Complex spherical designs and nonsymmetric association schemes

Association schemes from real spherical designs

For $X\subseteq S(\mathbb{R}^d)$, define

$$A(X) = \{x^T y : x, y \in X, x \neq y\}.$$

If $A(X) = \{\alpha_1, \dots, \alpha_s\}$, define relations

$$R_i = \{(x, y) \in X^2 : x^T y = \alpha_i\}$$

Theorem (Delsarte, Goethals, Seidel '75)

Let X be a t-design with |A(X)| = s. Then:

- (i) $t \leq 2s$.
- (ii) If $t \ge 2(s-1)$, then $\{I, R_1, \dots, R_s\}$ is an association scheme.

Association schemes from complex projective designs

For $X\subseteq S(\mathbb{C}^d)$, define

$$A(X) = \{ |x^*y| : x, y \in X, x \neq y \}.$$

Theorem (Delsarte, Goethals, Seidel '75)

Let X be a complex projective t-design with |A(X)| = s. Then:

- (i) $t \leq 2s$.
- (ii) If $t \geq 2(s-1)$, then $\{I, R_1, \dots, R_s\}$ is an association scheme.

Example [rotations of MUBs]

What about

$$A(X) = \{x^*y : x, y \in X, x \neq y\}$$

for
$$X \subseteq S(\mathbb{C}^d)$$
?

$$\begin{split} \text{eg}) \quad & \epsilon = \frac{1+i}{2}, \\ & L = \left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\} \cup \left\{ \epsilon \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \epsilon \begin{pmatrix} 1 \\ -1 \end{pmatrix} \right\} \cup \left\{ \epsilon \begin{pmatrix} 1 \\ \mathbf{i} \end{pmatrix}, \epsilon \begin{pmatrix} 1 \\ -\mathbf{i} \end{pmatrix} \right\}, \\ & X = L \cup \mathbf{i}L \cup -L \cup -\mathbf{i}L. \end{split}$$

$$A(X) = \{-1, \pm i, \frac{\pm 1 \pm i}{2}, 0\},\$$

8-class nonsymmetric association scheme.

Designs from association schemes

- \mathcal{A} : symmetric association scheme, n vertices, s classes
- E_1 : first idempotent, rank m
- $\frac{n}{m}E_1$: Gram matrix of unit vectors $\{x_1,\ldots,x_n\}$ in \mathbb{R}^m

Theorem (Cameron, Goethals, Seidel '78)

Let A be a symmetric association scheme and identify the points of A with unit vectors X whose Gram matrix is a scalar multiple of E_1 . Then:

- (i) X is a real spherical 2-design.
- (ii) X is a 3-design if and only if $q_{1,1}^1=0$.

Complex spherical designs

 $\operatorname{Hom}(k,l)$: homogeneous polynomials on $z=(z_1,\ldots,z_d)\in S(\mathbb{C}^d)$ of degree k in z_1,\ldots,z_d , degree l in $\overline{z_1},\ldots,\overline{z_d}$.

eg)
$$z_1^2\overline{z_1} + z_1z_2\overline{z_3} \in \operatorname{Hom}(2,1)$$

Lower set: $\mathcal{T}\subseteq\mathbb{N}^2$ such that if $(k,l)\in\mathcal{T}$, so is (m,n) for all $0\leq m\leq k, 0\leq n\leq l.$

eg)
$$\mathcal{T} = \overline{\{(1,4),(3,2)\}}$$

Complex spherical designs

Complex spherical \mathcal{T} -design: $X\subseteq S(\mathbb{C}^d)$ such that for every polynomial $f\in \mathrm{Hom}(k,l),\ (k,l)\in \mathcal{T}$,

$$\frac{1}{|X|} \sum_{z \in X} f(z) = \int_{S(\mathbb{C}^d)} f(z) \, \mathrm{d}z. \tag{1}$$

eg) $T = \{(1,0)\}$:

$$\frac{1}{|X|} \sum_{z \in X} z = 0.$$

- $\overline{\{(t,t)\}}$ -design in $S(\mathbb{C}^d) \Rightarrow$ projective t-design.
- $\{(k,l): k+l \leq t\}$ -design in $S(\mathbb{C}^d) \Leftrightarrow t$ -design in $S(\mathbb{R}^{2d})$.

Complex spherical codes

For $X\subseteq S(\mathbb{C}^d)$,

$$A(X) := \{x^*y : x, y \in X, x \neq y\}.$$

Complex spherical code of degree $s\colon |A(X)|=s$. Annihilator polynomial F of $X\colon F(\alpha)=0$ for all $\alpha\in A(X)$. \mathcal{S} -code: annihilator polynomial in $\operatorname{span}\{x^k\overline{x}^l:(k,l)\in\mathcal{S}\}$.

eg) If
$$|\alpha|=c$$
 for all $\alpha\in A(X)$: $F(x)=x\overline{x}-c^2$, $S=\overline{\{(1,1)\}}$.

- degree $s \Rightarrow \overline{\{(s,0)\}}$ -code.
- degree s in $S(\mathbb{C}^d) \Rightarrow \text{degree} \leq s$ in $S(\mathbb{R}^{2d})$.
- degree s in $S(\mathbb{C}^d) \Rightarrow \text{degree} \leq s$ in $\mathbb{C}P^{d-1}$.

Harmonic polynomials

 $\operatorname{Harm}(k, l)$: irreducible U(d)-module such that

$$\operatorname{Hom}(k,l) = \operatorname{Harm}(k,l) \bigoplus \operatorname{Hom}(k-1,l-1).$$

$$\dim(\operatorname{Hom}(k,l)) = {d+k-1 \choose d-1} {d+l-1 \choose d-1}$$

$$\dim(\operatorname{Harm}(k,l)) = {d+k-1 \choose d-1} {d+l-1 \choose d-1} - {d+k-2 \choose d-1} {d+l-2 \choose d-1}.$$

Absolute bounds

$$\mathcal{E} * \mathcal{E} := \{ (k_1 + l_2, k_2 + l_1) : (k_1, l_1), (k_2, l_2) \in \mathcal{E} \}.$$

Theorem

If X is a \mathcal{T} -design with $\mathcal{E} * \mathcal{E} \subseteq \mathcal{T}$, then

$$|X| \ge \sum_{(k,l) \in \mathcal{E}} \dim(\operatorname{Harm}(k,l)).$$

If X is an S-code, then

$$|X| \le \sum_{(k,l) \in \mathcal{S}} \dim(\operatorname{Harm}(k,l))$$

where
$$\dim(\operatorname{Harm}(k,l)) = {d+k-1 \choose d-1} {d+l-1 \choose d-1} - {d+k-2 \choose d-1} {d+l-2 \choose d-1}$$
.

Tightness equivalence

Tight S-code:

$$|X| = \sum_{(k,l)\in\mathcal{S}} \dim(\operatorname{Harm}(k,l)).$$

Tight design with respect to \mathcal{E} : \mathcal{T} -design with $\mathcal{E} * \mathcal{E} \subseteq \mathcal{T}$,

$$|X| = \sum_{(k,l)\in\mathcal{E}} \dim(\operatorname{Harm}(k,l))$$

.

Theorem

The following are equivalent:

- (i) X is an S-code and a T-design with $S * S \subseteq T$.
- (ii) X is a tight S-code.
- (iii) X is a tight design with respect to S.

Association schemes

Let $X \subseteq S(\mathbb{C}^d)$ have inner product set $A(X) = \{\alpha_1, \dots, \alpha_s\}$. For $x, y \in X$, define

$$(A_i)_{x,y} = \begin{cases} 1, & x^*y = \alpha_i; \\ 0, & \text{otherwise.} \end{cases}$$

Theorem

Let X be a \mathcal{T} -design with $\mathcal{E} * \mathcal{E} \subseteq \mathcal{T}$ and degree s. Then:

- (i) $|\mathcal{E}| \leq s + 1$.
- (ii) If $|\mathcal{E}| \geq s$, then X carries an association scheme.
- (iii) If $|\mathcal{E}| = s + 1$, then X is a tight design with respect to \mathcal{E} .

Example [Coxeter]

Let
$$w^3=1,\,X=\frac{1}{\sqrt{2}}\left\{(0,w^i,-w^j),(-w^i,0,w^j),(w^i,-w^j,0):i,j\in\{0,1,2\}\right\}.$$

Example [Coxeter]

Let
$$w^3 = 1$$
, $X =$

$$\tfrac{1}{\sqrt{2}} \left\{ (0, w^i, -w^j), (-w^i, 0, w^j), (w^i, -w^j, 0) : i, j \in \{0, 1, 2\} \right\}.$$

Then |X| = 27, |A(X)| = 5 and X is \mathcal{T} -design where

$$\mathcal{T} = \overline{\{(5,0),(3,2),(2,3),(0,5)\}}.$$

⇒ tight design with respect to

$$\mathcal{E} = \overline{\{(2,0),(1,1),(0,2)\}}$$

.

• Absolute bound \Rightarrow 5-class nonsymmetric scheme.

Symmetrization

Define
$$R_i^T = \{(y, x) : (x, y) \in R_i\}.$$

• If $A = \{R_0, \dots, R_s\}$ is a commutative association scheme, then $\{R_i \cup R_i^T : R_i \in A\}$ is a symmetric association scheme.

Real designs from complex designs

Define

$$\phi(x_1, \dots, x_d) = (\operatorname{Re}(x_1), \operatorname{Im}(x_1), \dots, \operatorname{Re}(x_d), \operatorname{Im}(x_d)).$$
 (2)

Then

$$\phi(x)^T \phi(y) = \text{Re}(x^*y).$$

Theorem

If X is a tight design with respect to $\mathcal{E} = \{(k,l) : k+l \leq t\}$ in \mathbb{C}^d , then:

- $\phi(X)$ is a tight t-design in S^{2d-1} .
- The inner product scheme of $\phi(X)$ is a fusion scheme of the inner product scheme of X.

Projective designs from complex designs

X is *n*-antipodal if $X = L \cup \omega L \cup ... \cup \omega^{n-1}L$, where $\omega^n = 1$.

Define

$$P(X) = \{xx^* : x \in X\}.$$

Theorem

Let X be an n-antipodal \mathcal{T} -design with degree s. If some \mathcal{E} satisfies $\mathcal{E} * \mathcal{E} \subseteq \mathcal{T}$ and $|\mathcal{E}| \geq s$, then:

- P(L) is a projective t-design, where t is the largest integer with $(t,t) \in \mathcal{T}$, $t \leq n$.
- The inner product scheme of P(L) is a quotient scheme of the inner product scheme of X.

Designs from nonsymmetric association schemes

Let
$$E_{\widehat{i}} = E_i^T$$
.

Theorem

Let A be a commutative association scheme and identify the points of A with unit vectors X whose Gram matrix is a scalar multiple of E_1 . Then:

- (i) X is a $\overline{\{(1,1)\}}$ -design.
- (ii) X is a $\overline{\{(2,0)\}}$ -design if and only if $\widehat{1} \neq 1$.
- (iii) X is a $\overline{\{(2,1)\}}$ -design if and only if $q_{1,1}^1=0$.
- (iv) X is a $\overline{\{(3,0)\}}$ -design if and only if $q_{1,1}^{\widehat{1}}=0$.

Reference

"Complex spherical designs and codes" arxiv.org:1104.4692