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m Computation capacity C(P,H, {a,}) for fixed function {a,}
m C(P,H,A) for linear function {a,}
m Computation capacity

C(P,H) £ maxC(P,H,{a/})
{ac}

with maximization over all invertible functions {a,}
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m Identity function A =1 = C(P,H,1) is the capacity of the
K -user interference channel (Motahari et al. 2009)
C(P, H)
C(P,H) > C(P,H,I) = Jim == _5>K/2
P—oo 2 log(P)
m Allow cooperation among transmitters and among
receivers = K x K MIMO channel (Telatar 1999)

C(P H)
C(P,H) <max3logdet(l + HQHT) = lim ———~ <K
(P,H) ax 3 log (I+HQH") = lin . Tiog(P) =
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m K transmitters, K receivers, H ¢ RK*K

m Decode A € ZK*K

C(P,H) = RL(P,H)
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m We already know that the computation capacity satisfies

<2< m CPH)

<K
P—co 5 log(P)

m What are the degrees of freedom of compute-and-forward

im SO
P—co 3 log(P)

m What are the degrees of freedom achieved by lattice codes

RL(P,H)

1 =7
P—oo 5 log(P)
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m Integer channel gains H € ZK*K = Set A = H ¢ zZK*K

| RL(Pa H)
P—co 3 log(P)

m Rational channel gains H € QK*K = Set A = qH ¢ ZK*K

RL(Pa H)
P—co 3 log(P)

m Real channel gains H € RX*K = 2
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Theorem 1
For any K > 2 and almost every H € RX*K

RL(H,P) < 2 <9
P—oo %log(P) “1+1/K —

Compare to:

m MIMO upper bound of K on the degrees of freedom of
compute-and-forward

m Decode-and-forward lower bound of K /2 on the degrees of
freedom compute-and-forward
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Is compute-and-forward useful at high SNR? =- Yes!

Theorem 2
For any K > 2 and almost every H € RXxK

—0(log"*/+*)(P)) < C(H,P) — 3K log(P) < O(1).

m Compute-and-forward achieves MIMO upper bound of K
degrees of freedom

m Invertible functions can be encoded/decoded distributedly
at same asymptotic rate as the centralized scheme

m Compute-and-forward achieves twice the degrees of
freedom of decode-and-forward
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Outline

m Channel computes noisy linear combinations with real
coefficients
hl,lml + h1,2m2 +2;

m Use signal alignment to transform real linear combinations
into integer linear combinations

a;1mg + az 2ms +2;

= Split each message into several submessages
= Use tools from Diophantine approximation

m Use a linear outer code to transform noisy linear
combinations into noiseless linear combinations

a;1mi + a3 oMy
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Preliminaries

Groshev’s Theorem
For any € > 0, and almost all (hy, h,, ... hx) € RX,

min [hyds . + N | = Q((maxijai])* =)

m Letxy =Agg withge € {-Q,-Q+1,...,Q-1,Q}
m Assume we observey = hyX; +... +hgxg +2z
m Minimum distance between (Xq,...,Xk) # (X1, .., Xg)

Y ah e = x0)| = A|SEhe(ak — a)| 2 AQ(QYX)

m For A~ P(K-1)/2K gand Q ~ P1/2K satisfy power constraint
and can remove noise
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Signal Alignment

Consider a simple interference channel without noise
Y1 =X1+Xz
Y2 = X1 + hxa
m Set
X1/A =01 +hqpz +...
X2/A =021 +hdzz +...
m This is received as
Y1/A = (d11 + G21) + h(A12 + d22) + - ..
y2/A = 01 + N(Ga1 + G12) + h%aa2 + . ..

m Groshev’'s Theorem to separate equations
m Linear outer code to drive probability of error to zero
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