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The Two Standard Bases

We have a vector space of v × v symmetric matrices with rows and
columns indexed by X
Basis of 01-matrices:

{A0,A1, . . . ,Ad} = {Ai}i∈I

Basis of mutually orthogonal idempotents:

{E0,E1, . . . ,Ed} = {Ej}j∈J

William J. Martin Bounds and Posets
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Change-of-Basis Matrices

First Eigenmatrix: P (i th column gives eigenvalues of Ai )
Second Eigenmatrix: Q (j th column gives the “dual eigenvalues”)

Ai =
∑
j∈J

PjiEj Ej =
1

v

∑
i∈I

QijAi

PQ = vI
1

vi
Pji =

1

mj
Qij

(vi = rowsum of Ai , mj = rank Ej)

William J. Martin Bounds and Posets
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Basic Idea

If C ⊆ X with characteristic vector xC

I x>C EjxC ≥ 0

I x>C AixC is combinatorially meaningful

I these quantities are related by linear equations

William J. Martin Bounds and Posets
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Inner Distribution and Dual Distribution

We have an interesting subset C ⊆ X . We define

ai =
1

|C |
x>C AixC (i ∈ I) ai =

|C × C ∩ Ri |
|C |

and

bj =
v

|C |
x>C EjxC (j ∈ J )

Vector a = [a0, a1, . . . , ad ] is called the “inner distribution” of C .

William J. Martin Bounds and Posets
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Inner Distribution

ai =
1

|C |
x>C AixC (i ∈ I)

Observe

I ai ≥ 0 for all i

I a0 = 1

I
∑

i ai = |C |

I ai = 0 iff no edge of graph (X ,Ri ) has both ends in C

William J. Martin Bounds and Posets
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Dual Distribution

bj =
v

|C |
x>C EjxC ( j ∈ J )

Observe

I bj ≥ 0 for all j

I b0 = |C |

I
∑

j bj = |X | (= v)

I bj = 0 iff xC⊥Vj (the j th eigenspace, col Ej)
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LP Formulation for A-Codes

For A ⊆ I,
C ⊆ X is an “A-code” provided (C × C ) ∩ Ri = ∅ for i ∈ A.

The size of C is bounded above by the optimal objective value to:

max
∑

i∈I ai

subject to∑
i∈I aiQij ≥ 0 ( j ∈ J )

a0 = 1, ai = 0 (i ∈ A)
ai ≥ 0 (i ∈ I)

William J. Martin Bounds and Posets



In the Usual Way
Projection Approach

Magic Matrix Approach

Bose-Mesner Algebra
LP for Codes
LP for Designs

LP Formulation for A-Codes

For A ⊆ I,
C ⊆ X is an “A-code” provided (C × C ) ∩ Ri = ∅ for i ∈ A.

The size of C is bounded above by the optimal objective value to:

max
∑

i∈I ai

subject to∑
i∈I aiQij ≥ 0 ( j ∈ J )

a0 = 1, ai = 0 (i ∈ A)
ai ≥ 0 (i ∈ I)

William J. Martin Bounds and Posets



In the Usual Way
Projection Approach

Magic Matrix Approach

Bose-Mesner Algebra
LP for Codes
LP for Designs

Why do we Prefer the Dual?

Note that every A-code gives us a feasible solution
but

Only the optimal solution gives us a true upper bound

What if we don’t want to (i.e., can’t) solve to optimality?

William J. Martin Bounds and Posets
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LP Duality

For simplicity, I’m going to transform this LP into standard form
and take its dual.

The dual of the LP

max c>x , s.t. Ax ≤ b, x ≥ 0

is
min y>b, s.t. y>A ≥ c>, y ≥ 0

William J. Martin Bounds and Posets
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LP Formulation for A-Codes

Same LP, in standard form (a0 = 1, Q0j = mj):

1 + max
∑
i 6∈A

ai

subject to∑
i 6∈A

(−Qij)ai ≤ mj ( j ∈ J , j 6= 0)

ai ≥ 0 (i 6∈ A)

William J. Martin Bounds and Posets
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Dual LP for A-Codes

1 + max
∑
i 6∈A

ai subject to∑
i 6∈A

(−Qij)ai ≤ mj ( j ∈ J ∗)

ai ≥ 0 (i 6∈ A)

with dual:

1 + min
∑
j∈J ∗

mjyj subject to∑
j∈J ∗

(−Qij)yj ≥ 1 (i 6∈ A)

yj ≥ 0 ( j ∈ J ∗)

(J ∗ means omit 0).

William J. Martin Bounds and Posets
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Rewriting the Dual

Dual:

1 + min
∑
j∈J ∗

mjyj

subject to∑
j∈J ∗

(−Qij)yj ≥ 1 (i 6∈ A)

yj ≥ 0 (j ∈ J ∗)

Routine trickery:

bj := mjyj , b0 := 1,
Pji

vi
=

Qij

mj

(J ∗ means omit 0).

William J. Martin Bounds and Posets
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Rewriting the Dual

New Dual:

min
∑
j∈J

bj

subject to∑
j∈J

Pjibj ≤ 0 (i 6∈ A)

b0 = 1, bj ≥ 0 (j ∈ J ∗)

William J. Martin Bounds and Posets
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Easy Special Case

Suppose A = {2, . . . , d}. Write Pj1 = λj .

min b0 + b1 + · · ·+ bd

subject to
b0λ0 + b1λ1 + · · ·+ bdλd ≤ 0 (one constraint)

b0 = 1, b1, b2, . . . , bd ≥ 0

William J. Martin Bounds and Posets
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LP Formulation for T -Designs

For T ⊆ J ,
D ⊆ X is a “T -design” provided xD⊥Vj for j ∈ T .

The size of D is bounded below by the optimal objective value to:

min
∑

i∈I ai

subject to∑
i∈I aiQij ≥ 0 (j ∈ J ∗)∑
i∈I aiQij = 0 (j ∈ T )

a0 = 1, ai ≥ 0 (i ∈ I∗)

William J. Martin Bounds and Posets
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Dual LP for T -Designs

min
∑

i∈I ai

subject to∑
i∈I aiQij ≥ 0 (j ∈ J ∗)∑
i∈I aiQij = 0 (j ∈ T )

a0 = 1, ai ≥ 0 (i ∈ I∗)
with dual (now using bj = −mjyj):

max
∑
j∈J

bj

subject to∑
j∈J

Pjibj ≥ 0 (i ∈ I∗)

b0 = 1, bj ≤ 0 (j ∈ J ∗ − T )

William J. Martin Bounds and Posets
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Dual width one
Assume we are working in a Q-polynomial scheme.
What subsets D satisfy xD ∈ V0 ⊕ V1?
What is the smallest cardinality of D?

max b0 + b1

subject to
P0ib0 + P1ib1 ≥ 0 (i 6= 0)

b0 = 1 (b1 unrestr .)

We get

|D| ≥ v

1− m1
Qd1

where we assume

m1 = Q01 > Q11 > · · · > Qd1

William J. Martin Bounds and Posets
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Subsets of Dual Width One

Assume we are working in a Q-polynomial scheme.
What subsets D satisfy xD ∈ V0 ⊕ V1?
Ratio Bound:

|D| ≥ v

1− m1
Qd1

where we assume

m1 = Q01 > Q11 > · · · > Qd1

Hamming scheme: For H(n, q), we get |D| ≥ qn−1

Johnson scheme: For J(n, k), we get |D| ≥
(v−1
k−1

)
William J. Martin Bounds and Posets
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Projecting onto the Bose-Mesner algebra

With respect to the inner product 〈M,N〉 = tr (MN>),{√
1

vvi
Ai | i ∈ I

}
and

{√
1

mj
Ej | j ∈ J

}

form orthonormal bases for A.

So, for any matrix M of size v × v∑
i

〈M,Ai 〉
vvi

Ai =
∑

j

〈M,Ej〉
mj

Ej

William J. Martin Bounds and Posets
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Projecting onto the Bose-Mesner algebra

So take M = xx> to find, for any vector x of length v ,

∑
i

x>Aix

vvi
Ai =

∑
j

x>Ejx

mj
Ej

William J. Martin Bounds and Posets
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Anticode Condition (Godsil-Meagher proof)

Suppose code C has characteristic vector x and anticode A has
characteristic vector y .

If,
for all i 6= 0, x>Aix = 0 or y>Aiy = 0,
then ∑

i

x>Aix

vvi
y>Aiy =

∑
j

x>Ejx

mj
y>Ejy

|C | · |A|
v

=
∑

j

1

mj

(
x>Ejx

)(
y>Ejy

)
≥ (x>E0x)(y>E0y) =

|C |2 · |A|2

v2

. . . giving |C | · |A| ≤ v .

William J. Martin Bounds and Posets
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Working Without Polynomials

In this next part, we extend two well-known bounds of Delsarte to
the setting of association schemes with many vanishing Krein
parameters.
Originally, these results were proved by Delsarte for cometric
association schemes.
Here, we replace the cometric property with certain vanishing
conditions for Krein parameters with reference to a partial order E
on the set J of eigenspaces of the association scheme.

William J. Martin Bounds and Posets
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Big and Small Eigenspaces
For E and F , subsets of J , define

E ? F = {k ∈ J :
∑
i∈E

∑
j∈F

qk
ij > 0}.

Krein conditions imply
k ∈ E ? F

whenever

qk
ij 6= 0 for some i ∈ E and some j ∈ F .

Example: In a cometric scheme, if we take E = {0, . . . , e} and
F = {0, . . . , f }, then

E ? F ⊆ {0, . . . , e + f }.

William J. Martin Bounds and Posets
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“Fisher-Type” Inequality

Theorem
Let T ⊆ J . Assume E ⊆ J satisfies E ? E ⊆ T . Then, for any
Delsarte T -design D ⊆ X , we have

|D| ≥
∑
j∈E

mj .

Moreover, if equality holds, then, for ` 6= 0 in J ,∑
j∈E

Q`j = 0

whenever D contains a pair of `-related elements.

William J. Martin Bounds and Posets



In the Usual Way
Projection Approach

Magic Matrix Approach
Beyond Q-polynomial

LP inside Bose-Mesner Algebra

Proof:
Any matrix M ∈ A can be expanded in the form

M = v
∑
j∈J

βjEj

and also as
M =

∑
i∈I

αiAi

where αi =
∑

j Qijβj for each i ∈ I.

William J. Martin Bounds and Posets
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LP inside Bose-Mesner Algebra

Restrict to non-negative matrices M ∈ A which satisfy the
following two conditions:

(a) βj ≤ 0 for all j 6∈ T ; and

(b) β0 = 1.

WOLOG, assume 0 ∈ T .
Let D ⊆ X be a T -design. Abbreviate xD to x .

William J. Martin Bounds and Posets
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LP inside Bose-Mesner Algebra

Expand x>Mx in two ways:

|D|α0 = α0x>A0x

≤
∑
I
αix
>Aix = v

∑
J
βjx
>Ejx

= vx>E0x + v
∑
T −{0}

βjx
>Ejx + v

∑
j 6∈T

βjx
>Ejx

≤ vx>E0x = |D|2.

This gives us the bound |D| ≥ α0.

William J. Martin Bounds and Posets
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An Easy Feasible Solution

Let
F =

∑
j∈E

Ej .

Then F ◦ F is a non-negative matrix with spectral decomposition

F ◦ F =
∑
k∈J

1

v

∑
i∈E

∑
j∈E

qk
ij

Ek . (1)

Now, by choice of E , we have qk
ij = 0 whenever i , j ∈ E and k 6∈ T .

William J. Martin Bounds and Posets
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An Easy Feasible Solution

So condition (a) is satisfied by any non-negative multiple of F ◦ F .
We scale by

γ =
v2∑

j∈E mj

to obtain a non-negative matrix M = γ(F ◦ F ) which satisfies
conditions (a) and (b),
It is straightforward to check that the diagonal entries of M are all
equal to

α0 =
∑
j∈E

mj .

William J. Martin Bounds and Posets
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What does that Prove?

Theorem
Let T ⊆ J . Assume E ⊆ J satisfies E ? E ⊆ T . Then, for any
Delsarte T -design D ⊆ X , we have

|D| ≥
∑
j∈E

mj .

William J. Martin Bounds and Posets
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What if Equality Holds?

Now if |D| = α0, we return to the above string of equations and
inequalities to discover that, for each ` 6= 0,

α`

(
x>A`x

)
= 0

must hold.

William J. Martin Bounds and Posets
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Complementary Slackness Conditions
Thus, if D contains a pair of `-related elements, we are forced to
have

α` =
∑
k∈J

βkQ`k = 0.

Now we find
βk =

γ

v

∑
i∈E

∑
j∈E

qk
ij

so that
α` =

γ

v

∑
i∈E

∑
j∈E

∑
k∈J

qk
ij Q`k

which gives us

α` = γ

∑
j∈E

Q`j

2

= 0 as desired.

William J. Martin Bounds and Posets
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Tight Designs Give Subschemes

Theorem
Let T ⊆ J and assume E ⊆ J satisfies E ? E ⊆ T .

(a) if D is any Delsarte T -design in our scheme with
degree s, then s + 1 ≥ |E|;

(b) if |E| = s + 1, then D is a tight design and D is a
subscheme;

(c) if |E| = s, then either D is a tight design or D is a
subscheme.
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Recap Magic Matrix Approach

Designs: Find M in the Bose-Mesner algebra∑
i∈I

αiAi = M = v
∑
j∈J

βjEj

with M ≥ 0, β0 = 1, βj ≤ 0 for j 6∈ T .
Then |D| ≥ α0 for any T -design D.

Codes: Find M in the Bose-Mesner algebra∑
i∈I

αiAi = M = v
∑
j∈J

βjEj

with M � 0, β0 = 1, αi ≤ 0 for i 6∈ A.
Then |C | ≤ α0 for any A-code C .
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A bound on minimum distance

We used a partial order on the eigenspaces. This poset is often the
image of a larger poset of anticodes.

These anticodes gives 01-bases for sums of eigenspaces. These
have been used to characterize tight designs. But we can
sometimes do much more with the anticodes/antidesigns.

Theorem (WJM, 2000)

For any code C in the Hamming graph with |C | > 1, δ ≤ t + s∗

unless C is isomorphic to a binary repetition code.

δ = min. distance, t = strength, s∗ = dual degree = |S∗(C )|.
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The CGS Lemma

Cameron, Goethals and Seidel: If u ∈ Vi and v ∈ Vj and
qk
ij = 0, then u ◦ v⊥Vk .

Dual degree set S∗(C ) = {j 6= 0 | EjxC 6= 0}.

S∗(C ∩ D) ⊆ S∗(C ) ? S∗(D).

Applications: Roos, WJM, Vanhove.
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Posets for Schemes

I regular semilattices

I quantum matroids

I design systems

I width and dual width

I Tanaka’s classification of descendants in the classical families
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Tanaka’s Theorem

In a P- and Q-polynomial scheme, we can define both the width
and dual width of a subset

w = max{i : x>Aix 6= 0} w∗ = max{j : x>Ejx 6= 0}

Brouwer, Godsil, Koolen, WJM (2003): w + w∗ ≥ d . Equality
(usually) gives a Q-polynomial subscheme which is also a
completely regular code.

Examples: subcubes in n-cubes, all k-sets on a t-set in Johnson
graphs.

Tanaka (arXiv, Nov. 2010) recently completed the classification of
all sets with w + w∗ = d in the 15 classical families.
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Tanaka’s Theorem

Brief sketch of a big result:

I H(m, q) inside H(n, q)

I J(n − t, k − t) inside J(n, k)

I the q-analogues of these (Grassmann and bilinear forms)

I classical polar spaces: [Cd(q)], [Bd(q)], [Dd(q)], [2Dd+1(q)],
[2A2d(

√
q)], [2A2d−1(

√
q)]

I twisted Grassmann graphs: what you’d expect

I for Hermitian forms graphs, unitary dual polar graphs (2nd
Q-pol. ordering), NONE

I for Alternating forms, Quadratic forms, Half dual polar
spaces, halved cubes, Ustimenko: w = 1 or w = d − 1
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The End

Thank you.
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