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1. Overview of the Field

1.1. Cluster algebras. Cluster algebras were introduced in 2000 by S. Fomin and
A. Zelevinsky [26] as a tool for studying dual canonical bases and total positivity
in semisimple Lie groups. They are constructively defined commutative algebras
with a distinguished set of generators (cluster variables) grouped into overlapping
subsets (clusters) of fixed cardinality. Both the generators and the relations among
them are not given from the outset, but are produced by an elementary iterative
process called seed mutation. This procedure appears to be closely related to con-
structions in various other fields, such as Poisson geometry, Teichmüller theory,
representation theory of finite dimensional associative algebras and Lie theory and
Coxeter groups. The theory of cluster algebras was further developed in the sub-
sequent papers [27, 28, 3, 4, 29, 16, 17]. Remarkably, in the last two papers of this
series superpotentials borrowed from mathematical physics play a prominent role.
By now cluster algebras form a very active area of research which has obtained its
own AMS classification number 13F60. A thematic semester in 2012 at the Mathe-
matical Sciences Research Institute in Berkeley will be devoted to cluster algebras
(more details on activities related to cluster algebras can be found on Fomin’s
cluster algebra portal at http://www.math.lsa.umich.edu/∼fomin/cluster.html).

1.2. Quantum Cluster algebras. In 2005 Berenstein and Zelevinsky [4] intro-
duced quantum cluster algebras as non-commutative deformations (quantization) of
cluster algebras and studied their basic properties. Note, that in the classical limit
(q = 1) they give rise to a Poisson structure on the cluster algebra as introduced
and studied in [31], see [4, Rem. 4.6]. The main motivation for this work was to
start a general theory of canonical bases for cluster algebras. [4] finishes with some
evidence that the quantised coordinate rings of double Bruhat cells carry have a
natural quantum cluster structure. Apart from the somehow parallel developments
by Fock-Goncharov [21], [22] and Kontsevich-Soibleman [42], quantum cluster al-
gebras passed several years almost unnoticed. However, since 2010 there has been
quite some activity in this direction. For example, the the following papers deal
quite explicitly with quantum cluster algebras: [33], [34], [38], [45], [53], [52], [18],
[19], [41], [46], [30], [54] (in chronological order, as the papers were posted on arXiv).
Moreover, [48], [40] made clear the relevance of the work of Fock-Goncharov and
Kontsevich-Soibelman to the further study of quantum cluster algebras.
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2. Recent Developments and Open Problems

2.1. Additive Categorification of Cluster Algebras. Cluster categories were
introduced in [6], and, for type An also in [8], as a means for a better under-
standing of the acyclic cluster algebras. They are defined as orbit categories
CQ = Db(mod kQ)/τ−1[1] of the bounded derived categories of finitely generated
kQ-modules, where Q are acyclic quivers. This construction has been generalized
in [1] to quivers with non-degenerate potential whose Jacobian algebra is finite-
dimensional, and the finiteness condition has been removed in [51].

The two classes of cluster algebras whose categorifications are currently best
understood are the acyclic ones and the cluster algebras stemming from surfaces:
Fomin, Shapiro and Thurston study in [23] the cluster algebra defined by a marked
surface. They show that arcs (isotopy classes of curves without self-intersections)
on the marked surface correspond to the cluster variables of this cluster algebra,
and that mutations correspond to flips of arcs. In [2] it is shown for unpunctured
surfaces that the Jacobian algebra of the associated quiver with potential is gentle.
D. Labardini generalizes in [44] the definition of a potential to punctured surfaces,
but the representation theory of the corresponding Jacobian algebras is not known
at this moment.

Based on these results, in [5] the cluster category of [1] defined by an unpunctured
surface is described concretely in terms of curves in the (unpunctured) marked
surface. The curves without self-intersections correspond to objects in the category
without self-extensions. It would be desirable to further develop these ideas: Earlier
work of Chekhov and current work of Tumarkin and others points at a generalization
of the above mentioned results from surfaces to orbifolds. They show, in particular,
that all cluster algebras which are defined by a mutation-finite quiver are given by
an orbifold construction. Moreover, string theorists became interested in mutation-
finite quivers, since these classify BPS-states of N = 2 complete 4d quantum field
theories, as shown in [9].

2.2. Bases of cluster algebras. Since cluster algebras were introduced with the
idea that they should help to understand canonical bases, it is very natural to
consider the problem of finding a nice linear basis for cluster algebras: this basis
should include the cluster monomials, and it should have good positivity properties.

An element of a cluster algebra is called positive if, when it is expressed as
a Laurent polynomial in the cluster variables of any cluster, the numerator has
positive coefficients. The Positivity Conjecture of Fomin and Zelevinsky can be
viewed in this light as saying that the cluster variables are positive elements. The
positive elements necessarily form a semiring in the cluster algebra (i.e., they are
closed under sum and product).

A linear basis of a cluster algebra is called atomic if the positive linear combi-
nations of the basis elements coincides with the semiring of positive elements. The
existence of such a basis puts strong conditions on the positive semiring, so it is
not at all clear that such a basis should exist. However, if it exists, it is unique.

In the case of cluster algebras of finite type, the answers are very satisfactory:
the cluster monomials form a basis for the cluster algebra, they correspond to the
dual canonical and semi-canonical bases (which agree), and this basis is atomic
(proved by G. Cerulli Irelli [10]). Outside finite type, the cluster monomials no
longer form a basis, and there are few results about the existence of atomic bases.
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2.3. The Open Orbit Conjecture. Consider for a symmetric Kac-Moody group
G the quantisation Oq(N) of the regular functions on the maximal, pro unipotent
subgroup N of G. It is well known that this is isomorphic to Uq(n), the quanti-
sation of the enveloping algebra of the corresponding pro-nilpotent Lie algebra n.
By work of Lusztig and De Concini-Kac-Procesi, for each Weyl group element w,
the algebra Oq(N) contains a subalgebra Oq(N(w)) which can be considered as a
quantisation of the coordinate ring of the unipotent subgroup N(w) ⊂ N attached
to w. Moreover, each Oq(N(w)) is spanned by a subset of the dual of Lusztig’s
canonical basis of Uq(n), see for example [41]. Quite close to the conjecture [4,
10.10], it was shown in [30] that each of those quantised coordinate rings Oq(N(w))
has a quantum cluster algebra structure with the initial seed given by certain quan-
tum minors (which belong to the dual canonical basis). The open orbit conjecture
in its sharpest version states that all quantum cluster monomials of this structure
belong to the dual canonical basis. A slightly weaker version claims that this is
true after specialisation to q = 1. In other words, the cluster monomials belong to
the specialised dual canonical basis.

Note, that elements of (dual) canonical basis are notoriously difficult to come by.
This conjecture would allow to obtain many of those elements by a relatively easy
recursive procedure. An important application would be a proof of Conjecture 13.2
in [36] via quantum Schur-Weyl duality in type A: The Grothendieck rings of the

finite dimensional modules over the quantum affine algebras Uq(ŝln) which belong
to the category C; carry a cluster algebra structure, where the cluster monomials
correspond to the classes of real simple representations see [36, 13.7] for more details.
Here, Cl are subcategories where the roots of the Drinfeld polynomials of the simple
composition factors fulfil certain integrality and boundedness conditions.

Special cases of this conjecture have been proven recently by several participants
of this workshop, all centred around the case w = c2, i.e. when the corresponding
cluster algebra is acyclic.

3. Presentation Highlights

Below, we discuss some of the highlights of the presentations at the workshop.
In the interest of bringing out certain themes of the workshop, not all the talks are
mentioned individually.

3.1. Cluster algebras and additive categorifications. I. Reiten gave an over-
view on the construction of (additive) cluster categories. P.-G. Plamondon pre-
sented the construction of a ”generic basis” S for a cluster algebra, using his version
of a generalized cluster category given by a quiver with non-degenerate potential.
In the setting studied by Geiss, Leclerc and Schröer, this basis S coincides with the
dual semicanonical basis. Moreover, for affine Dynkin type Ãn it yields the same
basis obtained by Dupont.

However, in the general situation the generic basis S is only a basis for the upper
cluster algebra, and it is not clear when the upper cluster algebra and the cluster
algebra coincide. In Greg Muller’s talk it was shown that the upper cluster algebra
and the cluster algebra coincide under certain conditions — this result was obtained
during the workshop.

3.2. Bases of cluster algebras. Gregg Musiker spoke about the problem of find-
ing linear bases for cluster algebras arising from surfaces without punctures. His
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talk was based on joint work with Ralf Schiffler and Lauren Williams, both of
whom were also in attendance. In [47] (which appeared shortly after the work-
shop), they provide two linear bases, denoted B and B◦ for such cluster algebras,
with coefficients allowed, under the hypothesis that the B-matrix is of full rank.

The basis B◦ is conjectured to be atomic. This is known for disks (for which the
associated cluster algebra is of finite type, and the two bases both coincide with
the cluster monomials) and for annuli when the coefficients are set to 1, by [20].

The basis B, on the other hand, is conjectured to agree with the generic basis,
already mentioned above.

3.3. Quantum cluster algebras and monoidal categorification. In the quan-
tum setting, Ph. Lampe showed for the cases Ã1 and An by rather direct computa-
tions that all quantum cluster variables belong to the dual canonical basis [45],[46].
Next, D. Hernandez and B. Leclerc [36] showed in the classical setting that for the
cases An and D4 indeed all cluster monomials belong to the dual canonical basis by a
combinatorial approach via the characters of certain finite dimensional simple repre-
sentations of the corresponding quantum affine algebras. This was then generalised
in some sense to all acyclic types with sink-source orientation by H. Nakajima,
using a monoidal categorification via perverse sheaves and Fourier-Deligne-Sato
transformation for quiver varieties [49]. In fact, there the dual canonical basis of
the decorated quivers has to be considered. Fan Qin reported in his talk about how
to remove the sink-source hypothesis in Nakajima’s result. Finally, D. Hernandez
and B. Leclerc obtained, as an corollary of their recent work on the t-deformations
of q-characters of finite dimensional representations of quantum affine algebras the
quantum version of this conjecture for all (finite) Dynkin types. They presented
this result during the conference, and one should note, that a first version of their
paper [37] was uploaded to arXiv during the conference. Finally, A. Berenstein
presented his recent work with A. Zelevinsky where they show, with a combinato-
rial approach, that in the acyclic cases the quantum cluster monomials belong to a
differently defined “canonical basis”. It should be very interesting to compare those
results. Notice, that the impressive results by Hernandez-Leclerc and Nakajima are
based on a monoidal categorification approach to cluster algebras, see [39, 4.4] for
a concise description of this concept.

3.4. Cluster Algebra and Poisson Geometry. Poisson structures compatible
with cluster algebra structure were introduced in [31]. Namely, there exists a Pois-
son structure such that cluster variables of any cluster form a log-canonical (or,
log-constant) basis for this Poisson structure. The interplay between cluster and
Poisson structure plays an important role for cluster theory. Of particular interest
is the study of completely integrable systems associated with cluster dynamics. The
Poisson part of the cluster theory was represented at the workshop by M.Gekhtman,
Ph. Di Francesco, R. Kedem, P. Tumarkin, M. Yakimov, and S. Zwicknagl.

M. Gekhtman gave two talks: one a general introduction to the Poisson geometry
and integrable systems, and the second one on the Poisson bracket compatible with
cluster algebras mainly based on the paper [31].

R. Kedem reported on her joint research with Ph. Di Francesco that was pub-
lished in the series of papers [11, 12, 13, 14, 15] where they studied from the cluster
point of view Q- and T-systems and their quantizations that arise in various stages
of the study of integrable quantum spin chain. These systems are particular cases of
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the so-called discrete Hirota equation which is known to be completely integrable.
The cluster algebra reformulation allows the construction of explicitly conserved
quantitites of the discrete dynamics. It leads also to continued fractions whose
positivity implies positivity of solutions. These results can be partially generalized
to the non-commutative case of quantum Q- and T-systems. Another approach
to Q-systems from the point of view of directed networks in the annulus, cluster
algebras, and Toda lattices was studied in [32].

S. Zwicknagl studied symplectic leaves of the cluster manifold. The main tool
is the description of the structure of toric invariant Poisson ideals in upper cluster
algebra [57]. M. Yakimov talked about interplay between cluster algebras and ring
theory of quantum function algebra and the underlying Poisson Geometry [55, 56].

Finally, P. Tumarkin reported on the classification of cluster algebras of finite mu-
tation type [24, 25]. This result allows to complete classification of cluster algebras
by the growth rate (finite versus polynomial versus exponential). The classification
in skew-symmetrizable case is associated with triangulation of two-dimensional bor-
dered surfaces with orbifold points of order 2.

4. Scientific Progress Made

4.1. Quantum Cluster Character. Another important direction in the recent
study of quantum cluster algebras is the search for a “quantum cluster” character.
This would mean in particular closed formulae for the quantum-Laurent expansion
of quantum cluster monomials with respect to any cluster, similar to the well known
formulae of Caldero-Chapoton [7], Palu [50] and in the classical case. Note, that in
those cases the relevant coefficients are given by the Euler-Characteristics of certain
quiver Grassmannians.

First results in this direction where found by D. Rupel [53] and Fan Qin [52] who
found formula for acyclic seeds, where the above mentioned Euler characteristics
are replaced by Counting polynomials resp. Serre polynomials. However, elemen-
tary examples show, that this nice idea cannot be pushed further so easily. As
K. Nagao explained in his lecture, from Kontsevich-Soibelman’s work one should
expect in the general case an answer in terms of motivic integration (which is not
a topological invariant of the relevant quiver Grassmannians, but depends also on
the potential associated to the seed). Unfortunately, this is for the quantum case
still conjectural, since it depends then still on a deep conjecture by Kontsevich and
Soibelman that the integration map from the corresponding motivic Hall algebra
to the quantum torus is in fact an algebra homomorphism. So again, interestingly
progress is confined for the moment to the acyclic situations.

4.2. Integrability. Study of integrable systems associated with cluster algebra
was continued in the joint work [35]. The pentagram map associates to a projective
polygon a new one formed by intersections of short diagonals. In [35] the pentagram
map is included into a family of discrete completely integrable systems associated
with some special cluster algebras. The main tool is Poisson geometry of weighted
directed networks on surfaces. The ingredients necessary for complete integrability
—invariant Poisson brackets, integrals of motion in involution, lax representation—
are recovered from (cluster) combinatorics of the networks.

4.3. Teichmüller theory. Developing the approach outlined in the talk by P.
Tumarkin a generalization of cluster algebra was constructed in the joint work by
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L. Chekhov and M. Shapiro. In particular, a cluster algebra can be associated to
the triangulation of a surface with orbifold points of any order. The results are in
the process of preparation for publication.

5. Outcome of the Meeting

The workshop was very successful. It provided an opportunity to hear some of
the newest work on cluster algebras. It also provided time for informal discussions
among the participants. Some of the participants had not met before or had not
previously had extensive opportunities to discuss mathematics; well-established
teams of collaborators also had time to work on their ongoing projects.

We record here some comments which we received from participants.
Qin Fan wrote: “During that week, Prof. Hernandez and Leclerc posted a new

paper on Arxiv. Thanks to the workshop, I could learn their results immediately
from their talks and private conversations. Their work helps me finish the final
part of one of my recent researches on cluster algebras.”

Bernard Leclerc wrote: “For me the workshop was important in that it allowed
me to present my new joint work with David Hernandez, on quantum Grothendieck
rings and derived Hall algebras, in front of an ideal audience filled with experts in
various aspects of this work: Nakajima, Keller, Nakanishi, Qin, Lampe, etc... This
has been a strong stimulus for developing and writing up this work during the
summer, in order to get it ready for the workshop. During the workshop Nakajima
and Keller gave us important feedback, which was very appreciated.”

Greg Muller wrote: “It would be an understatement to say that my participation
in the conference was a tremendous boost to my research. At BIRS, I met dozens
of researchers, and was able to talk with them about my research and present my
results to them. My interactions were so fruitful, I have since been invited to
visit several possible collaborators I met there. While I was at the conference, I
developed the idea of ‘locally acyclic cluster algebras’, which I have already proved
some exciting results about. I am currently finishing work on a preprint containing
these results; and this might not be the only paper I write as a direct result of my
participation there.”

Gregg Musiker wrote: “Since it has only been a few months since the work-
shop, the most tangible research that I can point to is a recent paper ”Bases for
cluster algebras from surfaces” with Ralf Schiffler and Lauren Williams. Having
time at Banff to discuss some finishing touches with my collaborators, as well as
discuss questions that arose about related results with the other experts attending
the workshop was quite useful. Several new contacts were also beneficial, including
Demonet, Early, Muller, Plamondon, Tumarkin, among others. I had heard about
the work of several of my new contacts (and in some cases been at the same confer-
ences as them before) but this was the first opportunity to have long conversations
with them about their research, which were quite enlightening to us both.

I am now in the process of pursuing some of the references and ideas that I learned
about while at BIRS (both through lectures and discussions around the dining
hall). Some of these projects include looking further at atomic bases, as discussed
with Schiffler, Thomas, and Williams; investigating more connections to character
varieties, as discussed with Muller; and studying (generalized) cluster categories
and their relation to surfaces, as discussed with Brüstle, Keller, Plamondon, and
Todorov.”
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Sebastian Zwicknagl wrote: “First, I learned from Greg Muller about the geom-
etry of cluster varietes. It helped me understand the nature of the singularities and
how to use Poisson structures to give criteria when such a variety is smooth.

Secondly, I learned from Milen Yakimov about ring theory and Allen Knutson
about the algebraic geometry, e.g. the relationship between Frobenius splitting and
Poisson structres, resp. cluster algebras.

Finally, I want to mention the lectures on quiver varieties and cluster algebras, as
well as Rinat Kedem’s and Lauren Williams’ work which I found really interesting,
and I think I now understand much better.”
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