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Projective Planes

A projective plane is a point-line incidence structure such that

every pair of distinct points lies on a common line;

every pair of distinct lines meets in a common point;

there exists a quadrangle (four points, no three of which

are collinear).

There exists a cardinal number n (finite or infinite), called the

order of the plane, such that

every line has n + 1 points;

every point is on n + 1 lines;

there are n2 + n + 1 points and the same number of lines.

An automorphism (i.e. collineation) of a projective plane is a

permutation of the points which preserves collinearity.
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Known planes of small order

Number of planes up to isomorphism (i.e. collineations):

n
number of
planes of
order n

2 1

3 1

4 1

5 1

7 1

8 1

9 4

11 > 1

13 > 1

n
number of
planes of
order n

16 > 22

17 > 1

19 > 1

23 > 1

25 > 193

27 > 13

29 > 1

· · · · · ·

49 > 280,000

G. Eric Moorhouse Automorphism Groups of Projective Planes



Projective Planes

Subplanes

Orbits

definitions

counting the known planes

automorphisms of classical planes

pzip: A compression utility for finite planes

Storage requirements for a projective plane of order n:

n
size of

line sets
size of
MOLS

gzipped

MOLS
pzip

11 5 KB 1.3 KB 0.2 KB 0.06 KB

25 63 KB 15 KB 9 KB 0.9 KB

49 550 KB 110 KB 81 KB 6 KB

See http://www.uwyo.edu/moorhouse/pzip.html
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The Classical Planes

Let F be a field. Denote by F 3 a 3-dimensional vector space

over F .

The classical projective plane P2(F ) has as its points and lines

the subspaces of F 3 of dimension 1 and 2, respectively.

Incidence is inclusion. The order of the plane is |F |, finite or

infinite.

The automorphism group of P2(F ) is PΓL3(F ), which acts

2-transitively on points, and transitively on ordered

quadrangles. No known planes have as much symmetry as the

classical planes.
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Let Π be a projective plane, and let G = Aut(Π).

Theorem (Ostrom-Dembowski-Wagner)

In the finite case, Π is classical iff G is 2-transitive on points.

In the infinite case, there exist nonclassical planes whose

automorphism group is 2-transitive on points (even transitive on

ordered quadrangles).
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Subplanes

Consider a classical projective plane Π = P2(F ).

Every quadrangle in Π generates a subplane isomorphic to

P2(K ) where K is the prime subfield of F (i.e. Fp or Q,

according to the characteristic of F ).

Such a subplane is proper iff [F : K ] > 1.
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Subplanes

Open Question

Let Π be a finite projective plane in which every quadrangle

generates a proper subplane. Must Π be classical?

(necessarily of order pr with r > 2)

The answer is known only in special cases:

If Π is a finite projective plane in which every quadrangle

generates a subplane of order 2, then Π ∼= P2(F2r ) (Gleason,

1956).

If Π is a finite projective plane of order n2 in which every

quadrangle generates a subplane of order n, then n = p and

Π ∼= P2(Fp2) (Blokhuis and Sziklai, 2001 for n prime; Kantor and

Penttila, 2010 in general).
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Point Orbits and Line Orbits

Consider a projective plane Π with automorphism group

G = Aut(Π).

Theorem (Brauer, 1941)

In the finite case, G has equally many orbits on points and on

lines.

Open Problem (attributed to Kantor)

In the general case, must G have equally many orbits on points

and on lines?
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Orbits on n-tuples of Points

In the classical case Π = P2(F ), G has

1 orbit on points;

1 orbit on ordered pairs of distinct points;

2 orbits on ordered triples of distinct points;

O(|F |) orbits on ordered 4-tuples of distinct points. (In the

case of collinear 4-tuples, consider the cross-ratio.)

Open Problem

Does there exist an infinite plane with only finitely many orbits

on k -tuples of distinct points for every k > 1?

Even for k = 4 this is open.
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ℵ0-categorical planes

A permutation group G on X is oligomorphic if G has finitely

many orbits on X k for each k > 1. See Cameron (1990).

(Taking k -tuples of points in X , or k -tuples of distinct points,

doesn’t matter.)

Open Question

Does there exist an infinite projective plane Π admitting a group

G 6 Aut(Π) which is oligomorphic on points? (equivalently, on

lines).

If such a plane exists, we may assume (by the

Löwenheim-Skolem Theorem) that its order is ℵ0 (countably

infinite). Such a plane is called ℵ0-categorical.
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ℵ0-categorical planes

From now on, assume Π is an ℵ0-categorical projective plane,

and let G 6 Aut(Π) be oligomorphic on points.

Useful fact: In an oligomorphic group G, the stabilizer of any

finite point set is also oligomorphic.

Lemma

Every finite substructure S ⊂ Π lies in a finite subplane.

Proof.

Let G(S) 6 G be the pointwise stabilizer of S. Then G(S) fixes

pointwise the substructure 〈S〉 generated by S. This

substructure must be finite, otherwise G(S) has infinitely many

fixed points, hence infinitely many orbits.
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Π an ℵ0-categorical projective plane,

G ≤ Aut(Π) oligomorphic

Without loss of generality, G fixes pointwise a finite subplane

Π0 ⊂ Π. (Otherwise replace G by the oligomorphic subgroup

G(S) where S is a quadrangle.)

Consider a point P ∈ Π. We say

P is of type I if P ∈ Π0;

P is of type II if P /∈ Π0 but P lies on a line of Π0;

P is of type III if P lies on no line of Π0.

Dually classify lines of Π as type I, II or III.
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The Burnside Ring B(G)

Two G-sets X and Y are equivalent if there exists a

G-equivariant bijection θ : X → Y , i.e. θ(xg) = θ(x)g for all

x ∈ X , g ∈ G.

The equivalence class of a G-set X is denoted [X ].

Given G-sets X and Y , the disjoint union X ] Y and Cartesian

product X × Y are G-sets.

The Burnside ring B(G) is the Z-algebra consisting of formal

sums
∑

[X ] c[X ][X ], c[X ] ∈ Z (almost all zero), where

[X ] + [Y ] = [X ] Y ], [X ][Y ] = [X × Y ].
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Π an ℵ0-categorical projective plane,

G ≤ Aut(Π) oligomorphic

Let P and ` be a point and line of Π0.

The set II` of type II points of ` is a G-set; as is the set IIP of

type II lines through P.

Lemma

[IIP] = [II`], independent of the choice of point P and line `
of Π0.
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Π an ℵ0-categorical projective plane,

G ≤ Aut(Π) oligomorphic

Denote by III the G-set consisting of all type III points. Dually,

ĨII is the G-set consisting of all type III lines.

Lemma

Let ` be a line of Π0. Then [II`]
2 = [ĨII] + c[II`]

where c = n0(n0 − 1), n0 = order of Π0.

(R, S) 7→ RS

II` × II`′ → ĨII ]
( ⊎

O∈Π0;
O /∈`∪`′

IIO

)
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Π an ℵ0-categorical projective plane,

G ≤ Aut(Π) oligomorphic

Lemma

Let ` be a line of Π0. Then [II`]
2 = [ĨII] + c[II`]

where c = n0(n0 − 1), n0 = order of Π0.

Corollary

[ĨII] = [III] and [II`]
2 = [III] + c[II`]

Proof.

Dualising the previous lemma,

[III] + c[II`] = [II`]
2 = [ĨII] + c[II`].

Cancellation of the c[II`] terms is justified in B(G).

G. Eric Moorhouse Automorphism Groups of Projective Planes



Projective Planes

Subplanes

Orbits

comparing point and line orbits

orbits on n-tuples of points

ℵ0-categorical planes

Π an ℵ0-categorical projective plane,

G ≤ Aut(Π) oligomorphic

Let νm,n = number of G-orbits on IIm
` × IIIn.

Lemma

For all m, n > 0, we have νm+2,n = νm,n+1 + cνm+1,n .

Proof.

[II`]
m+2[III]n = [II`]

m
(
[III] + c[II`]

)
[III]n

= [II`]
m[III]n+1 + c[II`]

m+1[III]n.
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Π an ℵ0-categorical projective plane,

G ≤ Aut(Π) oligomorphic

The previous recurrence for

νm,n = number of G-orbits on IIm
` × IIIn

is rephrased in terms of the generating function

F (s, t) =
∑

m,n>0

νm,nsmtn

as follows.

Lemma

F (s, t) =
∑
k>0

(ak + bks)Fk (s, t) where

Fk (s, t) =
1

(1 − cs)t − s2

[
tk+1 −

s2(k+1)

(1 − cs)k+1

]
.
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Π an ℵ0-categorical projective plane,

G ≤ Aut(Π) oligomorphic

Theorem

Under our assumption (existence of an ℵ0-categorical

projective plane), there exist (infinitely many) finite nonclassical

projective planes, in which every quadrangle generates a

proper subplane.

Proof (Sketch).

Without loss of generality, the subplane Π0 ⊂ Π is nonclassical.

Let M be the maximum order of a subplane of the form

〈Π0, P, Q, R, S〉 where (P, Q, R, S) is a quadrangle of Π. Any

subplane of Π containing Π0 of order exceeding M , has the

required property.
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Subplanes of known planes

In all known cases of a finite projective plane of order n with a

subplane of order n0, we have

n = nr
0 for some r > 1; or

n0 ∈ {2, 3}.

Moreover, subplanes of order 3 are rare unless n = 3r .

Hopes for an ℵ0-categorical plane do not look bright!
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Thank You!

Questions?
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