all
primes `

(i) if ` - pNN ′ then a`(E ) ≡ c` (mod P), and

(ii) if ` - pN ′ and ` || N then `+ 1 ≡ ±c` (mod P).

If E ∼p f and f is rational then we write E ∼p Ef .

Proposition

Let E , F have conductors N and N ′ respectively. If E ∼p F then
for all primes `

(i) if ` - NN ′ then a`(E ) ≡ a`(F ) (mod p), and

(ii) if ` - N ′ and ` || N then `+ 1 ≡ ±a`(F ) (mod p).
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Ribet’s Level-Lowering Theorem

Let

E/Q an elliptic curve,

∆ = ∆min be the discriminant for a minimal model of E ,

N be the conductor of E ,

for a prime p let

Np = N
/ ∏

q||N,
p | ordq(∆)

q.

Theorem

(A simplified special case of Ribet’s Level-Lowering Theorem) Let
p ≥ 5 be a prime such that E does not have any p-isogenies. Let
Np be as defined above. Then there exists a newform f of level Np

such that E ∼p f .
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Example

Let
E : y 2 = x3 − x2 − 77x + 330 (132B1).

Then

∆min = 24 × 310 × 11, N = 132 = 22 × 3× 11.

The only isogeny the curve E has is a 2-isogeny. Recall

Np = N
/ ∏

q||N,
p | ordq(∆)

q.

So

N5 =
22 × 3× 11

3
= 44, Np = 132 for p ≥ 7.
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Example Continued

Apply Ribet Theorem with p = 5. Then E ∼5 f for some newform
of level N5 = 44. There is only one newform at level 44 which
corresponds to the elliptic curve

F : y 2 = x3 + x2 + 3x − 1 (44A1).

Thus E ∼5 F .

` 2 3 5 7 11 13 17 19

a`(E ) 0 −1 2 2 −1 6 −4 −2

a`(F ) 0 1 −3 2 −1 −4 6 8

For p ≥ 7, we have Np = N, and Ribet’s Theorem tells us the
E ∼p E which is not interesting.
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Absence of Isogenies

Theorem

(Mazur) Let E/Q be an elliptic curve satisfying at least one of
the following conditions holds.

p ≥ 17 and j(E ) 6∈ Z[ 1
2 ],

or p ≥ 11 and E is a semi-stable elliptic curve,

or p ≥ 5, #E (Q)[2] = 4, and E is a semi-stable elliptic curve,

Then E does not have any p-isogenies.

Theorem

(Diamond and Kramer) If ord2(N) = 3, 5, 7 then E does not have
any isogenies of odd degree.

If all else fails,

E has no p-isogenies⇐⇒ p-th division poly is irreducible.
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Fermat’s Last Theorem

Theorem

(Wiles) Suppose p ≥ 5 is prime. The equation

xp + yp + zp = 0 (1)

has no solutions with xyz 6= 0.

Proof. Suppose xyz 6= 0. Without loss of generality: x , y , z are
coprime, and

2 | y , xp ≡ −1 (mod 4), zp ≡ 1 (mod 4).

Associate to this solution the elliptic curve (called a Frey curve)

E : Y 2 = X (X − xp)(X + yp).
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Proof of FLT (continued)

Without loss of generality: x , y , z are coprime, and

2 | y , xp ≡ −1 (mod 4), zp ≡ 1 (mod 4).

Associate to this solution the elliptic curve (called a Frey curve)

E : Y 2 = X (X − xp)(X + yp).

(For Y 2 = X (X + a)(X + b), the discriminant is 16a2b2(a− b)2.)
So

∆ = 16x2py 2p(xp + yp)2 = 16x2py 2pz2p

using xp + yp + zp = 0.
Also

c4 = 16(z2p − xpyp), gcd(c4,∆) = 16.
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FLT continued

Applying Tate’s algorithm to compute the minimal discriminant
and conductor:

∆min = 2−8(xyz)2p, N =
∏
`|xyz

`.

Np = N
/ ∏

`||N,
p | ord`(∆)

` =⇒ N2 = 2.

E (Q)[2] = 4 and N squarefree =⇒︸︷︷︸
Mazur

no p-isogenies.

By Ribet, there is a newform f of level Np = 2 such that E ∼p f .
CONTRADICTION.
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Frey Curves

Given a Diophantine equation, suppose that it has a solution

and
associate the solution somehow to an elliptic curve E called a Frey
curve, if possible. The key properties of a ‘Frey curve’ are

the coefficients of E depend on the solution to the
Diophantine equation;

the minimal discriminant of the elliptic curve can be written in
the form ∆ = C · Dp where D is an expression that depends
on the solution of the Diophantine equation. The factor C
does not depend on the solutions but only on the
equation itself.

E has multiplicative reduction at primes dividing D.
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Frey Curves II

the coefficients of E depend on the solution to the
Diophantine equation;

the minimal discriminant of the elliptic curve can be written in
the form ∆ = C · Dp where D is an expression that depends
on the solution of the Diophantine equation. The factor C
does not depend on the solutions but only on the
equation itself.

E has multiplicative reduction at primes dividing D.

The conductor N of E will be divisible by the primes dividing C
and D, and those dividing D will be removed when we write down
Np. In other words we can make a finite list of possibilities for Np

that depend on the equation. Thus we are able to list a finite set
of newforms f such that E ∼p f .
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