APPROXIMATING ROOTED STEINER NETWORKS

Joseph Cheryian¹, Bundit Laekhanukit², *Guyslain Naves*², Adrian Vetta²

December 2011. Banff

¹Waterloo University

²McGill University

Directed Steiner Tree problem (DST)

A network design problem:

- Input: G a directed graph, with costs $c: E(G) \rightarrow \mathbb{N}$,
 - r a vertex of G (the root),
 - a set $T \subseteq V(G)$ of *terminals*,

Output: A subgraph G' of G such that there is one path from s to t in G', for all $t \in T$ Goal: min $\sum_{e \in E(G')} c(e)$

Directed Rooted Connectivity problem

A network design problem:

- Input: G a directed graph, with costs $c: E(G) \rightarrow \mathbb{N}$,
 - r a vertex of G (the root),
 - a set $T \subseteq V(G)$ of *terminals*,
 - requirements $k : T \to \mathbb{N}$.
- Output: A subgraph G' of G such that there are k_t disjoint paths from s to t in G', for all $t \in T$ Goal: min $\sum_{e \in E(G')} c(e)$

Outline

- k-DRC with O(1) terminals.
- Hardness of k-DRC (directed graph).
- Hardness of *k*-URC (undirected graphs).
- Integrality gap of k-DRC.

Theorem (Feldman, Ruhl (2006)) The Directed Steiner Forest with O(1) terminals is polynomial-time solvable.

Proof: Guess nodes of degree > 2 and how they are linked, compute shortest paths.

Generalization to Directed Rooted Connectivity ?

Bounded connectivity requirement

Proposition

If G is an acyclic digraph and $\sum_{t \in T} k_t = O(1)$, then there is a polynomial-time algorithm.

Proof: Pebbling game (Fortune, Hopcroft, Wyllie).

Open problem: (polynomial or NP-hard?)

$$\sum_{t\in T} k_t = O(1)$$
 but G is not acyclic.

Let
$$\alpha = 2\beta \geq 2$$
, $k_{t_1} = 1$ and $k_{t_2} = 2$.

Let
$$\alpha = 2\beta \geq 2$$
, $k_{t_1} = 1$ and $k_{t_2} = 2$.

• Integral solution: $6\beta + 6$

Let
$$\alpha = 2\beta \geq 2$$
, $k_{t_1} = 1$ and $k_{t_2} = 2$.

- Integral solution: $6\beta + 6$
- Fractional solution: $5\beta + 7$

Let
$$\alpha = 2\beta \geq 2$$
, $k_{t_1} = 1$ and $k_{t_2} = 2$.

- Integral solution: $6\beta + 6$
- Fractional solution: $5\beta + 7$

Integrality gap: $\frac{6}{5}$

Let
$$\alpha = 2\beta \geq 2$$
, $k_{t_1} = 1$ and $k_{t_2} = 2$.

- Integral solution: $6\beta + 6$
- Fractional solution: $5\beta + 7$

Integrality gap: $\frac{6}{5}$

Toward an APX-hardness proof.

Theorem (Berman, Karpinski, Scott)

For every $0 < \varepsilon < 1$, it is NP-hard to approximate MAX-3-SAT where each literal appears exactly twice, within an approximation ratio smaller than $\frac{1016-\varepsilon}{1015}$.

Reduction for two terminals

Analysis (two terminals problem)

Using $OPT_{\phi} \geq \frac{7q}{8}$, we get:

$$egin{aligned}
ho &\geq rac{13n + (q - \mathsf{APP}_{\phi})}{13n + (q - \mathsf{OPT}_{\phi})} = 1 + rac{\mathsf{OPT}_{\phi} - \mathsf{APP}_{\phi}}{13n + q - \mathsf{OPT}_{\phi}} \ &\geq 1 + rac{7}{79} rac{\mathsf{OPT}_{\phi} - \mathsf{APP}_{\phi}}{\mathsf{OPT}_{\phi}} = 1 + rac{7}{79} \left(1 - \gamma^{-1}
ight) \end{aligned}$$

and finally

$$\rho \ge 1 + \frac{7}{80264} - \xi, \text{ for any } \xi > 0.$$

Analysis (two terminals problem)

Using $OPT_{\phi} \geq \frac{7q}{8}$, we get:

$$egin{aligned}
ho &\geq rac{13n + (q - \mathsf{APP}_{\phi})}{13n + (q - \mathsf{OPT}_{\phi})} = 1 + rac{\mathsf{OPT}_{\phi} - \mathsf{APP}_{\phi}}{13n + q - \mathsf{OPT}_{\phi}} \ &\geq 1 + rac{7}{79} rac{\mathsf{OPT}_{\phi} - \mathsf{APP}_{\phi}}{\mathsf{OPT}_{\phi}} = 1 + rac{7}{79} \left(1 - \gamma^{-1}
ight) \end{aligned}$$

and finally

$$\rho \ge 1 + \frac{7}{80264} - \xi, \text{ for any } \xi > 0.$$

Easy k-approximation when only k terminals.

AcGill

Outline

- k-DRC with O(1) terminals.
- Hardness of k-DRC (directed graph).
- Hardness of *k*-URC (undirected graphs).
- Integrality gap of k-DRC.

General directed rooted connectivity

Theorem

The directed and undirected rooted k-connectivity problem are at least as hard to approximate as the label cover problem $(2^{\log^{1-\epsilon} n})$.

Proof: Approximation-preserving reduction from Directed Steiner Forest (Dodis, Khanna) (pairs (s_i, t_i) to connect)

Undirected version by a reduction of Lando and Nutov.

Stronger hardness result

Theorem

The directed rooted k-connectivity problem cannot be approximated to within $O(k^{\varepsilon})$, for some constant $\varepsilon > 0$, assuming that NP is not contained in $DTIME(n^{polylog(n)})$.

Proof: Reduction from a label cover instance obtained from MAX-3-SAT(5) with *I* repetition (Chakraborty, Chuzhoy, Khanna).

Label Cover problem

- G = (U, W, E) bipartite graph,
- L set of labels,
- constraints $\Pi_e \subseteq L \times L$ for all $e \in E$,
- assign labels to every vertex to cover every edge $(\forall uw \in E, \Pi_{uw} \cap (f(u) \times f(w)) \neq \emptyset),$
- minimize the number of labels assigned $\sum_{u \in U \cup W} |f(u)|$.

Instances obtained from MAX-3-SAT(5) with I repetition:

$$|U| = |W| = O(N^{O(I)}), \qquad |L| = 10', \qquad d = 15'$$

$$cost(\longrightarrow) = 1$$
, $cost(others) = 0$

Getting the hardness ratio

Theorem (Parallel repetition theorem, Raz)

There exists a constant $\gamma > 0$ (independent of I) such that the minimum total label cover problem obtained from instances of MAX-3SAT(5) with I repetitions cannot be approximated within a factor of $2^{\gamma I}$.

In our reduction, $k = d = 15^{\prime}$, hence the k^{ε} -hardness!

Outline

- k-DRC with O(1) terminals.
- Hardness of k-DRC (directed graph).
- Hardness of *k*-URC (undirected graphs).
- Integrality gap of k-DRC.

Adapting the reduction to undirected graphs

Adapting the reduction to undirected graphs

Adapting the reduction to undirected graphs

• There are illegal paths,

- There are illegal paths,
- add padding edges to remove illegal paths,

- There are illegal paths,
- add padding edges to remove illegal paths,
- this creates new illegal paths,

- There are illegal paths,
- add padding edges to remove illegal paths,
- this creates new illegal paths,
- add more padding edges to remove the new illegal paths,

- There are illegal paths,
- add padding edges to remove illegal paths,
- this creates new illegal paths,
- add more padding edges to remove the new illegal paths,
- the second padding set does not induce new illegal paths.

- There are illegal paths,
- add padding edges to remove illegal paths,
- this creates new illegal paths,
- add more padding edges to remove the new illegal paths,
- the second padding set does not induce new illegal paths.

We are done!

Undirected hardness

Theorem

The undirected rooted k-connectivity problem cannot be approximated to within $O(k^{\varepsilon})$, for some constant $\varepsilon > 0$, assuming that NP is not contained in DTIME $(n^{polylog(n)})$.

- Improved from $\Omega(\log^{\Theta(1)} n)$,
- Best known approximation ratios are $\tilde{O}(k)$.

Outline

- k-DRC with O(1) terminals.
- Hardness of k-DRC (directed graph).
- Hardness of *k*-URC (undirected graphs).
- Integrality gap of k-DRC.

Integrality gap

Theorem

54

The natural LP relaxation of the directed rooted k-connectivity problem has an integrality ratio of $\Omega\left(\frac{k}{\log k}\right)$.

$$\begin{split} \min \sum_{e \in E} c_e x_e \quad \text{s.t.} \\ \sum_{e \in \delta^+(R)} x_e \geq k \quad (\forall R, r \in R, T \nsubseteq R) \\ 0 \leq x \leq 1 \end{split}$$

Proof: we follow a construction of Chakraborty, Churboy McGill Khanna for SNDP integrality gap.

$$ext{cost}(\longrightarrow) = 1 \ ext{cost}(ext{others}) = 0$$

k: connectivity req. q = k $|A_i| = |B_j| = k^2$

$$cost(\longrightarrow) = 1$$
 $cost(others) = 0$

k: connectivity req. q = k $|A_i| = |B_j| = k^2$

$$l = 0$$
ty req.
$$k^{2}$$

$$A_{1}$$

$$B_{1}$$

$$t_{q,1}$$

$$t_{2,1}$$

$$t_{1,1}$$

$$A_{2}$$

$$B_{1}$$

$$t_{2,1}$$

$$t_{1,1}$$

$$b_{1}$$

$$t_{2,1}$$

$$t_{1,2}$$

$$t_{2,2}$$

$$t_{1,2}$$

$$b_{1}$$

$$B_{q}$$

$$B_{q}$$
McGill

$$cost(\longrightarrow) = 1$$
 $cost(others) = 0$

k: connectivity req q = k $|A_i| = |B_j| = k^2$

• Fractional solution:

- $x_e = \frac{1}{k^2}$ for each $e \in E$ with c(e) = 1.
- Total cost: 2q = 2k

Fractional solution:

- $x_e = \frac{1}{k^2}$ for each $e \in E$ with c(e) = 1.
- Total cost: 2q = 2k
- Integral solution:
 - Consider a subset S of arcs of cost $\leq \frac{\gamma k^2}{\log k}$,
 - prove p_S = Pr[S is an integral solution] is very very small,
 - deduce $\sum_{S} p_{S} < 1$.
 - There is an instance without solution of cost $\leq \frac{\gamma k^2}{\log k}$.

Fractional solution:

- $x_e = \frac{1}{k^2}$ for each $e \in E$ with c(e) = 1.
- Total cost: 2q = 2k
- Integral solution:
 - Consider a subset S of arcs of cost $\leq \frac{\gamma k^2}{\log k}$,
 - prove $p_S = \Pr[S \text{ is an integral solution}]$ is very very small,
 - deduce $\sum_{S} p_{S} < 1$.
 - There is an instance without solution of cost $\leq \frac{\gamma k^2}{\log k}$.

Fractional solution:

- $x_e = \frac{1}{k^2}$ for each $e \in E$ with c(e) = 1.
- Total cost: 2q = 2k
- Integral solution:
 - Consider a subset S of arcs of cost $\leq \frac{\gamma k^2}{\log k}$,
 - prove p_S = Pr[S is an integral solution] is very very small,
 - deduce $\sum_{S} p_{S} < 1$.
 - There is an instance without solution of $\cot \leq \frac{\gamma k^2}{\log k}$.

• Integrality gap is
$$\Omega\left(\frac{k}{\log k}\right)$$

Conclusion

- Other result:
 - Subset Connectivity problem.
- Open questions:
 - approximability when $\sum k_i = O(1)$?
 - inapproximablity when k = O(1)? (No better result known than DST)

