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JL Lemma RIP Main Results Idea of proof Discussion

Linear Dimensionality reduction
I Set up: We have many data vectors ~xj ∈ RN for N large

I We would like a linear map Φ ∈ Rm×N , with m� N, such
that the geometry of the set {~xj}pj=1 is preserved under the
embedding ~xj 7→ Φ~xj
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JL Lemma RIP Main Results Idea of proof Discussion

Linear Dimensionality reduction
I Set up: We have many data vectors ~xj ∈ RN , and N is large
I We would like a linear map Φ ∈ Rm×N , with m� N, such

that the geometry of the set {~xj}pj=1 is preserved under the
embedding ~xj 7→ Φ~xj
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JL Lemma RIP Main Results Idea of proof Discussion

The Johnson-Lindenstrauss (JL) Lemma

Theorem (Johnson-Lindenstrauss (1984))

Let ε ∈ (0, 1/2) and let x1, ..., xp ∈ RN be arbitrary points. Let
m = O(ε−2 log(p)) be a natural number. Then there exists a
Lipschitz map f : RN → Rm such that

(1− ε)‖xi − xj‖2
2 ≤ ‖f (xi )− f (xj)‖2

2 ≤ (1 + ε)‖xi − xj‖2
2 (1)

for all i , j ∈ {1, 2, ..., p}.

Original proof: Random orthogonal projections
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Applications

Dimension reduction for

I Computer science

I Numerical linear algebra

I Manifold Learning

I . . .

To use JL Lemma in practice, f should

I be efficiently computable

I not involve too much randomness
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Linear JL embeddings

I In practice: Linear JL embeddings, represented by Φ ∈ Rm×N .

I Consider set of differences. E = {xi − xj}. Then Φ should
satisfy:

(1− ε)‖y‖2
2 ≤ ‖Φy‖2

2 ≤ (1 + ε)‖y‖2
2, for all y ∈ E .

I For a random matrix Φ, we need for an arbitrary fixed x ∈ RN

P
(
(1− ε)‖x‖2

2 ≤ ‖Φx‖2
2 ≤ (1 + ε)‖x‖2

2

)
≥ 1− 2 exp(−c0ε

2m).

I c0 constant (possibly mildly dependent on N)
I Then Φ is a JL embedding with high probability (union bound).
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Previous work

I [Ailon, Chazelle ′06] “Fast Johnson-Lindenstrauss transform”:

Φ = PWD is fast if p ≤ eN1/2
, slow if eN1/2

< p < eN :
I D ∈ RN×N is diagonal matrix of random signs,
I W ∈ RN×N is discrete Fourier matrix,
I P ∈ Rm×N is sparse Gaussian matrix.

I [Vybiral ′10]: Φ = CpartD; Cpart is partial circulant matrix
I Fast, but suboptimal embedding bound of m = O(ε−2log2(p)).

I [Ailon, Liberty ′10]: Random partial Fourier matrix WrandD:
I Fast, but suboptimal embedding dimension

m = O(ε−4 log(p) log4(N)).
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The Restricted Isometry Property

Definition (Candès/Romberg/Tao (2006))

A matrix Φ ∈ Rm×N is said to have the Restricted Isometry
Property of order k and level δ ∈ (0, 1) (equivalently, (k, δ)-RIP) if

(1− δ)‖x‖2
2 ≤ ‖Φx‖2

2 ≤ (1 + δ)‖x‖2
2 for all k-sparse x ∈ RN .

Usual context: If Φ satisfies (2k , δ)-RIP with δ ≤ .46, and if
y = Φx admits a k-sparse solution x#, then x# = argmin

Φz=y
‖z‖1.
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Known RIP bounds

The following random matrices have RIP with high probability :

I Gaussian and Bernoulli matrices if m & δ−2k log(N)

I Partial Fourier/Hadamard if m & δ−2k log4(N)

I Partial Circulant Matrices (based on a Rademacher vector) if
m & max(δ−2k log(N), δ−1k3/2 log3/2(N))

I . . .

Contributors: Baraniuk, Candès, Davenport, DeVore, Pfander,
Rauhut, Romberg, Rudelson, Tao, Tropp, Vershynin, Wakin, Ward, . . .

I The best known deterministic constructions require m & k2−µ

for some small µ (Bourgain et al. (2011)).
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Proof of RIP through the JL Lemma
Recall the crucial concentration inequality for the JL Lemma:

P
(
(1− ε)‖x‖2

2 ≤ ‖Φx‖2
2 ≤ (1 + ε)‖x‖2

2

)
≥ 1− 2 exp(−c0ε

2m) (2)

Baraniuk, Davenport, DeVore, Wakin (2008) establish a
connection between this inequality and RIP:

Theorem (Baraniuk et al.)

Suppose that m,N, and 0 < δ < 1 are given. If the m×N random
matrix Φ satisfies the concentration inequality (2) with ε = δ and
absolute constant c0, then there exist constants c1, c2 such that
with probability ≥ 1− 2e−c2δ

2m, the (k , δ)-RIP holds for Φ with
any k ≤ c1δ

2m/ log(N/k).

I In this sense, the JL Lemma implies the RIP.
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RIP implies the JL Lemma

Theorem (K., Ward (2010))

Fix η > 0 and ε > 0, let E ⊂ RN with |E | = p. Set k ≥ 40 log 4p
η ,

and suppose that Φ ∈ Rm×N has the (k , δ)-RIP with δ ≤ ε
4 . Let

ξ ∈ RN be a Rademacher sequence. Then with probability ≥ 1− η,

(1− ε)‖x‖2
2 ≤ ‖ΦDξx‖2

2 ≤ (1 + ε)‖x‖2
2

uniformly for all x ∈ E .

I Rademacher sequence: Uniformly distributed on {−1, 1}N

I Notation: Dξ = diagonal matrix with ξ on the diagonal.
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A converse to the result by Baraniuk et al.

Proposition (K., Ward (2010))

Fix ε > 0, and suppose that for some c3 and all pairs (k ,m) with
k ≤ c3δ

2m/ log(N/k), Φ = Φ(m) ∈ Rm×N has the (k, δ)-RIP with
δ ≤ ε

4 . Fix x ∈ RN and let ξ ∈ RN be a Rademacher sequence.
Then there exists a constant c4 such that for all m, ΦDξ satisfies
the concentration inequality (2) for c0 = c4 log−1

(
N
k

)
.

I This converse is optimal up to a factor of log(N)
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RIP bounds Previous JL Bound JL Bound from our result

Partial Fourier δ−2k log3(k) log(N) [1,2] ε−4 log( p
η

) log3(log( p
η

)) log(N) [3] ε−2 log( p
η

) log3(log( p
η

)) log(N)

Partial Circulant max

„
δ−1k

3
2 log

3
2 (N), ε−2 log2 ( p

η
) [5] max

„
ε−1 log

3
2 ( p
η

) log
3
2 (N),

δ−2k log2(k) log2(N)
”

[4] ε−2 log( p
η

) log2(log( p
η

)) log2(N)
”

Deterministic δ−2k2 log2(N) [6,7] ε−2 log2 ( p
η

) log2(N)

(DeVore, Iwen)
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Idea of Proof:

I Assume w.l.o.g. x is in decreasing arrangement.

I Partition x in R = 2N
k blocks of length s = k

2 :

x = (x1, . . . , xN) = (x(1), x(2), . . . , x(R)) = (x(1), x([))

I Need to bound

‖ΦDξx‖2
2 = ‖ΦDxξ‖2

2

=
RX

J=1

‖Φ(J)Dx(J)
ξ(J)‖

2
2 + 2ξ∗(1)Dx(1)

Φ∗(1)Φ([)Dx([)
ξ([) +

RX
J,L=2
J 6=L

D
Φ(J)Dx(J)

ξ(J),Φ(L)Dx(L)
ξ(L)

E

I Estimate each term separately.

I Union bound over x .
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First term

I Φ has (k , δ)-RIP, hence also has (s, δ)-RIP, and each Φ(J) is
almost an isometry.

I Noting that ‖Dx(J)
ξ(J)‖2 = ‖Dξ(J)

x(J)‖2 = ‖x(J)‖2, we estimate

(1− δ)‖x‖2
2 ≤

R∑
J=1

‖Φ(J)Dx(J)
ξ(J)‖2

2 ≤ (1 + δ)‖x‖2
2.

I Conclude with δ ≤ ε
4 that

(
1− ε

4

)
‖x‖2

2 ≤
R∑

J=1

‖Φ(J)Dx(J)
ξ(J)‖2

2 ≤
(

1 +
ε

4

)
‖x‖2

2.
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Second term

I Keep ξ(1) = b fixed, then use Hoeffding’s inequality.

Proposition (Hoeffding (1963))

Let x ∈ RN , and let ξ = (ξj)
N
j=1 be a Rademacher sequence. Then,

for any t > 0,

P
(
|
∑

j

ξjvj | > t
)
≤ 2 exp

(
− t2

2‖v‖2
2

)
.

I Need to estimate ‖v‖2 for v = Dx([)
Φ∗([)Φ(1)Dx(1)

b.
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Estimate of ‖v‖2

Proposition

Let R = dN/se. Let Φ = (Φj) = (Φ(1),Φ([)) ∈ Rm×N have the

(2s, δ)-RIP, let x = (x(1), x([)) ∈ RN be in decreasing arrangement
with ‖x‖2 ≤ 1, fix b ∈ {−1, 1}s , and consider the vector

v ∈ RN , v = Dx([)
Φ∗([)Φ(1)Dx(1)

b.

Then ‖v‖2 ≤ δ√
s
.
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Key ingredients for the proof of the proposition

I ‖x(J)‖∞ ≤ 1√
k
‖x(J−1)‖2 for J > 1 (decreasing arrangement).

I Off-diagonal RIP estimate: ‖Φ∗(J)Φ(L)‖ ≤ δ for J 6= L.
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Third term
I Use concentration inequality for Rademacher Chaos:

Proposition (Hanson/Wright (1971))

Let X be the N × N matrix with entries xi ,j and assume that
xi ,i = 0 for all i ∈ [N]. Let ξ = (ξj)

N
j=1 be a Rademacher sequence.

Then, for any t > 0,

P
(
|
∑
i ,j

ξiξjxi ,j | > t
)
≤ 2 exp

(
− 1

64
min

( 96
65 t

‖X‖
,

t2

‖X‖2
F

))
.

I Need ‖C‖ and ‖C‖F for

C ∈ RN×N , Cj ,` =

{
xjΦ
∗
j Φ`x`, j , ` > s in different blocks

0, else.
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Summary and discussion

I Novel connection: RIP implies JL Lemma.

I Yields best-known bounds for embedding dimension for many
random matrices, optimal dependence on distortion ε.

I Important balance: log-factors in N and log factors in p.

I Structured matrices also reduce randomness. Can randomness
be reduced further?
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