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Introduction

Examples of nonlinear eigenvalue problems
@ Mechanics : vibration modes within nonlinear elasticity

@ Physics : steady states of Bose-Einstein condensates

@ Chemistry and materials science : electronic structure calculations

o Hartree-Fock model
o Density Functional Theory
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@ Mechanics : vibration modes within nonlinear elasticity

@ Physics : steady states of Bose-Einstein condensates

@ Chemistry and materials science : electronic structure calculations

o Hartree-Fock model
o Density Functional Theory

A priori estimates for nonlinear eigenvalue problems
o A. Zhou (Nonlinearity 2004, M2AS 2007)
e E.Cances, R. Chakir and Y. M. (JSC 2009, arXiv 2010)
e B. Langwallner, Ch. Ortner and E. Siili (arXiv, June 2009)
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Introduction

Two grids methods for eigenvalue problems

1. J. Xu and A. Zhou, A two-grid discretization scheme for eigenvalue problems, Math.
Comp., 70 (2001), pp. 17—25.
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Introduction

Two grids methods for eigenvalue problems

Introduced by J. Xu and A. Zhou!

o Consider the following eigenvalue problem : find A and u, |jul|;2 =1

solution of
/VUVV = )\/uv

1. J. Xu and A. Zhou, A two-grid discretization scheme for eigenvalue problems, Math.
Comp., 70 (2001), pp. 17—25.
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Introduction

Two grids methods for eigenvalue problems

Introduced by J. Xu and A. Zhou!

o Consider the following eigenvalue problem : find A and u, |jul|;2 =1

solution of
/VUVV = )\/uv

Assume that you have two finite element meshes and two finite element
spaces Xy and Xj

1. J. Xu and A. Zhou, A two-grid discretization scheme for eigenvalue problems, Math.
Comp., 70 (2001), pp. 17—25.
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Introduction

Two grids methods for eigenvalue problems

@ Solve the coarse eigenvalue problem : find Ay and uy € Xy,
llug||;2 = 1 solution of

/VUHVVH:)\H/UHVH
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Two grids methods for eigenvalue problems

@ Solve the coarse eigenvalue problem : find Ay and uy € Xy,
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@ Solve the fine problem : find up € X}, solution of
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Introduction

Two grids methods for eigenvalue problems

@ Solve the coarse eigenvalue problem : find Ay and uy € Xy,
llug||;2 = 1 solution of

/VUHVVH:)\H/UHVH

@ Solve the fine problem : find up € X}, solution of

/Vu,’vah—)\H/quh

@ reconstruct the eigenvalue by Reyleigh quotienty

)\H:f[vufl;lz
" Il
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Introduction

Two grids methods for eigenvalue problems

Error estimates

o
lu = ug | < c(h+ H?)
o
A= M < c(h? + H*)
2.
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Introduction

Two grids methods for eigenvalue problems

Error estimates

lu— uffll i < c(h+ H?)

A=A < c(h?+ HY

Two grids methods for non linear problems (V. Girault and J.-L. Lions? for

Navier Stokes)
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Introduction

Two grids methods for eigenvalue problems

Error estimates

lu— uffll i < c(h+ H?)

A=A < c(h?+ HY

Two grids methods for non linear problems (V. Girault and J.-L. Lions? for
Navier Stokes)

2. Two-grid finite-element schemes for the steady Navier-Stokes problem in polyhedra,
Port. Math. (N.S.) 58 (2001), no. 1, pp. 25-57.
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Outline of the talk

@ Two grids method for eigenvalue problems
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@ Numerical analysis of the Gross-Pitaevskii equation

u € H(Q)
—Au+ Vu+u® =\

/u2:1
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Finite element discretization of the GP equation

1 - Finite element discretization of
the GP equation
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Q=(0,L)4 d=1,2o0r3, Ve ?(Q)and >0

We consider the minimization problem

I = inf{E(v), v € H3 (Q), /Qv2 = 1} (1)

E(v):/ |Vvy2+/ vyv|2+“/ v
Q Q 2 Ja

where
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I = inf{E(v), v € H3 (Q), /{2\/2 = 1} (1)

E(v):/ |Vvy2+/ vyv|2+“/ v
Q Q 2 Ja

@ (1) has exactly two minimizers u and —u

where

Yvon Maday (LJLL - UPMC/ Brown Univ) 2 grids 4 nonlinear eigenvalue Pb Banff'11 8 /51



Q=(0,L)4 d=1,2o0r3, Ve ?(Q)and >0

We consider the minimization problem

l:inf{E(v), v € H3 (Q), /{2\/2:1}

E(v):/ |Vvy2+/ vv|2+“/ v
Q Q 2 Ja

@ (1) has exactly two minimizers u and —u

where

@ u is the ground state of the nonlinear eigenvalue problem

—Au+ Vu+ pu® =, llull;2 =1
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Q=(0,L)4 d=1,2o0r3, Ve ?(Q)and >0

We consider the minimization problem

l:inf{E(v), v € H3 (Q), /{2\/2:1}

E(v):/ |Vvy2+/ vv|2+“/ v
Q Q 2 Ja

@ (1) has exactly two minimizers u and —u

where

@ u is the ground state of the nonlinear eigenvalue problem

—Au+ Vu+ pu® =, llull;2 =1

o uc C%(Q) for some a > 0and u>0inQ
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Finite element discretization of the GP equation

Variational approximation of (1)

Let (X5)s>0 be a family of finite dimensional subspaces of H3(Q) s.t.

min {|[u — vs| g1, vs € X5} o 0 (2)
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The variational approximation of (1) in Xj consists in solving

Is = inf {E(V(g), v5 € Xs, /

Q

Vi = 1} (3)
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Finite element discretization of the GP equation

Variational approximation of (1)

Let (X5)s>0 be a family of finite dimensional subspaces of H3(Q) s.t.

min {|[u — vs| g1, vs € X5} o 0 (2)

The variational approximation of (1) in Xj consists in solving

Is = inf {E(V(g), vs € Xs, /Qvg = 1} (3)

Problem (3) has at least one minimizer us such that (us, u);2 > 0, which
satisfies

Yvs € Xs, /VUg-VVg-i—/ VU5V5—|—,u/ u(:;’v(;:)\g/ usVs (4)
Q Q Q Q

for some As € R. This minimizer is unique for  small enough
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Finite element discretization of the GP equation

A priori error estimates in the linear case (1 = 0)

There exist 0 < ¢ < C < oo such that for all § > 0

lus —ullpr < C min |lvs — ul[p

V5€X5
cllus—ullfn < E(us) — E(u) < Cllus — ul|a
A=Al < Cllus — w3

Ref. : |. Babuska and J. Osborn, Eigenvalue problems, in : Handbook of
numerical analysis. Volume Il, (North-Holland, 1991) 641-787
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Finite element discretization of the GP equation

Theorem (Cances, Chakir, Y.M. 2009). In the nonlinear setting (u > 0).
There exist 0 < ¢ < C < oo and dg > 0 such that for all 0 < § < g,

lus —ullpr < C min [[vs — ulln
vsEXs

cllus—ulZp < E(us) = E(u) < Cllus — ull%

Ps—A < Cllus— ulPu+p ’/Q W2 + u)(us — u)|  (Zhou '04)
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Finite element discretization of the GP equation

Theorem (Cances, Chakir, Y.M. 2009). In the nonlinear setting (1 > 0).
There exist 0 < ¢ < C < oo and dg > 0 such that for all 0 < § < 4,

|As — Al

IA

Cllus — ull, +u' [ 8w+ u)es )| Zhou 04
Q
—ul2, < _ i o
Jos — e < Cllas — ulln it (95~ Yl

where 1y, € ut = {v € H}(Q) | (v, u)2 = 0} is the unique solution to
the adjoint problem

Vv eut, ((E"(u) = Ntus—u, V)1 Hy = (Us — U, V)1
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Finite element discretization of the GP equation

Application to P; and P finite element discretizations
Let (74)5 be a family of regular triangulations of Q
@ P; finite element discretization
Ani = Al < C (lluna = ullfn + lluna — ulli2)
There exists hg > 0 and C € R such that for all 0 < h < hg,

Huh’l—uH,_p S Ch Huh’l—uHng Ch2 |/\h,1_)\‘ S Ch2
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Finite element discretization of the GP equation

Application to P; and P, finite element discretizations

Let (74)5 be a family of regular triangulations of Q

@ P; finite element discretization
Ana = Al < C (lung — ullfn + lluns — ull2)
There exists hg > 0 and C € R such that for all 0 < h < hg,

Huh’l—uH,_p S Ch Huh’l—uHng Ch2 |/\h,1_)\‘ S Ch2

o P, finite element discretization (V € H(Q))
A2 = Al < C (lunz — ullfn + llunz — ully-1)
There exists hg > 0 and C € R such that for all 0 < h < hg,
luna = ullpn < CH fung —ullp < Ch*  [Ap2— A < Ch?
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Finite element discretization of the GP equation

Numerical simulations

d=2, V(xi,x)=x2+ x3

10?

10°

Errors ||upk — ul|gr (4), [Junk — ul|2 (x) and [Apk — A (x) for the Py

(k =1, left) and Py (k = 2, right) approximations as a function of h in log
scales
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Finite element discretization of the GP equation

Eigenvalue problems of the form
—div (AVu) + Vu + f(|u]?)u = Au

are dealt with in E.Cances., R. Chakir and Y. M., Numerical analysis of
nonlinear eigenvalue problems, JSC 2009
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Finite element discretization of the GP equation

Eigenvalue problems of the form
—div (AVu) + Vu + f(|u]?)u = Au

are dealt with in E.Cances., R. Chakir and Y. M., Numerical analysis of
nonlinear eigenvalue problems, JSC 2009

These estimates where improved accuracy is established on the lower order
norms are at the basis of a new method on two grids where the nonlinear
eigenvalue problem is solved on a coarse mesh and a linear eigenvalue or
even a linear problem with right hand side is solved on a fine mesh and
optimal results are obtained (both theoretically and numerically)

R. Chakir's thesis
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Two grid method

On a coarse mesh
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Two grid method

On a coarse mesh

Non linear eigenvalue problem on a coarse grid Xy

a(uH,v)+/ f(uﬁ)qu:)\H/qu, Vv € Xy
Q Q
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Two grid method

On a coarse mesh

Non linear eigenvalue problem on a coarse grid Xy

a(up, v) —l—/ f(ud)upv = )\H/ uyv, v e Xy On a fine mesh
Q@ Q
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Two grid method

On a coarse mesh

Non linear eigenvalue problem on a coarse grid Xy

a(up, v) —l—/ f(ud)upv = )\H/ uyv, v e Xy On a fine mesh
Q@ Q

Problem 1 Problem 2 Problem 3
Linear eigenvalue Linear right hand side Linear right hand side
problem on a fine problem on a fine problem on a fine

space Xj space Xp space Xp

a(utl, v) + /Q F(u)uffv || a@t!, v) + /Q F2)aflv || a@ll,v) = - /Q F(u ) uv

:)\hH/uf,’v Vv € X, :)\H/qu Vv € X, +)\H/qu Vv € X.
Q Q Q
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Finite element discretization of the GP equation

Numerical simulations

NN

Ti Ti+1 Ti+2
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Finite element discretization of the GP equation

Numerical simulations

llw — uh |11 (qy) = 0.00647426

Yvon Maday (LJLL - UPMC/ Brown Univ)

2 grids 4 nonlinear eigenvalue Pb

Méthode a 2 Grilles
Tn _ — llu — um, |50y
v —um,nllgre) | v —dmnllae, | v —Tumlao,)
0 0.00647816 0.00658694 0.00660524 0.118264
1 0.00647449 0.00648174 0.00648297 0.0594255
2 0.00647426 0.00647474 0.00647482 0.0296258
3 0.00647426 0.00647428 0.00647429 0.0144717
A= Ap| =4.25 x 107°
Méthode a 2 Grilles
T = a0 | =l [Py |
0 3.46 x 10—° 8.411 x 10—° 9.69 x 10—° 1.41 x 1072
1 4.05x 10 ° 529 x 10° 5.61 x 10~ 3.58 x 1073
2 4.20 x 107° 4.50 x 10™° 459 x 107° 8.91 x 1077
3 4.24 x 107° 4.30 x 10™° 4.33x107° 2.13 x 1077
Banff'11
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Finite element discretization of the GP equation

Numerical simulations fine mesh = T4

llw — un| 2@,y = 0.00647426

Yvon Maday (LJLL - UPMC/ Brown Univ)

2 grids 4 nonlinear eigenvalue Pb

Méthode a 2 Grilles
Tn - — |l — um, |51y
v —um,nllgre) | v —dmpllae, | v —Tumlao,)
0 0.00647816 0.00658694 0.00660524 0.118264
1 0.00647449 0.00648174 0.00648297 0.0594255
2 0.00647426 0.00647474 0.00647482 0.0296258
3 0.00647426 0.00647428 0.00647429 0.0144717
A= Ap| =4.25 x 107°
Méthode a 2 Grilles
T = a0 | =l [Py |
0 3.46 x 10—° 8411 x 105 9.69 x 107 141 x 102
1 4.05x 10° 529 x 10° 5.6 x 107 358 x 103
2 4.20 x 107° 4.50 x 107° 459 x 107° 8.91 x 1077
3 4.24 x 107° 4.30 x 10™° 4.33x107° 2.13 x 1077
Banff'11
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Finite element discretization of the GP equation

Numerical simulations

TABLE: Comparison between the CPU times for the Two Grids Method.

reference time 121.46 sec

b Méthode a 2 Grilles
" | Probléeme 1 | Probléme 2 | Probléeme 3
0 14.64 s 7.57 s 717 s
1 15.61 s 8.65 s 8.22 s
2 21.08 s 12.78 s 12.27 s
3 39.36 s 3425 s 33.68 s

Yvon Maday (LJLL - UPMC/ Brown Univ)

2 grids 4 nonlinear eigenvalue Pb

Banff’11
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Finite element discretization of the GP equation Planewave discretization of the periodic GP equation

2 - Planewave discretization of the

periodic GP equation
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Planewave discretization of the periodic GP equation
We now consider the minimization problem

l:inf{E(v), v € Hy(9Q), /Q|v|2:1} (5)

where Q = (0,27)? (d = 1, 2 or 3) and where

1
E(V)Z/\VVFJF/ V’V|2+/’V|4a
Q Q 2 Jg

V being a 27Z9-periodic continuous function

Planewave basis sets
For k € Z9, we denote by
eik-x
ex(x) = @) =14 > cexlck=c

IK|<N
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Finite element discretization of the GP equation Planewave discretization of the periodic GP equation

Spectral approximation

Let up be a minimizer of

IN:inf{E(vN), v € WV, / |VN’2:1} s.t. (uy,u);2>0
Q

Theorem (Cances, Chakir, Y.M. 2009) Assume that V' € H%(€2) for some

o > d/2. Then (uy)nen converges to u in H;fz(Q) and there exists
0 < ¢ < € < oo such that for all N € N,

C

||uN—uHH; < o= forall —o<s<o+2

cllow = ul?y < E(un) — E(w) < Clluw — ull

C

|)\N_)\‘ < m
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Finite element discretization of the GP equation Planewave discretization of the periodic GP equation

Numerical simulations

d =1, V(x) =sin(|x — 7|/2) (V € H}/*~°(0,2n))

T
9.10°10" 2.10" 3100 4.10' 510" 6.10'7.10"

Numerical errors ||uy — u||H?1§E (+), lluny — u||L72# (x), [luy — u||H7;1 (%),

IAn — A| (o), as functions of 2N + 1 (the dimension of Xy) in log scales
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Finite element discretization of the GP equation Planewave discretization of the periodic GP equation

Pseudospectral approximation
Let UN, N, be a minimizer of

IN,Ng = inf {ENg(VN), v € Vy, / ‘VN‘z = 1} s.t. (UN,Ng7 U)L2 >0
Q

where Ny € N\ {0} (odd for simplicity), Ny > 4N + 1 and

1
En, (vi) = /Q Vvnl + / In, (V)lwal? + / ol

Iy, denoting the interpolation projector on

Wi, = {ex | [kloo < (Ng —1)/2}

The mean field matrix of the above minimization problem is

—=FFT,Ng

FFTNg+|VN| .

[Hiuupl = k1?6 + V,

Yvon Maday (LJLL - UPMC/ Brown Univ) 2 grids 4 nonlinear eigenvalue Pb Banff’11 24 / 51



Finite element discretization of the GP equation Planewave discretization of the periodic GP equation

Pseudospectral error

If [Vi| < C|k|™* with s > d, then V € H} />7°(Q) and

IA

HUN,Ng — UNHH;l% CNd/QNg—s HUN . UHH;# < CN—(s—d/2+1—s)

lung = unlliz, < CNI2NZS ull, < CN-(s—d/2+2-<)
’)\N,Ng — )‘N| < CNd/2N;5 |>\N _ )\’ < CN72(sfd/2+lf€)

The optimal choice for N, therefore is

Ny ~ NFL/s—e if the criterion is the H! norm (or the energy)
Ng ~ N1+2/s—e if the criterion is the L% norm

Ny ~ N?79/(25)42/s=¢ if the criterion is the eigenvalue
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Planewave discretization of the periodic GP equation

Numerical simulations

#

d=1 V(x) =sin(|x — 7|/2) (s =2 and V € H¥/*75(0,2n))

Ng ~ N3/2=¢ Ng ~ N2—¢ Ny ~ N1L/4—

Numerical errors ||upy,n, — uHH# (left), |lunn, — UHL;
(middle) and |An,n, — A| (right), as functions of 2N + 1
(the dimension of Vi), for N, = 128 (red), Ny = 256
(green), Ny =512 (cyan), N, = 1024 (gold), N, = 2048
(magenta), Ny = 4096 (pink), N, = 8192 (black),

N, = 16384 (blue), N, = 32768 (light blue)
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Finite element discretization of the GP equation Planewave discretization of the periodic GP equation

Numerical simulations

d=1, V(x) =sin(]x —7|/2) (s =2 and V € H}/*7*(0,2r))

= [T

1
’10' 2.10 4.10' 5.10' 6.10'7.10"
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Planewave discretization of the periodic GP equation
Two grids method — Numerical simulations fine mesh = N = 100
_ —6
llu— unl|g = 1.310
_ —8
|lu— un| 2 =1.110

A — Ay| =8.10712

Ng | llu—un’llmn | e —un®llezgy | 1A= AN0)

5 5.608 x10~* 0.032x10°° 4.932 x10~ "
10 1.673 x10° 2.530 x10 " 0.006 x10 Y
20 1.429 x10-® 1.280 x10~3 2.598 %1010
30 1.337 x10-® 1.085 x10~ % 3.807x10 1T
40 1.336 x10-° 1.083 x10~ 3 2.140x10~ 11
50 1.336 x10© 1.083 x10~° 1.143x10 °
60 1.336 x10© 1.083x10° % 0.312x10 2
70 1.336 x10© 1.083 x10~° 1.043x10-
30 1.336 x10-© 1.083 x10-3 1.083x10- 11
90 1.336 x10-° 1.083x10-% 3.40x10~ 12
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Finite element discretization of the GP equation Planewave discretization of the periodic TFW model

3 - Planewave discretization of the

periodic TFW model
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Planewave discretization of the periodic TFW model
The periodic Thomas-Fermi-von Weizsacker (TFW) model

T = inf (€T (p), p € Ry} (6)

Set of admissible densities

Ry = {pzo‘\/ﬁEH}#((OaL)?))a /(OL)3p_N}

TFW energy functional

G ] 1
EV(p) = [ 9VEPCw [ B[ Ve IDu(ep)
2 Jouye (0.L)° © 2

L)?

where

D AN ﬁiﬁk
L(pvp) = 4w Z |k’2
ke2r73\{0}
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Finite element discretization of the GP equation Planewave discretization of the periodic TFW model

Reformulation of TFW model in terms of v = /p

ITEW inf { ETFW (1) v € HL((0, L)%), /(0 LN )

where

ETFW(V) —
CTW f(o,l_)3 [Vv[? + Crr f(o,l_)3 |V|10/3 + f(O,L)3 Vior|y|? + %DL(|V|2a v[?)
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Planewave discretization of the periodic TFW model
Mathematical properties of the periodic TFW model

Under the following assumption

Im >3, C >0st Yk e R, |V < Clk|~™ (8)

© (6) has a unique minimizer p°, and the minimizers of (7) are u and
—u where u = +/p0°

@ u is positive everywhere in (0, L)® and satisfies the Euler equation
—CTWAU ot (gCTFu4/3 + Voo 4 Vuczoulomb> u=Au

for some A € R
© the function u is in H;:H/zfs((O, L)3) (and therefore in Ci((O, L)3?))
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Planewave discretization of the periodic TFW model
The PW discretization of the TFW model is obtained by choosing

@ an energy cut-off E. > 0 or, equivalently, a finite dimensional Fourier
space V), the integer N being related to E. through the relation

N¢ := [v2E; L/27];

Q a cartesian grid Gy, with step size L/N, where Ny € N* is such that

Ng > 4N, + 1,
and by considering the finite dimensional minimization problem
INeNL = mf{ETFW(vNC), n, € Vi, /|VNC|2 } (9)
where
EF ) = S [T+ Cor [ Tu o)+ [ Tu (Vo

1
+5Dr (v, v ?),

Iy, denoting the Fourier interpolation operator
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Planewave discretization of the periodic TFW model
Spectral approximation of the TFW model

Theorem (Cances, Chakir, Y.M. 2009) For N, € N, we denote by up_ a
minimizer to

ITFW |m‘{ETFW(vNc)7 N, € W, /]v,vc\z } (10)

such that (up,, U)Li > 0. Then for N large enough, uy, is unique, and for
each € > 0, the following estimates hold true

lun, = ullws, < GNgU"*TV279
Ay, — A < CNZ@mTo) (12)
Mon, = ulfy < 05 ="V < Cllun, - ullfy (13)

for all = m+3/2 <s < m+1/2 and for some constants v > 0, C > 0 and
Cs > 0 independent of N,
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Planewave discretization of the periodic TFW model
Pseudospectral approximation of the TFW model

Theorem (Cances, Chakir, Y.M. 2009) For N. € N and Nz > 4N, + 1, we
denote by up, a minimizer to

R = mf{E"NfEW(vNC), € Vi, [ |vNc|2=N}, (14)
r

such that (up,,n,, U)Li > 0. Then for N, large enough, up, n, is unique,
and the following estimates hold true

lune g = tnllms, < Co NEZHEDnzm, (15)
Ao, — Al < CNEPNG™, (16)
IEEN — Y| < oNZPNp™, (17)

for all -m+3/2 <'s < m+1/2 and for some constants v > 0, C > 0 and
Cs > 0 independent of N¢ and Ng
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Finite element discretization of the GP equation Planewave discretization of the Kohn-Sham model

4 - Planewave discretization of the

Kohn-Sham model
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Finite element discretization of the GP equation Planewave discretization of the Kohn-Sham model

We'll be back after this advertisement
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Finite element discretization of the GP equation Planewave discretization of the Kohn-Sham model
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Finite element discretization of the GP equation Planewave discretization of the Kohn-Sham model

Continuation of our program
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Finite element discretization of the GP equation Planewave discretization of the Kohn-Sham model

The Kohn-Sham model LDA model

I%5 = inf {EXS(0), & € M} (18)

where
M= {cb: (1, x) T € (HR(NYY | /r¢’¢f :5""}’

N being the number of valence electron pairs in the simulation cell, and

KS _ il 2 il ) ) LDA
EXS(0) =" [ IVoilP+ | poVocat2 D (il Vil di)+J(po) +EM (po).
i=1 /T r i=1
(19)
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Planewave discretization of the Kohn-Sham model
The Kohn-Sham model LDA model

It is possible to prove that under appropriate assumptions, (18) has a
minimizer ®° = (¢2,---,¢Q,) " with density p° = pgo. Some regularity
assumptions on Vjgcal, On E)I;CDA and on V, allow to state that the
minimizer 0 is in [H;L(F)]N, and even in [H$+1/2_€(F)]N for any € > 0,
if at least one of the following conditions is satisfied :

ELDA ¢ ClmI(]0, +00)) or pe + p° > 0 in R3.

The former condition is not satisfied for usual LDA exchange-correlation
functionals. On the other hand, it is satisfied for the Hartree (also called
reduced Hartree-Fock) model, for which eXPA = 0. The latter condition
seems to be satisfied in practice, but we were not able to establish it
rigourously.

Remember that the uniqueness is not at all proven... In fact, (18) has an
infinity of minimizers since any unitary transform of the Kohn-Sham
orbitals ®9 is also a minimizer of the Kohn-Sham energy.

Yvon Maday (LJLL - UPMC/ Brown Univ) 2 grids 4 nonlinear eigenvalue Pb Banff'11 41 / 51



Planewave discretization of the Kohn-Sham model
The Kohn-Sham model LDA model

Vo = (¢1,--- ,dn)" € M, we introduce the tangent space to M at ®

ToM = {wl, o) € (U | [ oy + vty = o}
Since the problem we are considering is a minimization problem, the
second order condition further states
YW € T¢OM, 3¢0(W, W) >0,

where
1 ean N
apo(V,T) = ZEKS/ (¢°)(w,T)—ZE?/¢,~U,- (20)
=i r

It follows from the invariance property through unitary transform that
ago(V, W) =0 forall W e A0
where A = {A € RN | AT = —A} is the space of the N x N/

antisymmetric real matrices.
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Planewave discretization of the Kohn-Sham model
The Kohn-Sham model LDA model

Vo = (¢1, -+ ,¢n7)T € M, we denote by

ol {w = (¢1,--+,on) " € (HE(M)Y | /r¢,-w,- - 0} '

Let us indicate that
ToM = Ad @ &'
We are lead to make the assumption (see M. Turinici Numer. Math.,

2003) that ago is positive definite on ®%-- in which case there exists a
positive constant ceo such that

YW e o0 ap0(W, VW) > C¢0H\UH$_@. (21)

In the linear framework (J = 0 and EXPA = 0 in (19)), this condition
amounts to assuming that there is a gap between the lowest A/*" and
(N + 1)%* eigenvalues of the linear self-adjoint operator

h= _%A + Vlocal + an-
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Finite element discretization of the GP equation Planewave discretization of the Kohn-Sham model

Variational approximation
Let us focus on the variational approximation

NS = inf {EXS(n,), On, € VR N M} (22)

One way to take the unitary invariance of the Kohn-Sham model into
account is to work with density matrices. An alternative is to define for
each ® € M the set

M® = {lll EM||V -2 = min [[UV-0. }’
#  Uel(N) #

and to use the fact that all the local minimizers of (22) are obtained by
unitary transforms from the local minimizers of

S = inf {EXS(on,), o, € VY n M} (23)
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Finite element discretization of the GP equation Planewave discretization of the Kohn-Sham model

A priori estimates
The main result is the following.

Theorem

Let ®° be a local minimizer of (18) satisfying (21). Then there exists
r® > 0 and N? such that for N. > N2, (23) has a unique local minimizer
@Y, in the set

{on € VN M [ oy, — 00 <}

If we assume either that ePA € CIM([0, +00)) or that p. +p° >0 on'T,
then we have the following estimates :

|08, = ®0llws, < CoeNe TR (2a)
0, —ef] < G, (25)
NOR, — l3y < INE— 1% < Cllof, — @O, (26)
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Finite element discretization of the GP equation Planewave discretization of the Kohn-Sham model

Numerical simulations

We have run simulation tests with the Hartree functional (i.e. with

eLPA — 0), for which there is no numerical integration error. In this
partlcular case, the problems solved numerically by Abinit and (22)
(analyzed in Theorem 1) are identical.

For Troullier-Martins pseudopotentials, the parameter m in Theorem 1 is
equal to 5. Therefore, we expect the following error bounds (as functions

of the cut-off energy E. = (27TLNC)2)
[0h, =%l < GBS, (@)
(0%, =%l < GeE2T (28)
B, — ] € Gate (29)
0< IS — /XS < GBSt (30)

Yvon Maday (LJLL - UPMC/ Brown Univ) 2 grids 4 nonlinear eigenvalue Pb Banff’11 46 / 51



Finite element discretization of the GP equation Planewave discretization of the Kohn-Sham model

Numerical simulations

Rslative snergy error curve as function of Ec (log/flog scals)
5
10 T T —T— T T
F 1) -Mono)l  +
~ y=-477x-0.79 ——

1) - Kdng!
+
/

L TR
10 20 30 40 50 6070809000 200 300
E

Figure 1: Error on the energy as a function of E. for Ho
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Finite element discretization of the GP equation

Numerical simulations

Relative H1 - Norm error curve as function of Ecut (log/log scale)

Planewave discretization of the Kohn-Sham model

Relative L2 - Norm error curve as function of Ecut (log/log scale)

10° r — 10° o o T2+
=-2EOP::50H1 * y=-315x+518
107
107 + 1 -
-t
w4 w02 [
= 10?2 + 2 ~«
- 2103 L <+
¢ P g0 .
2 10° S Es P
b 10* e
~
104 3 10% <+
105 " PR n 10®
10 20 30 40 50 60 708090100 200 300 10 20 30 40 50 6070809000 200
Ecut Ecut
Figure 3: Errors on ||®}, —®° |, (left) and | % - (bOHLi (right) as functions
of E, for Ng
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Finite element discretization of the GP equation Planewave discretization of the Kohn-Sham model

Two grids method — Numerical simulations — hydrogen atom
fine mesh = E = 300

|lu— ug||p = 3.107°
|u— ugl|l;2 =7.1077

A= Xg| =7.10"10

Ecg [ |lu—ug2llmay | lo—ugellamy | A= Agl

70 3.0108 x10~° 7.5493x 107 7.830 x10~7
80 3.0106 x10—° 7.2487 x10~7 3.807 x10~ 7
90 3.0105 x10—° 7.2042 x10~7 2.856x10~7
100 3.0105 x10—° 7.1678 x10~ " 1.615x10 "
110 3.0105 x10—° 7.1542 x10~ " T772x10° 8
120 3.0105 x10—° 7.1516 x10~ " 6.345 x10°°
130 3.0105 x10—° 7.1507x 107 4.690 x10~%
140 3.0105 x10—° 7.1505 x10~7 2.779 x10°%
150 3.0105 x10—° 7.1502 x10~7 2.100 x10~7
200 3.0105 x10—° 7.1502x 10" 4.807 x10~1©
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Finite element discretization of the GP equation Conclusions and perspectives

Conclusions and perspectives
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Finite element discretization of the GP equation Conclusions and perspectives

© A priori error estimates for the finite element, and for the Fourier
spectral and pseudospectral approximations of nonlinear eigenvalue
problems of the form

—Au+ Vu+u® =\

have been derived
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Finite element discretization of the GP equation Conclusions and perspectives

© A priori error estimates for the finite element, and for the Fourier
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@ The optimality of these error estimates is confirmed by numerical
simulations
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Finite element discretization of the GP equation Conclusions and perspectives

© A priori error estimates for the finite element, and for the Fourier
spectral and pseudospectral approximations of nonlinear eigenvalue
problems of the form

—Au+ Vu+u® =\

have been derived pay attention to the numerical integration

@ The optimality of these error estimates is confirmed by numerical
simulations

© Similar results can be obtained for orbital-free and Kohn-Sham
models (numerical simulations with numerical integration are work in
progress)
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Finite element discretization of the GP equation Conclusions and perspectives

© A priori error estimates for the finite element, and for the Fourier
spectral and pseudospectral approximations of nonlinear eigenvalue
problems of the form

—Au+ Vu+u® =\

have been derived pay attention to the numerical integration

@ The optimality of these error estimates is confirmed by numerical
simulations

© Similar results can be obtained for orbital-free and Kohn-Sham
models (numerical simulations with numerical integration are work in
progress)

Q The two grid method can be implemented leading to large speedup
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Finite element discretization of the GP equation Conclusions and perspectives

© A priori error estimates for the finite element, and for the Fourier

(%)

spectral and pseudospectral approximations of nonlinear eigenvalue
problems of the form

—Au+ Vu+u® =\

have been derived pay attention to the numerical integration

The optimality of these error estimates is confirmed by numerical
simulations

Similar results can be obtained for orbital-free and Kohn-Sham
models (numerical simulations with numerical integration are work in
progress)

The two grid method can be implemented leading to large speedup ..
numerical analysis has to be completed
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