Approximating Rooted Steiner Networks

Joseph Cheryian ${ }^{1}$,

Bundit Laekhanuk
Adrian Vetta ${ }^{2}$
Guyslain Naves ${ }^{2}$,

December 2011, Banff

${ }^{1}$ Waterloo University
${ }^{2}$ McGill University

Directed Steiner Tree problem (DST)

A network design problem:
Input:

- G a directed graph, with costs $c: E(G) \rightarrow \mathbb{N}$,
- r a vertex of G (the root),
- a set $T \subseteq V(G)$ of terminals,

Output: A subgraph G^{\prime} of G such that there is one path from s to t in G^{\prime}, for all $t \in T$
Goal: $\min \sum_{e \in E\left(G^{\prime}\right)} c(e)$

Directed Rooted Connectivity problem

A network design problem:
Input:

- G a directed graph, with costs $c: E(G) \rightarrow \mathbb{N}$,
- r a vertex of G (the root),
- a set $T \subseteq V(G)$ of terminals,
- requirements $k: T \rightarrow \mathbb{N}$.

Output: A subgraph G^{\prime} of G such that there are k_{t} disjoint paths from s to t in G^{\prime}, for all $t \in T$
Goal: $\min \sum_{e \in E\left(G^{\prime}\right)} c(e)$

Outline

(1) k-DRC with $O(1)$ terminals.
(2) Hardness of k-DRC (directed graph).
(Hardness of k-URC (undirected graphs).
(Integrality gap of k-DRC.

Directed Steiner Forest with $O(1)$ terminals

Theorem (Feldman, Ruhl (2006))
The Directed Steiner Forest with $O(1)$ terminals is polynomial-time solvable.

Proof: Guess nodes of degree >2 and how they are linked, compute shortest paths.

Generalization to Directed Rooted Connectivity ?

Bounded connectivity requirement

Proposition

If G is an acyclic digraph and $\sum_{t \in T} k_{t}=O(1)$, then there is a polynomial-time algorithm.

Proof: Pebbling game (Fortune, Hopcroft, Wyllie).
Open problem: (polynomial or NP-hard?)

$$
\sum_{t \in T} k_{t}=O(1) \text { but } G \text { is not acyclic. }
$$

Non-integrality for requirement 3

Let $\alpha=2 \beta \geq 2, k_{t_{1}}=1$ and $k_{t_{2}}=2$.

Non-integrality for requirement 3

Let $\alpha=2 \beta \geq 2, k_{t_{1}}=1$ and $k_{t_{2}}=2$.

- Integral solution: $6 \beta+6$

Non-integrality for requirement 3

Let $\alpha=2 \beta \geq 2, k_{t_{1}}=1$ and $k_{t_{2}}=2$.

- Integral solution: $6 \beta+6$
- Fractional solution: $5 \beta+7$

Non-integrality for requirement 3

Let $\alpha=2 \beta \geq 2, k_{t_{1}}=1$ and $k_{t_{2}}=2$.

- Integral solution: $6 \beta+6$
- Fractional solution: $5 \beta+7$ \}

Integrality gap: $\frac{6}{5}$
零 McGill

Non-integrality for requirement 3

Let $\alpha=2 \beta \geq 2, k_{t_{1}}=1$ and $k_{t_{2}}=2$.

- Integral solution: $6 \beta+6$
- Fractional solution: $5 \beta+7\}$

Integrality gap: $\frac{6}{5}$

Toward an APX-hardness proof.

Theorem (Berman, Karpinski, Scott)
For every $0<\varepsilon<1$, it is NP-hard to approximate Max-3-Sat where each literal appears exactly twice, within an approximation ratio smaller than $\frac{1016-\varepsilon}{1015}$.

Reduction for two terminals

Analysis (two terminals problem)

Using $\mathrm{OPT}_{\phi} \geq \frac{7 q}{8}$, we get:

$$
\begin{aligned}
\rho & \geq \frac{13 n+\left(q-\mathrm{APP}_{\phi}\right)}{13 n+\left(q-\mathrm{OPT}_{\phi}\right)}=1+\frac{\mathrm{OPT}_{\phi}-\mathrm{APP}_{\phi}}{13 n+q-\mathrm{OPT}_{\phi}} \\
& \geq 1+\frac{7}{79} \frac{\mathrm{OPT}_{\phi}-\mathrm{APP}_{\phi}}{\mathrm{OPT}_{\phi}}=1+\frac{7}{79}\left(1-\gamma^{-1}\right)
\end{aligned}
$$

and finally

$$
\rho \geq 1+\frac{7}{80264}-\xi, \text { for any } \xi>0
$$

Analysis (two terminals problem)

Using $\mathrm{OPT}_{\phi} \geq \frac{7 q}{8}$, we get:

$$
\begin{aligned}
\rho & \geq \frac{13 n+\left(q-\mathrm{APP}_{\phi}\right)}{13 n+\left(q-\mathrm{OPT}_{\phi}\right)}=1+\frac{\mathrm{OPT}_{\phi}-\mathrm{APP}_{\phi}}{13 n+q-\mathrm{OPT}_{\phi}} \\
& \geq 1+\frac{7}{79} \frac{\mathrm{OPT}_{\phi}-\mathrm{APP}_{\phi}}{\mathrm{OPT}_{\phi}}=1+\frac{7}{79}\left(1-\gamma^{-1}\right)
\end{aligned}
$$

and finally

$$
\rho \geq 1+\frac{7}{80264}-\xi, \text { for any } \xi>0
$$

Easy k-approximation when only k terminals.

Outline

(1) k-DRC with $O(1)$ terminals.
(2) Hardness of k-DRC (directed graph).
(Hardness of k-URC (undirected graphs).
(Integrality gap of k-DRC.

General directed rooted connectivity

Theorem
The directed and undirected rooted k-connectivity problem are at least as hard to approximate as the label cover problem $\left(2^{\log ^{1-\varepsilon} n}\right)$.

Proof: Approximation-preserving reduction from Directed Steiner Forest (Dodis, Khanna)
(pairs $\left(s_{i}, t_{i}\right)$ to connect)
Undirected version by a reduction of Lando and Nutov.

Reduction (directed Steiner Forest)

R McGill

Reduction (directed Steiner Forest)

館 McGill

Stronger hardness result

Theorem
The directed rooted k-connectivity problem cannot be approximated to within $O\left(k^{\varepsilon}\right)$, for some constant $\varepsilon>0$, assuming that NP is not contained in DTIME $\left(n^{\text {poly } \log (n)}\right)$.

Proof: Reduction from a label cover instance obtained from Max-3-SAT(5) with I repetition (Chakraborty, Chuzhoy, Khanna).

Label Cover problem

- $G=(U, W, E)$ bipartite graph,
- L set of labels,
- constraints $\Pi_{e} \subseteq L \times L$ for all $e \in E$,
- assign labels to every vertex to cover every edge $\left(\forall u w \in E, \Pi_{u w} \cap(f(u) \times f(w)) \neq \emptyset\right)$,
- minimize the number of labels assigned $\sum_{u \in U \cup W}|f(u)|$.

Instances obtained from MAX-3-SAT(5) with / repetition:

$$
|U|=|W|=O\left(N^{O(I)}\right), \quad|L|=10^{\prime}, \quad d=15^{\prime}
$$

Reduction from label cover

Reduction from label cover

Reduction from label cover

櫊 McGill

Reduction from label cover

毘 McGill

Reduction from label cover

櫊 McGill

Reduction from label cover

$$
\operatorname{cost}(\longrightarrow)=1, \operatorname{cost}(\text { others })=0
$$

思 McGill

Reduction from label cover

櫊 McGill

Reduction from label cover

思 McGill

Reduction from label cover

思 McGill

Getting the hardness ratio

Theorem (Parallel repetition theorem, Raz)
There exists a constant $\gamma>0$ (independent of I) such that the minimum total label cover problem obtained from instances of MAX-3SAT(5) with I repetitions cannot be approximated within a factor of $2^{\gamma 1}$.

In our reduction, $k=d=15^{\prime}$, hence the k^{ε}-hardness!

Outline

(1) k-DRC with $O(1)$ terminals.
(2) Hardness of k-DRC (directed graph).
(Hardness of k-URC (undirected graphs).
(Integrality gap of k-DRC.

Adapting the reduction to undirected graphs

Adapting the reduction to undirected graphs

Adapting the reduction to undirected graphs

Forbidding illegal paths

Very informal description

- There are illegal paths,

Very informal description

- There are illegal paths,
- add padding edges to remove illegal paths,

Very informal description

- There are illegal paths,
- add padding edges to remove illegal paths,
- this creates new illegal paths,

Very informal description

- There are illegal paths,
- add padding edges to remove illegal paths,
- this creates new illegal paths,
- add more padding edges to remove the new illegal paths,

Very informal description

- There are illegal paths,
- add padding edges to remove illegal paths,
- this creates new illegal paths,
- add more padding edges to remove the new illegal paths,
- the second padding set does not induce new illegal paths.

Very informal description

- There are illegal paths,
- add padding edges to remove illegal paths,
- this creates new illegal paths,
- add more padding edges to remove the new illegal paths,
- the second padding set does not induce new illegal paths.

We are done!

Undirected hardness

Theorem
The undirected rooted k-connectivity problem cannot be approximated to within $O\left(k^{\varepsilon}\right)$, for some constant $\varepsilon>0$, assuming that NP is not contained in DTIME $\left(n^{\text {polylog(n) }}\right)$.

- Improved from $\Omega\left(\log ^{\Theta(1)} n\right)$,
- Best known approximation ratios are $\widetilde{O}(k)$.

Outline

(1) k-DRC with $O(1)$ terminals.
(2) Hardness of k-DRC (directed graph).
(Hardness of k-URC (undirected graphs).
(Integrality gap of k-DRC.

Integrality gap

Theorem
The natural LP relaxation of the directed rooted k-connectivity problem has an integrality ratio of $\Omega\left(\frac{k}{\log k}\right)$.

$$
\begin{aligned}
& \min \sum_{e \in E} c_{e} x_{e} \quad \text { s.t. } \\
& \sum_{e \in \delta^{+}(R)} x_{e} \geq k \quad(\forall R, r \in R, T \nsubseteq R) \\
& 0 \leq x \leq 1
\end{aligned}
$$

Proof: we follow a construction of Chakraborty, Chuzhoy $M c$ Gill Khanna for SNDP integrality gap.

The construction

$\operatorname{cost}(\longrightarrow)=1$ $\operatorname{cost}($ others $)=0$

k : connectivity req. $q=k$
$\left|A_{i}\right|=\left|B_{j}\right|=k^{2}$

The construction

$\operatorname{cost}(\longrightarrow)=1$ $\operatorname{cost}($ others $)=0$

k : connectivity req. $q=k$
$\left|A_{i}\right|=\left|B_{j}\right|=k^{2}$

The construction

$\operatorname{cost}(\longrightarrow)=1$ $\operatorname{cost}($ others $)=0$

k : connectivity req. $q=k$
$\left|A_{i}\right|=\left|B_{j}\right|=k^{2}$

The construction

$\operatorname{cost}(\longrightarrow)=1$
$\operatorname{cost}($ others $)=0$
k : connectivity req. $q=k$
$\left|A_{i}\right|=\left|B_{j}\right|=k^{2}$

The construction

$\operatorname{cost}(\longrightarrow)=1$
$\operatorname{cost}($ others $)=0$
k : connectivity req. $q=k$
$\left|A_{i}\right|=\left|B_{j}\right|=k^{2}$

The construction

$\operatorname{cost}(\longrightarrow)=1$ $\operatorname{cost}($ others $)=0$
k : connectivity req. $q=k$
$\left|A_{i}\right|=\left|B_{j}\right|=k^{2}$

The construction

$\operatorname{cost}(\longrightarrow)=1$ $\operatorname{cost}($ others $)=0$
k : connectivity req. $q=k$
$\left|A_{i}\right|=\left|B_{j}\right|=k^{2}$

Computing the gap

- Fractional solution:
- $x_{e}=\frac{1}{k^{2}}$ for each $e \in E$ with $c(e)=1$.
- Total cost: $2 q=2 k$

Computing the gap

Computing the gap

- Fractional solution:
- $x_{e}=\frac{1}{k^{2}}$ for each $e \in E$ with $c(e)=1$.
- Total cost: $2 q=2 k$
- Integral solution:
- Consider a subset S of arcs of cost $\leq \frac{\gamma k^{2}}{\log k}$,
- prove $p_{S}=\operatorname{Pr}[S$ is an integral solution $]$ is very very small,
- deduce $\sum_{S} p_{S}<1$.
- There is an instance without solution of cost $\leq \frac{\gamma k^{2}}{\log k}$.

Computing the gap

Computing the gap

66

Computing the gap

- Fractional solution:
- $x_{e}=\frac{1}{k^{2}}$ for each $e \in E$ with $c(e)=1$.
- Total cost: $2 q=2 k$
- Integral solution:
- Consider a subset S of arcs of cost $\leq \frac{\gamma k^{2}}{\log k}$,
- prove $p_{S}=\operatorname{Pr}[S$ is an integral solution $]$ is very very small,
- deduce $\sum_{S} p_{S}<1$.
- There is an instance without solution of cost $\leq \frac{\gamma k^{2}}{\log k}$.

Computing the gap

- Fractional solution:
- $x_{e}=\frac{1}{k^{2}}$ for each $e \in E$ with $c(e)=1$.
- Total cost: $2 q=2 k$
- Integral solution:
- Consider a subset S of arcs of cost $\leq \frac{\gamma k^{2}}{\log k}$,
- prove $p_{S}=\operatorname{Pr}[S$ is an integral solution $]$ is very very small,
- deduce $\sum_{S} p_{S}<1$.
- There is an instance without solution of cost $\leq \frac{\gamma k^{2}}{\log k}$.
- Integrality gap is $\Omega\left(\frac{k}{\log k}\right)$

Conclusion

- Other result:
- Subset Connectivity problem.
- Open questions:
- approximability when $\sum k_{i}=O(1)$?
- inapproximablity when $k=O(1)$? (No better result known than DST)

