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Directed Steiner Tree problem (DST)

A network design problem:
Input: G a directed graph, with costs

c : E (G)→ N,
r a vertex of G (the root),
a set T ⊆ V (G) of terminals,

requirements k : T → N.

Output: A subgraph G ′ of G such that there is one path
from s to t in G ′, for all t ∈ T

Goal: min∑e∈E(G ′) c(e)
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Directed Rooted Connectivity problem

A network design problem:
Input: G a directed graph, with costs

c : E (G)→ N,
r a vertex of G (the root),
a set T ⊆ V (G) of terminals,
requirements k : T → N.

Output: A subgraph G ′ of G such that there are kt
disjoint paths from s to t in G ′, for all t ∈ T

Goal: min∑e∈E(G ′) c(e)
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Outline

1 k-DRC with O(1) terminals.
2 Hardness of k-DRC (directed graph).
3 Hardness of k-URC (undirected graphs).
4 Integrality gap of k-DRC.
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Directed Steiner Forest with O(1) terminals

Theorem (Feldman, Ruhl (2006))
The Directed Steiner Forest with O(1) terminals is
polynomial-time solvable.

Proof: Guess nodes of degree > 2 and how they are linked,
compute shortest paths.

Generalization to Directed Rooted Connectivity ?
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Bounded connectivity requirement

Proposition
If G is an acyclic digraph and ∑t∈T kt = O(1), then there is a
polynomial-time algorithm.

Proof: Pebbling game (Fortune, Hopcroft, Wyllie).

Open problem: (polynomial or NP-hard?)
∑

t∈T kt = O(1) but G is not acyclic.
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Non-integrality for requirement 3

Let α = 2β ≥ 2, kt1 = 1 and kt2 = 2.
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Integral solution: 6β + 6
Fractional solution: 5β+ 7

Integrality gap: 6
5
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Toward an APX-hardness proof.

Theorem (Berman, Karpinski, Scott)
For every 0 < ε < 1, it is NP-hard to approximate
Max-3-Sat where each literal appears exactly twice, within
an approximation ratio smaller than 1016−ε

1015 .
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Reduction for two terminals
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Analysis (two terminals problem)

Using OPTφ ≥ 7q
8 , we get:

ρ ≥ 13n + (q − APPφ)

13n + (q − OPTφ)
= 1 +

OPTφ − APPφ
13n + q − OPTφ

≥ 1 +
7

79
OPTφ − APPφ

OPTφ

= 1 +
7

79
(

1− γ−1
)

and finally

ρ ≥ 1 +
7

80264 − ξ, for any ξ > 0.

Easy k-approximation when only k terminals.
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Outline

1 k-DRC with O(1) terminals.
2 Hardness of k-DRC (directed graph).
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General directed rooted connectivity

Theorem
The directed and undirected rooted k-connectivity problem are
at least as hard to approximate as the label cover problem
(2log1−ε n).

Proof: Approximation-preserving reduction from Directed
Steiner Forest (Dodis, Khanna)
(pairs (si , ti) to connect)

Undirected version by a reduction of Lando and Nutov.
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Reduction (directed Steiner Forest)
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Stronger hardness result

Theorem
The directed rooted k-connectivity problem cannot be
approximated to within O(kε), for some constant ε > 0,
assuming that NP is not contained in DTIME(npolylog(n)).

Proof: Reduction from a label cover instance obtained from
Max-3-Sat(5) with l repetition (Chakraborty, Chuzhoy,
Khanna).
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Label Cover problem

G = (U ,W ,E ) bipartite graph,
L set of labels,
constraints Πe ⊆ L× L for all e ∈ E ,
assign labels to every vertex to cover every edge
(∀uw ∈ E ,Πuw ∩ (f (u)× f (w)) 6= ∅),
minimize the number of labels assigned ∑u∈U∪W |f (u)|.

Instances obtained from Max-3-Sat(5) with l repetition:

|U | = |W | = O(NO(l)), |L| = 10l , d = 15l
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Reduction from label cover

cost( ) = 1, cost(others) = 0
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Getting the hardness ratio

Theorem (Parallel repetition theorem, Raz)
There exists a constant γ > 0 (independent of l) such that the
minimum total label cover problem obtained from instances of
MAX-3SAT(5) with l repetitions cannot be approximated
within a factor of 2γl .

In our reduction, k = d = 15l , hence the kε-hardness!
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Outline

1 k-DRC with O(1) terminals.
2 Hardness of k-DRC (directed graph).
3 Hardness of k-URC (undirected graphs).
4 Integrality gap of k-DRC.
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Adapting the reduction to undirected graphs
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Forbidding illegal paths
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Forbidding illegal paths
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Very informal description

There are illegal paths,

add padding edges to remove illegal paths,
this creates new illegal paths,
add more padding edges to remove the new illegal paths,
the second padding set does not induce new illegal paths.

We are done!
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Undirected hardness

Theorem
The undirected rooted k-connectivity problem cannot be
approximated to within O(kε), for some constant ε > 0,
assuming that NP is not contained in DTIME(npolylog(n)).

Improved from Ω(logΘ(1) n),
Best known approximation ratios are Õ(k).

52



Outline

1 k-DRC with O(1) terminals.
2 Hardness of k-DRC (directed graph).
3 Hardness of k-URC (undirected graphs).
4 Integrality gap of k-DRC.

53



Integrality gap

Theorem
The natural LP relaxation of the directed rooted
k-connectivity problem has an integrality ratio of Ω

(
k

log k

)
.

min
∑
e∈E

cexe s.t.
∑

e∈δ+(R)

xe ≥ k (∀R , r ∈ R ,T * R)

0 ≤ x ≤ 1

Proof: we follow a construction of Chakraborty, Chuzhoy,
Khanna for sndp integrality gap.54



The construction
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Computing the gap

Fractional solution:
xe = 1

k2 for each e ∈ E with c(e) = 1.
Total cost: 2q = 2k

Integral solution:
Consider a subset S of arcs of cost ≤ γk2

log k ,
prove pS = Pr[S is an integral solution] is very very
small,
deduce

∑
S pS < 1.

There is an instance without solution of cost ≤ γk2

log k .

Integrality gap is Ω
(

k
log k

)
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Conclusion

Other result:
Subset Connectivity problem.

Open questions:
approximability when

∑
ki = O(1)?

inapproximablity when k = O(1)? (No better result
known than DST)
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