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Quantum many-body problem

The (non-relativistic) ground state electronic structure of a system
is determined by the lowest eigenvalue and eigenfunction of the
many-body time independent Schrödinger operator (omitting spin):

HΨ =
(∑

i

−1
2 ∆xi +

∑
i<j

1

|xi − xj |
−
∑
i ,α

Zα
|xi − Xα|

)
Ψ = E Ψ,

within the Born-Oppenheimer approximation.

E ({Xα}) = inf
‖Ψ‖=1

〈Ψ|H|Ψ〉.

Here the many-body wave function Ψ(x1, x2, . . . , xN) is an
antisymmetric function of N variables, according to Pauli’s
exclusion principle.



Reduction of the quantum many-body problem

Due to curse of dimensionality, the many-body problem is
practically impossible to solve, except for tiny systems.
Reductions based on various approximations:

I Discrete lattice approximation: Tight-binding models.

I Low-rank approximation: Hartree-Fock; Configurational
Interaction; Multi-configurational self-consistent field
(MCSCF);

I Mean-field approximation: Density functional theory (DFT);

I Coupled clusters;

I Others ...

Most are not systematic approximations to the many-body
problem.



Tight-binding model

Consider one-body effective Hamiltonian, and assume one-body
wave functions take the form

ψ(x) =
∑
α,i

ci ,αϕi (x − Xα),

where ϕi are atomic orbitals. Similar to a generalized finite
element discretization.

Hence, the Hamiltonian becomes a matrix acting on ci ,α.

Nonlinear tight-binding model is also used sometimes. The
effective Hamiltonian depends on the density (like a discrete
version of density functional theory)



Hartree-Fock theory

Assumes the many-body wave function is a single Slater
determinant

Ψ =
1√
N!

det

∣∣∣∣∣∣∣∣∣
ψ1(x1) ψ2(x1) · · · ψN(x1)
ψ1(x2) ψ2(x2) · · · ψN(x2)

...
...

. . .
...

ψ1(xN) ψ2(xN) · · · ψN(xN)

∣∣∣∣∣∣∣∣∣
with {ψi} a set of orthonormal functions.

For example, in this approximation, the kinetic energy reduces to∫
R3N

Ψ∗(−
∑

i

1
2 ∆xi )Ψ =

∑
i

1

2

∫
R3

|∇ψi (x)|2.



Hartree-Fock theory (cont’d)

Hartree-Fock equation(
−1

2
∆ + Vext +

∫
R3

ρ(y)

|x − y |
dy −K

)
ψi = λiψi .

K is the exchange operator:

Kψi =

∫
ψ∗j (y)ψi (y)

|x − y |
dyψj(x).

As the energy is minimized over a smaller space,

E ≤ EHF = E + Ec .

The error made Ec is called correlation energy, as a result of
ignoring many-body interactions (besides Coulomb and exchange).



Density functional theory

Brief history:

I Thomas-Fermi: Concepts of using solely the density to
describe quantum mechanics (simple empirical models).

I Hohenberg-Kohn: Proves that for ground state in quantum
mechanics is indeed only a function of the electron density.

I Kohn-Sham: Mean field theory for non-interacting electrons in
an effective potential.

I Levy-Lieb variational principle: Mathematical rigorous
foundation.

I Development of exchange-correlation functional (Becke,
Burke, Ernzerhof, Parr, Perdew, Yang, ...)



Density functional theory [Hohenberg-Kohn 1964]: The many-body
variational problem can also be reformulated using electron density
as variable:

E = inf
ρ≥0,

√
ρ∈H1R

ρ=N

F [ρ].

The basic variable is the electron density:

ρ(x) = N

∫
|Ψ(x , x2, . . . , xN)|2 dx2 · · · dxN .

Levy-Lieb formulation:

E = inf
ρ≥0,

√
ρ∈H1R

ρ=N

inf
Ψ∈H1,Ψ→ρ

Ψ antisymmetric

〈Ψ|T + Vee |Ψ〉+

∫
Vextρ

≡ inf
ρ≥0,

√
ρ∈H1R

ρ=N

FKS[ρ].



Kohn-Sham density functional theory

The energy functional depends on N electron orbitals {ψi}:

FKS({ψi}) =
∑

i

1

2

∫
|∇ψi |2

+
1

2

∫∫
(ρ−m)(x)(ρ−m)(y)

|x − y |
+ Exc[ρ].

The orbitals are orthonormal, ρ is the electron density given by
ρ(x) =

∑
i |ψi (x)|2. m is the background charge distribution.

Formally exact. All errors are encoded in the last term, the
exchange-correlation energy, which contains chemistry, as it
models the quantum correlation of electrons. However, the explicit
form is unknown and needs approximation.



Input to the model

Background charge: m(y) =
∑

yj∈Ω ma
j (y − yj)

I {yj} = positions of the nuclei (ions).
I {ma

j } = ionic potential describing the atoms in the system.
I All electron model: ma

j = delta function
I Valence electron model (view core electrons as part of the

nuclei): ma
j is (local) pseudopotential.

I Chemistry: {yj ,m
a
j } describes a set of molecules.

I Materials: {yj ,m
a
j } describes a deformed lattice with defects.



Local density approximation

In principle Exc[ρ] is a nonlocal functional depending on ρ. In the
local density approximation, it is assumed that Exc[ρ] is a local
functional:

Exc[ρ] =

∫
εxc(ρ(x)) dx .

Taking LDA, the energy functional becomes

FKS({ψi}) =
∑

i

1

2

∫
|∇ψi |2

+
1

2

∫∫
(ρ−m)(x)(ρ−m)(y)

|x − y |
+

∫
εxc(ρ(x)).

The function εxc is obtained from calculations of Jellium system.

εxc(ρ) = −ρ4/3 + ...

.



Developments about exchange-correlation functional

I Theoretically, it is a universal functional of the density field.

I In practice, it is obtained by physics intuition and argument,
plus fitting from quantum Monte Carlo calculations.

I Examples of functional forms: Becke88, LYP, PBE, so on;

I Jacob’s ladder of exchange-correlation energy: meta-GGA
(TPSS), hybrid functionals (B3LYP), etc.

Question: Mathematical derivations? Which asymptotic regime?
(Burke, Friesecke, Solovej, ...)



Alternative formulations

Several alternative formulations for the Kohn-Sham density
functional theory:

I orbitals or wavefunctions

I density matrix or projection operator, or subspace formulation

I density (in terms of the Kohn-Sham map)



Subspace problem

The energy functional FKS({ψj}) is invariant under rotations of
the wave functions. More generally, define the non-orthogonal
energy functional as

FKS({ψi}) =
∑
ij

1

2

∫
∇ψ∗i S−1

ij ∇ψ
∗
j

+
1

2

∫∫
(ρ−m)(x)(ρ−m)(y)

|x − y |
+

∫
εxc(ρ(x)).

with Sij = 〈ψi , ψj〉 and ρ(x) =
∑

ij S−1
ij ψ∗i (x)ψj(x). The energy

functional is invariant under general non-degenerate linear
transformation.

The Kohn-Sham density functional theory is a minimization over
occupied subspace. The particular basis {ψj} is not relevant.



Euler-Lagrange equation

The Euler-Lagrange equation of EKS with respect to ψi gives the
eigen-equations

H[ρ]ψi =
(
−1

2 ∆ +

∫
(ρ−m)(y)

|x − y |
+ Vxc(ρ)

)
ψi = εiψi

H[ρ] is the effective Hamiltonian, depends on ρ and hence on {ψi}.
This is a self-consistent equation (nonlinear eigenvalue problem).

The effective potential (depending on ρ) consists of two parts:
Coulomb and exchange-correlation.

The Kohn-Sham equation is local, unlike Hartree-Fock equation,
which contains the nonlocal exchange operator.



Kohn-Sham map

Given an effective Hamiltonian H[ρ], the density corresponding to
the occupied states can be written as

ρ̃(x) = φ0
FD(H[ρ]− µ)(x , x)

where φ0
FD(x) = χx≤0 is the Heaviside function, Fermi-Dirac

distribution at zero temperature. µ is the chemical potential,
suitably chosen so that

∫
ρ̃ = N.

The map from ρ to ρ̃ is called Kohn-Sham map F .

This is extended to the finite temperature case by taking
Fermi-Dirac distribution function instead of the Heaviside function
in the above (corresponds to Mermin functional).



Orbital free density functional theory

The orbital-free density functional theory is a further simplification
of the Kohn-Sham DFT so that the functional only involves the
density.

In particular, the kinetic energy functional is replaced by a
functional depends on ρ only, approximates

T [ρ] = inf
{ψj}7→ρ

∑
j

∫
R3

|∇ψj |2 dx .

I Thomas-Fermi approximation:
∫

R3 ρ
5/3 dx .

I Thomas-Fermi-von Weiszäcker approximation:
∫

R3 ρ
5/3 dx +∫

R3 |∇
√
ρ|2 dx based on gradient expansion.

I Wang-Teter and Wang-Govind-Carter functionals based on
linear response.



On the mathematical level, the nature of orbital-based and
orbital-free DFTs are quite different.

The orbital-free DFT is more of a conventional variational problem
in applied mathematics, like Landau-Lifschitz, Ginzburg-Landau,
liquid crystals, nonlinear elasticity and so on.

We will focus mainly on orbital-based Kohn-Sham density
functional theory from now on.



Issues of Kohn-Sham density functional theory

On the analysis side:

I Existence is not trivial due to possible loss of compactness;

I Uniqueness is not always expected as the functionals are
non-convex;

I The property and structure of the solutions are not easy to
investigate.

On the numerics side:

I Conventional cubic scaling algorithms is too expensive.
Calls for fast algorithms and efficient parallelization to address
large systems.

I Choices of discretization to achieve the balance between
accuracy and efficiency;

I Issue of numerical analysis: accuracy, convergence, so on.



Existence and uniqueness results

Existence of minimizer of the energy functional:

I Existence of DFT with LDA approximation [Le Bris 1993]

I Existence of DFT with GGA approximation (one orbital case)
[Anantharaman-Cances 2009]

Existence and uniqueness of finite temperature Kohn-Sham
equation: [Prodan-Nordlander 2003]
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Motivation

Physical systems (solids, materials) can be modeled at different
scales:

I Quantum mechanics: Many-body Schrödinger equation,
electronic structure models, lattice models, ...

I Atomistic models: Molecular statics and dynamics with
empirical potentials;

I Continuum theories: Elasticity, dielectricity, micromagnetism,
phase field models, ...

Multiscale modeling and analysis: Understanding the connections
and coupling between models on different scales.



Continuum theories

We will focus on in this talk two representatives of continuum
models:

I Nonlinear elasticity:

inf
u

∫
W (∇u(x))− f (x)u(x) dx .

I Macroscopic Maxwell equation:

∇ · D = ρf ,

∇ · B = 0,

∇× E = −∂tB,

∇× H = Jf + ∂tD;

The continuum theories are obtained by physical principle
(minimum action principle, conservation laws, ...) plus empirical
constitutive relations.



Macroscopic limit

Want to understand the following questions for the connections
between micro and macro models:

I How can we obtain the constitutive relations of the
macroscopic models from the microscopic ones?

I When are the macroscopic models valid characterizations of
the system?

I How does the failure of the macroscopic models happen?
What is the onset of breaking down?

For example, elasticity theory → plasticity, fracture.

These questions can be addressed by studying macroscopic limit of
microscopic models.
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Related works

For perfect crystal, the thermodynamic limit was studied

I for KSDFT model without exchange-correlation
[Catto-Le Bris-Lions 2001].

For perfect crystal with local defects, the macroscopic limit was
studied

I for KSDFT model without exchange-correlation
[Cances-Deleurence-Lewin 2009, Cances-Lewin 2010].

For elastically deformed crystal, the macroscopic limit was studied

I for KSDFT model [E-Lu preprint].



Derivation of nonlinear elasticity and macroscopic
electrostatic equation from DFT

For Kohn-Sham DFT, under sharp stability conditions

I The equilibrium system is insulating;

I The equilibrium system is stable with respect to plasmons;

I The effective dielectric constant for the equilibrium system is
positive definite,

the electronic structure for the elastically deformed system is
characterized by the Cauchy-Born rule (the electron density and
local energy density is determined by the local deformation
gradient).

The dielectric response of the system couples with the elastic
deformation (sort of piezoelectric effects), and is characterized by
an effective Poisson equation.



Cauchy-Born rule for electronic structure
Cauchy-Born rule is a recipe links together micro- and macro-scale
models.

Main idea: On the microscopic scale, the smooth macroscopic
elastic displacement is effectively linear. Hence, at each point x ,
the energy density and also other physical quantities should be
given by those of a system with homogeneous deformation with
deformation gradient ∇u(x) (Independent of u(x) due to
symmetry invariance).



Smoothly deformed crystal

Assumption: Atoms follow the prescribed smooth displacement
field u.

At equilibrium, the atoms form a crystal εL, with underlying
Bravais lattice εL and unit cell εΓ. Take a smooth Γ-periodic
displacement field u(x), so that under deformation the atoms are
located at Y ε

i = X ε
i + u(X ε

i ), where X ε
i ∈ εL.

Remarks about periodicity of u:

I The period gives the characteristic length of u: O(1);

I With the PBC assumption, only the bulk behavior is present.
The interesting surface phenomenon (e.g., surface plasmon) is
ruled out.



Continuum limit

The small parameter ε is understood as the ratio between the
lattice constant (atomic length scale) and the characteristic length
scale of the elastic deformation.

The continuum limit ε→ 0 will be considered. Physically, the
atomic spacing is tiny compared to the macroscopic deformation.

Questions:

I Derivation of nonlinear elasticity from KSDFT;

I Characterization of the electronic structure for deformed
crystals;

I Identification of the onset of failure of nonlinear elasticity
model (sharp stability conditions).



Electronic structure for perfect crystal
At equilibrium, we assume there exists a Γ-periodic electron density
ρe , such that

ρe(x) = F (ρe)(x) =
1

2πi

∫
C

1

λ− He [ρe ]
dλ(x , x).

The effective potential Ve is also Γ-periodic and one can apply the
Bloch-Floquet theory

He =

∫
Γ∗

Hξ dξ, Hξ =
∑
n

En(ξ)|ψn,ξ〉〈ψn,ξ|.

We assume that the system under consideration is an insulator:

dist(σZ , σ(He)\σZ ) = Eg > 0

where σZ =
⋃

n≤Z En(Γ∗). Therefore, the Kohn-Sham map is well
defined (through Bloch-Floquet theory) for a compact contour C
encloses the occupied spectrum.



Change of coordinates

Electrons live in the Eulerian coordinates, while atoms live in the
Lagrangian coordinates. For our problem (elasticity for solids), it is
more convenient to put the electronic structure problem in the
Lagrangian coordinates.

The deformation is given by τ(x) = x + u(x), and hence the
pullback and pushforward operators between Eulerian and
Lagrangian coordinates are

(τ∗f )(x) = f (τ(x)), (τ∗g)(y) = g(τ−1(y)).



Effective Hamiltonian operator
Hamiltonian (in the Lagrangian coordinates):

Hε
τ = −ε2J1/2∆τJ−1/2 + V ε

τ (x)

with ∆τ = τ∗∆τ∗ and J(x) = det(∇τ(x)).

Potential (Coulomb + exchange-correlation):

V ε
τ [ρ](x) = φετ [ρ](x) + η(J(x)−1ε3ρ(x));

−∆τφετ [ρ] = 4πεJ−1(ρ−mε
τ );∫

Γ
φετ [ρ] dx = 0.

The deformation u enters through the background charge
distribution:

mε
τ (x) = J(x)

∑
X εα∈εL

1

ε3
ma((τ(x)− τ(X ε

α))/ε)



Kohn-Sham equation

Look for fixed point of the Kohn-Sham map for the deformed
system:

ρ(x) = F ε
τ (ρ)(x) =

1

2πi

∫
C

1

λ− Hε
τ [ρ]

dλ(x , x).

Here C is a fixed contour in the resolvent set of the Hamiltonian
enclosing the occupied spectrum.

The right hand side is the diagonal of kernel of a operator (not in
trace class), which is not a priori well defined. Nevertheless, it can
be proved to be well defined for the cases we will consider by
elliptic regularity results.



Cauchy-Born rule for electron density

For the system deformed homogeneously with deformation gradient
A = ∇u(x0), we still have a periodic problem.

By implicit function theorem + stability condition, when |A| is
sufficiently small, there exists a solution to the Kohn-Sham
equation, denoted as ρCB(x ; A). Also, ρCB(·; A) is Γ-periodic (as
defined in Lagrangian coordinates).

According the Cauchy-Born philosophy, one expects

ρε(x) ∼ ε−3ρCB(x/ε;∇u(x)).

In other words, electron density is given locally by that of the
homogeneous deformed system.



Locality of quantum system

Recall that the quantum mechanical model is a rather nonlocal
from the first sight.

I Coulomb interaction is nonlocal;

I The Pauli exclusion principle (orthogonal constraint) is
nonlocal;

I The Schrödinger eigenvalue problem is nonlocal.

Nevertheless, the Cauchy-Born rule states that the electronic
structure at a point only depends on the local surrounding
environment. This is related with the property of
“near-sightedness” in the physics literature: for insulators, the
physics is essentially local [Kohn 1996, Prodan-Kohn 2005].



Stability conditions

The Cauchy-Born rule is valid under sharp stability conditions. In
other words, the electron density is well approximated by the
Cauchy-Born guess, provided that the equilibrium system is stable:

I Stability of band gap: The equilibrium system is a band
insulator.

I Stability wrt charge density wave: The linearized Kohn-Sham
operator is invertible in suitable spaces.

I Stability of dielectric response: The permittivity tensor is
positive definite (The effective Poisson equation is elliptic).



Stability conditions

We will assume that the electronic structure is stable, in the sense
of the following two assumptions.

Assumption (Stability of charge density wave)

For every n ∈ N, I − Le as an operator on Ḣ−1
n ∩ H2

n is invertible,
and the norm of its inverse is bounded independent of n:

‖(I − Le)−1‖L (Ḣ−1
n ∩H2

n ) . 1.

Assumption (Stability of dielectric response)

The effective permittivity tensor E is positive definite.



Stability of dielectric response

Recall E = 1
2 (Ae + A∗e) + 1

4π I is the macroscopic permittivity
tensor for the undeformed crystal.

The matrix Ae = (Ae,αβ) for α, β = 1, 2, 3 is given by

Ae,αβ =− 2<
∑
n≤Z

∑
m>Z

∫
Γ∗

dξ
En(ξ)− Em(ξ)

×
〈
um,ξ, ∂ξβun,ξ

〉〈
um,ξ, ∂ξαun,ξ

〉
− 〈ge,α, δρe Ve(I − Le)−1ge,β〉,

and

ge,α(z) = 2<
∑
n≤Z

∑
m>Z

∫
Γ∗

dξ
En(ξ)− Em(ξ)

× u∗n,ξ(z)um,ξ(z)
〈
um,ξ, i∂ξαun,ξ

〉
;



Linearized Kohn-Sham map

Consider the linearization of the Kohn-Sham map Fe at the
equilibrium density ρe . Formally, Lew → Le(w), where

Le(w) =
1

2πi

∫
C

1

λ−He(ρe)
δρe Ve(w)

1

λ−He(ρe)
dλ(x , x).

Here δρe Ve is the linearized operator of Ve(ρ) at ρe , given by (for
nΓ-periodic function w)

δρe Ve(w)(x) = δφe(w)(x) + η′(ρe)w(x);

−∆δφe(w)(x) = 4πw ,

with periodic boundary condition on nΓ and
∫
nΓ δφe = 0 to fix the

arbitrary constant.



Spaces of periodic functions
For a given n, define the periodic Sobolev space

W m,p
n (R3) = {f ∈ S ′(R3) | τR f = f , ∀R ∈ nL; f ∈W m,p(nΓ)}

with its natural norm ‖f ‖W m,p
n (R3) = ‖f ‖W m,p(nΓ). We will also

write Hm
n for W m,2

n . Here, (τR f )(x) = f (x − R).

Moreover, define the periodic Coulomb space (homogeneous
Sobolev space with index −1) Ḣ−1

n (R3) as

Ḣ−1
n (R3) = {f ∈ S ′(R3) | τR f = f , ∀R ∈ nL;∑

k∈L∗/n

1

|k|2
|f̂ (k)|2 <∞}.

Here, {f̂ (k)} denotes the Fourier coefficients of the nΓ-periodic
function f . Also the higher order spaces Ḣm+1

n , defined by the
norm

‖f ‖Ḣm+1
n (R3) = ‖∇f ‖Hm

n (R3)3 .



Analysis of the linearized Kohn-Sham map

Theorem (Uniform boundedness of Le)

The operator Le is bounded on spaces Ḣ−1
n ∩ H2

n uniformly in n.

Write Lew = χeδρe Vew with the polarizability operator

(χeV )(x) =
1

2πi

∫
C

1

λ−H
V

1

λ−H
dλ(x , x).

The proof consists of showing

I δρe Ve : Ḣ−1
n ∩ H2

n → H2
n + Ḣ4

n is uniformly bounded;

I χe : H2
n + Ḣ4

n → Ḣ−1
n ∩ H2

n is uniformly bounded.



Polarizability operator

One may represent χe in more explicit terms:

χeV = 2<
∑
n≤Z

∑
m>Z

∫
(Γ∗)2

dξ dζ 〈ψn,ξ,Vψm,ζ〉
En(ξ)− Em(ζ)

ψn,ξψ
∗
m,ζ .

For example, for Jellium model (H = −∆), we have

χ̂eV (k) = m(k)V̂ (k),

where

m(k) =
1

8βπ2k

∫ ∞
0

d`
`

ln

(
1 + e−β((`− k/2)2 − µ)

1 + e−β((`+ k/2)2 − µ)

)
.

We remark that the behavior the linearized Kohn-Sham map is
rather different for metal and insulator. In particular, the
boundedness results only hold for insulators (due to a finite band
gap).



Ingredients of the estimate for χe :
I L1

n → L1
n: Show the operator is in trace class, using

‖f (x)g(−i∇ξ)‖Sp(L2
n) . ‖f ‖Lp

n
‖g‖lp(L∗/n),

I L∞n → L∞n : Based on Agmon type’s argument of regularity of
kernel of elliptic operators.

I H2
n → H2

n : Estimates of commutators.
I Ḣ1

n → Ḣ−1
n : Based on the generalized trace class technique

[Hainzl-Lewin-Séré 2005, Cancès-Deleurence-Lewin 2008].
I Ḣ3

n → H2
n : Uses the “trick of projection”

QV =
1

2πi

∫
C

1

λ−H
V

1

λ−H
dλ

=
1

2πi

∫
C
P 1

λ−H
V

1

λ−H
P⊥ dλ

+
1

2πi

∫
C
P⊥ 1

λ−H
V

1

λ−H
P dλ,

where P is the projection operator on the occupied space.



What happens when the stability condition is violated?

Instability of charge density wave (plasmon instabilities):

I Wigner crystal: Crystal formation of Fermi gas at low density

I Change of lattice structure: The electrons and nuclei may
have different (and possibly incommensurate) crystal
structures

I Defects formation: Possibility to have electronic defects (in
analogy to crystal defects).



More on stability

There are three scales of instability in the system (electronic,
atomic and continuum). Due to our assumption that the atoms
follow the smooth displacement, we are only looking at the
stability of electronic structure.

Without the assumption, the situation becomes more complicated.
Then the system could present instability in electronic structure
and also instability in atom positions (phonon analysis).

It is of interest to identify the boundary of these instabilities.
Questions like whether the atomistic stability still holds while the
electronic structure become unstable.



Main results

Theorem (E-Lu, preprint)

Under stability assumptions, there exist constants a, ε0 and M,
such that if ε ≤ ε0 and if MA = supj‖∇ju‖L∞ ≤ a, then there
exists ρε ∈ L∞ε with the property:

I ρε is a solution to the Kohn-Sham equation:

ρε(x) = Fετ (ρε)(x).

I ‖ρε − ε−3ρCB(x/ε;∇u(x))‖L∞ε ≤ Mε1/2, i.e.,

‖ρ̃ε − ρCB(x ;∇u(εx))‖L∞ ≤ Mε1/2, where ρ̃ε(x) = ε3ρ(εx),
and ρε satisfies the normalization constraint:∫

Γ
ρε(x) dx = Zε−3.



Theorem (E-Lu, preprint)

I Moreover, The macroscopic potential satisfies a second-order
elliptic equation of the form:

Aαβ∂xα∂xβU0(x) + 1
4πL2U0(x) + Bα∂xαU0(x)

+ D− 〈m2(x , ·)〉 = 0

This is a piezo-electric effect: Mechanical deformation
introduces an electric potential.



Sketch of the proof

General strategy:

I Build a higher order approximated solution to the Kohn-Sham
equation ρ0 using asymptotic expansion:

ρ0 = ε−3ρCB(x/ε;∇u(x)) + ε−2ρ1(x , x/ε) + · · ·

I Start from the approximated solution ρ0, use Newton iteration
to find the unique fixed point nearby. The stability condition
guarantees the convergence and uniformality with ε.

The overall strategy is standard, but technically both steps are
non-conventional and require careful analysis.



Some remarks

I The Cauchy-Born rule for the energy and also the expression
for the stored energy density follow.

I To simplify the presentation, the result is not written in its
optimal form. In particular, the norm can be sharpened into
Ḣ−1
ε ∩ H2

ε and higher order approximation can be constructed.

I The effective permittivity at macroscopic level has been
studied for undeformed crystal in reduced Hartree-Fock model
in [Cances-Lewin 2010], in the cases that the amplitude of the
external potential is small (linear perturbation regime).



Characterization of the occupied space

We know that for the perfect crystal, the electronic structure can
be understood by Bloch-Floquet theory, which gives a clear
picture. In particular, the occupied space can be represented by the
Bloch wave functions ψn,ξ(x).

Hξψn,ξ = En,ξψn,ξ.

Another useful set of basis functions for the occupied space is
Wannier functions

Wn,R(x + R ′) =

∫
Γ∗

e iξ·(R′−R)ψn,ξ(x) dξ,

The Wannier functions decays exponentially for band insulators
[Kohn 1959, Nenciu 1983, Panati 2007].



Wannier functions for deformed crystals

How about deformed crystals that translational symmetry is
broken? The Bloch-Floquet theory no long applies. What is the
generalization of Wannier functions?

Project Wannier functions for the equilibrium state onto the
occupied space of the deformed system.

Let {W ε
e,k} be the set of (rescaled) Wannier functions for the

equilibrium configuration. The projected Wannier functions

W ε
τ,k = Pε

τW ε
e,k

form a basis for the occupied space for Hε
τ provided that the

displacement is small. The functions W ε
τ,k are still exponentially

localized.



Cauchy-Born rule for the projected Wannier functions

Denote the center of the Wannier function for the equilibrium
configuration W ε

e,k as centered at cεk = εck .
Take the Wannier function associated with the homogeneously
deformed system: W ε

A(cεk ),k with A(cεk) = ∇u(cεk).

Theorem (E-Lu, 2010)

Under the same assumption as the previous theorem, we have

‖(I + ε2∆)(W ε
τ,k −W ε

A(cεk ),k)‖L2 ≤ Cε.

In other words, the Cauchy-Born construction gives a good
approximation to the Wannier functions of the deformed system.
The Wannier functions are stable under deformation.



Example of Cauchy-Born rule for Wannier functions

Figure: Example of Cauchy-Born rule construction of Wannier functions:
Parameter ε = 1/32
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Time dependent density functional theory

Time dependent (current) density functional theory:

i~
∂ψj

∂t
=

1

2me

(
−i~∇− e

c
(A + Aext)

)2
ψj + e(V + Vext)ψj ,

−∆φ =
e

ε0
(ρ−m),

1

c

∂

∂t

(
1

c

∂

∂t
A +∇φ

)
−∆A =

e

cε0
J,

∇ · A = 0,

V (t, x) = φ(t, x) + η(ρ(t, x)),

Model assumptions:

I ALDA approximation for exchange-correlation scalar potential;

I No exchange-correlation vector potential;

I Spin degeneracy is ignored.



Time dependent density functional theory (cont’d)

The electron density and current are given by

ρ(t, x) =
N∑

j=1

|ψj(t, x)|2,

J(t, x) =
~

me

N∑
j=1

=(ψ∗j (t, x)∇ψj(t, x))− e

mec
ρ(t, x)A(t, x).

The system describes the quantum dynamics of electrons under the
effect of external potentials Aext and Vext.

The system consists of nonlinear Schrödinger equations (many
electrons) coupled with microscopic (vacuum) Maxwell equations.



Nondimensionalization and macroscopic scaling
We consider the physical situation that the external fields Vext and
Aext are slowly varying in space. Denotes ε as the small parameter
characterizing the ratio between the lattice parameter and the
external fields.

i
∂ψj

∂t
=

1

2
(−iε∇− ε(A + Aext))2 ψj + (V + Vext)ψj ,

−∆φ = ε(ρ−m),

∂2

∂t2
A−∆A +

∂

∂t
∇φ = ε2J,

∇ · A = 0,

V (t, x) = φ(t, x) + η(ε3ρ(t, x)).

ρ(t, x) =
∑
|ψj(t, x)|2,

J(t, x) = ε
∑
=
(
ψ∗j (t, x)∇ψj(t, x)

)
− ερ(t, x)A(t, x).



Macroscopic limit

Assume that without external fields, the ground state of the
system forms a perfect lattice and is an insulator (finite gap in the
spectrum).

Questions:

I Derivation of macroscopic Maxwell equation, in particular, the
constitutive relations;

I Identification of sharp stability conditions (future work);

I Dynamic coupling of elastic deformation and electromagnetic
fields (future work).

[E, Lu and Yang, in press]



Macroscopic Maxwell equation

By asymptotic analysis, the following macroscopic Maxwell
equation is obtained in the macroscopic limit:

∇ ·
(
E(ω)Ê (ω, x)

)
= ρ̂ext(ω, x),

∇ · B̂(ω, x) = 0,

∇× Ê (ω, x) = iωB̂(ω, x),

∇× B̂(ω, x) = −iωE(ω)Ê (ω, x) + Ĵext(ω, x),

with ρext, Jext given by Vext and Aext.

Here the effective dynamic permittivity E is given by the electronic
structure (at equilibrium). Note that the permeability tensor is the
same as in the vacuum (comments ...)

Note that the above system is written in Fourier space and is
dispersive.



Dynamic permittivity tensor

We have Eαβ(ω) = δαβ + Ae,αβ(ω).

Ae,αβ(ω) =
∑
n≤Z

∑
m>Z

∫
Γ∗

dξ
ω + ωmn(ξ)

〈un,ξ, ∂ξαum,ξ〉〈un,ξ, ∂ξβum,ξ〉

−
∑
n≤Z

∑
m>Z

∫
Γ∗

dξ
ω − ωmn(ξ)

〈un,ξ, ∂ξαum,ξ〉〈un,ξ, ∂ξβum,ξ〉

− 2i

ω
=
∑
n≤Z

∑
m>Z

∫
Γ∗
〈un,ξ, ∂ξαum,ξ〉〈un,ξ, ∂ξβum,ξ〉 dξ

−
〈

ge,ω,α, δρe Ve(I − χe,ωδρe Ve)−1ge,ω,β

〉
,

where we have used the shorthand ωmn(ξ) = Em(ξ)− En(ξ).
Recall that δρe Ve is the linearized effective potential operator at
equilibrium.



Dynamic permittivity tensor (cont’d)

The dynamic polarizability operator χe,ω and the vector valued
functions ge,ω are given by

χe,ωV =−
∑
n≤Z

∑
m>Z

∫
Γ∗

dξ
ω + ωmn(ξ)

un,ξu
∗
m,ξ〈un,ξ,Vum,ξ〉

+
∑
n≤Z

∑
m>Z

∫
Γ∗

dξ
ω − ωmn(ξ)

u∗n,ξum,ξ〈um,ξ,Vun,ξ〉,

ge,ω =−
∑
n≤Z

∑
m>Z

∫
Γ∗

dξ
ω + ωmn(ξ)

un,ξu
∗
m,ξ〈un,ξ, i∇ξum,ξ〉

+
∑
n≤Z

∑
m>Z

∫
Γ∗

dξ
ω − ωmn(ξ)

u∗n,ξum,ξ〈i∇ξum,ξ, un,ξ〉.
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Self consistent iteration and direct minimization

Self consistent iteration
Look for a fixed point of the Kohn-Sham map

ρ = FKS(ρ).

Direct minimization
Minimize the Kohn-Sham energy functional directly

EKS({ψi}) =
1

2

N∑
i=1

∫
|∇ψi (x)|2 dx +

∫
Vext(x)ρ(x) dx + Exc[ρ]

+
∑
`

γ`

N∑
i=1

|〈b`, ψi 〉|2 +
1

2

∫∫
ρ(x)ρ(y)

|x − y |
dx dy .



Flowchart in a general scope

Kohn-Sham map at finite temperature

ρ = FKS(ρ) = diag f (H[ρ]− µ) = diag
2

1 + eβ(H[ρ]−µ)
.



Mixing scheme for self consistent iteration

Mixing schemes can be understood in the context of solving the
nonlinear equation ρ = FKS(ρ):

I Simple mixing (linear mixing);

I Pulay mixing [Pulay 1980];

I Quasi-Newton method: Anderson mixing [Anderson 1965],
Broyden mixing [Johnson 1988] and multisecant versions;

I Newton method [Gao, Yang and Meza preprint];

I Preconditioners: ...

Our focus in the rest of the talk will be the evaluation of
Kohn-Sham map: To obtain FKS(ρ).



General behavior of metallic and insulating system

Insulator Metal

Insulator Metal

Band gap finite 0
Density matrix
decay

exponential algebraic

I General scheme for both metallic and insulating systems;

I Special O(N) techniques for insulating systems.



Difference between metal and insulator

Differences can be understood from several perspective:

I Localization (Linear scaling algorithms);

I Behavior of linear response (Self-consistent iteration);

I Charge screening (Multiscale methods).

Representative examples:

I Metal: Jellium model, H = −∆;

I Insulator: Array of deep narrow potentials.
Analytical solvable example?



Discretization

Conventional basis sets:

I Fourier space (Plane-wave);

I Real space (Finite difference, finite element);

I Wavelet basis (multiscale).

Atomic orbital as basis functions:

I Tight binding (parametrized atomic orbital);

I Gaussian type orbitals (GTO);

I Numerical atomic orbital (NAO) [Blum et al 2009].

Mixed basis functions with atomic orbital:

I Augmented plane-wave (APW) [Slater 1937];

I Linear augmented-plane-wave (LAPW) [Andersen 1975];

I Projector augmented-wave (PAW) [Blöchl 1994];

I Enriched finite element [Sukumar and Pask 2009].

Discontinuous basis functions



Representation

I Spectral decomposition:

(diag f (H[ρ]))(x) =
∑
n

f (En)|Ψn(x)|2.

I Fermi Operator expansion:

diag f (H[ρ]) ≈
P∑

i=1

diag fi (H[ρ]),

where fi (H[ρ]) are simple (polynomials, rational functions)
that the matrix function can be evaluated directly.



Evaluation

Diagonalization:

I Jacobi-Davidson Diagonalization.

I Chebyshev filtering [Zhou, Saad, Tiago et al 2006]

Fermi operator expansion:

I Polynomial expansion [Goedecker and Colombo 1994]

I Rational expansion [Baroni and Giannozzi 1992] [Lin, Lu, Ying
et al 2009]

Special techniques for insulators

I Divide and Conquer [Yang 1991]

I Orbital minimization [Mauri, Galli and Car 1993]

I Density matrix minimization [Li, Nunes and Vanderbilt 1993]

I Localized subspace iteration [Garćıa-Cervera, Lu and E 2007]

I Orbital minimization with localization [E and Gao 2010]



Summary of our work

I Discretization: Discontinuous basis functions with small
number of basis functions per atom for chemical accuracy.

I Representation: Pole expansion for Fermi-Dirac function with
optimal representation cost.

I Evaluation: Selected inversion technique achieving O(N) for
quasi-1D system, O(N1.5) for quasi-2D system, and O(N2)
for 3D bulk system.

I Linear scaling algorithms for insulators:
I Localized subspace iteration;
I Orbital minimization with localization.

I Multiscale sublinear scaling algorithms for insulating materials
with local defects.
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Existing discretization methods

Uniform grid (Fourier, real space)

I Large number of basis functions per atom (500 ∼ 5000).

Atomic orbitals and mixed basis functions:

I Fine tunning of parameters.

I Different parameters for different exchange-correlation
functional.

I Overcomplete and incomplete basis sets.

I Interstitial region.

I Basis function with large support: metallic system.



Discontinuous Galerkin framework with locally adaptive
basis

Goal: Construct local basis functions on the fly by solving a small
part of the system.

I Local solve in a buffer to obtain basis functions adapted to
the environment;

I Discontinuous Galerkin framework to discretize the system
using these (discontinuous) basis functions.

See Lin Lin’s talk (Thursday) for more details



DG Formulation

Minimize the DG discrete effective energy functional to get the
density (for given effective potential):

EDG({ψi}) =
1

2

N∑
i=1

〈∇ψi ,∇ψi 〉T +〈Veff , ρ〉T +
∑
`

γ`

N∑
i=1

|〈b`, ψi 〉T |
2

−
N∑

i=1

〈{{
∇ψi

}}
,
[[
ψi

]]〉
S +

α

h

N∑
i=1

〈[[
ψi

]]
,
[[
ψi

]]〉
S .

[[
u
]]

= u1n1 + u2n2 on S .{{
q
}}

= 1
2 (q1 + q2) on S .



Constructing adaptive local basis function

I Buffer region associated with Ek : Qk ⊃ Ek .

I Restrict the effective Hamiltonian on Qk by assuming the
periodic boundary condition on ∂Qk and obtain Heff,Qk

.

I Take the first several eigenfunctions of Heff,Qk
called {ϕk,j},

j = 1, · · · , Jk and restrict them on Ek .

Red: Ek ; Red+Blue: Qk



Numerical results: Accuracy
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Numerical results: Efficiency
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DG Eigensolver

DG Overhead
Computational time per
processor comparison:

Atom# Proc# Global DG
time time

128 64 35 s 4 s
432 216 248 s 35 s
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Fermi Operator Expansion

2

1 + eβ(H−µI )

≈

{
P∑

i=1

ci

(
H − µI

∆E

)i

+
Q∑

i=1

ωi

(zi I − (H − µI )/∆E )qi

}

I β inverse temperature; ∆E width of the spectrum of the
discretized Hamiltonian;

I Want P,Q, qi be as small as possible given β and ∆E .



Past work

P: Number of polynomials. Q: Number of rational functions. qi :
the order of each rational function.

I P ∼ O(β∆E ),Q = 0 [Goedecker and Colombo 1994];

I P = 0, Q ∼ O(β∆E ), qi ≡ 1 [Baroni and Giannozzi 1992];

I P = 0, Q ∼ O(β∆E )1/2, qi ≡ 1 [Ozaki 2007];

I P ∼ C , Q ∼ O(β∆E )1/2, qi ≡ 1
[Ceriotti, Kühne and Parrinello 2008];

I Multipole expansion: P ∼ C , Q ∼ O(log(β∆E )), qi ∼ C
[Lin, Lu, Car and E 2009];

I Pole expansion: P = 0, Q ∼ O(log(β∆E )), qi ≡ 1
[Lin, Lu, Ying and E 2009].



Pole expansion

f (x) =
2

1 + eβ∆Ex
=

1

2πi

∮
Γ

f (z)

z − x
dz ≈ 1

2πi

P∑
i=1

f (zi )wi

zi − x
.

Optimal choice of the contour Γ, integration points zi ∈ C and
integration weights wi ∈ C → Number of discretization points
∼ O(log(β∆E )).

non-analytic
spectrum

1-1



Geometric convergence with small pre-constant

2D discretized Laplacian with small perturbation: energy gap
around 10−6au.
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Selected inversion

Evaluate density based on the Fermi operator expansion:

ρ ≈ diag
P∑

i=1

ωi

zi I − H
.

I Naive approach: Invert zi I − H first and then take the
diagonal: cubic scaling.

I Fast diagonal extraction? Use sparse matrix algebra.
Selected inversion [Lin, Lu, Ying et al 2009]



Selected inversion: Basic idea

Gauss elimination:

A =

„
α aT

a bA
«

=

„
1
` I

«„
α bA− a`T

«„
1 `T

I

«
,

A−1 =

„
α−1 + `T S−1` −`T S−1

−S−1` S−1

«
, ` = aα−1, S = bA− a`T .

If ` is sparse, computing the
(1, 1) element of A−1 does not
require all elements of S−1.



SelInv: Selected Inversion for Sparse Symmetric Matrix

SelInv is a selected inversion algorithm for general sparse
symmetric matrix written in Fortran
[Lin, Yang, Meza, et al, in press]

I Symbolic Analysis: matrix reordering

I LDLT factorization

I Selected inversion



Numerical results: SelInv

Problems from Harwell-Boeing Test Collection and the University
of Florida Matrix Collection.

problem n selected inversion direct inversion speedup
time time

bcsstk14 1,806 0.01 sec 0.13 sec 13
bcsstk24 3,562 0.02 sec 0.58 sec 29
bcsstk28 4,410 0.02 sec 0.88 sec 44
bcsstk18 11,948 0.24 sec 5.73 sec 24
bodyy6 19,366 0.09 sec 5.37 sec 60

crystm03 24,696 0.78 sec 26.89 sec 34
wathen120 36,441 0.34 sec 48.34 sec 142
thermal1 82,654 0.44 sec 95.06 sec 216
shipsec1 140,874 17.66 sec 3346 sec 192

pwtk 217,918 14.55 sec 5135 sec 353
parabolic fem 525,825 20.06 sec 7054 sec 352

tmt sym 726,713 13.98 sec > 3 hours > 772
ecology2 999,999 16.04 sec > 3 hours > 673

G3 circuit 1,585,478 218.7 sec > 3 hours > 49



Parallel implementation
5-pt discretization of 2D Laplacian operator:
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Figure: Log-log plot of total wall clock time and total Gflops with respect
to number of processors, compared with ideal scaling. The largest matrix
solved has (4.3 billion)2 degrees of freedom.
[Lin, Yang, Lu, et al, preprint]



Conclusion and Outlook

Summary
I Understanding the macroscopic limit of the Kohn-Sham

density functional theory, based on sharp stability conditions:
I Nonlinear elasticity;
I Macroscopic Maxwell equations;

I Algorithmic development for metallic systems
I Discontinuous Galerkin framework with locally adapted basis;
I Fermi operator expansion with optimal scaling;
I Selected inversion for sparse discrete Hamiltonian matrix;

I (not mentioned) Linear and sublinear scaling algorithms for
density functional theory.

Density functional theory is a challenge and opportunity for applied
mathematicians. Many open questions remain on both analytical
and numerical sides.
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