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1 A short overview of the field

Convex geometry is an old subject that can be traced at least to Archimedes.
The problems are usually very easy to formulate, nevertheless, the methods
and approaches to these “easy” problems are very diverse, different from one
problem to another, and sometimes to solve the problem one has to use the ideas
from Topology, Analysis, Differential Geometry and even Ergodic Theory. The
diversity and the mixture of methods are not the only reasons why people are
still interested in Convexity. Other reasons are that completely new methods
keep coming into play, and as a result new applications are discovered.

Harmonic Analysis methods are among them. Despite the fact that the
Fourier coefficients and Parseval identity were first used by Hurwitz more than
a century ago in the solution of the isoperimetric problem, the methods of Har-
monic Analysis received a new breath only at the end of the last century, when
they were applied to problems related to sections and projections of Convex
bodies. In particular, the method of the Fourier transform of distributions were
applied to the solution of celebrated Busemann-Petty problem, Shephard prob-
lem, the problem of the local characterization of zonoids, and to many other
problems.

The use of harmonic analysis in the study of problems in convex geometry
has been recently becoming more and more standard. Behind each class of
bodies in question (such as zonoids, intersection bodies, centroid bodies, etc.)
there are certain objects from Harmonic Analysis. The study of the underlying
properties of these objects leads to an understanding of the properties of the
associated bodies in question.

2 Presentation Highlights

The topics of the workshop included harmonic analysis on the sphere and spe-
cial classes of bodies, theory of valuations, discrete geometry and tomography,
probability and random matrices, quantum information theory, and Mahler con-
jecture.

We start the description with a harmonic analysis type result proved by Paul
Goodey in his joint work with Wolfgang Weil. They studied certain properties
of the operators on the sphere and their applications to geometric problems. To
formulate the results we introduce some definitions.
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A linear operator T : C∞(Sn−1) → C∞(Sn−1) is said to be standard if it is
linear, continuous, bijective and intertwining.

T has the local positivity property, if T satisfies:
(LP) If f ∈ C∞(Sn−1) is a function such that, for each x ∈ Sn−1, there is

ε = ε(x) > 0 and a function g = gx,ε ∈ C∞(Sn−1), g ≥ 0, with Tf = Tg on the
(open) ε-neighborhood Uε(x) of x, then it follows that f ≥ 0.

T has the equatorial positivity property, if the following holds:
(EP) If f ∈ C∞(Sn−1) is a function such that, for each x ∈ Sn−1, there is

ε = ε(x) > 0 and a function g = gx,ε ∈ C∞(Sn−1), g ≥ 0, with Tf = Tg on the
(open) ε-neighborhood Uε(x⊥) of x⊥, then it follows that f ≥ 0.

Furthermore, T has the local support property, if:
(LS) For every f ∈ C∞(Sn−1), we have supp f ⊂ supp Tf or supp f ⊂ supp

Tf∗, where f∗ is the reflection of f in the origin.
T has the equatorial support property, if:
(ES) For f ∈ C∞(Sn−1) with supp Tf ⊂ Uε(x), ε > 0, x ∈ Sn−1, we have

supp f ⊂ Uε(x⊥).
Goodey and Weill prove the following results.

Theorem 2.1 A standard operator T on C∞(Sn−1) has the local positivity
property, if and only if it has the local support property.

Theorem 2.2 A standard operator T on C∞(Sn−1) has the equatorial positiv-
ity property, if and only if it has the equatorial support property.

The importance of these theorems is in the description of the phenomenon
lying behind the local / equatorial characterization of zonoids and intersection
bodies. As an application, the authors also obtain local and equatorial charac-
terizations of Lp-intersection bodies, mean section bodies, and their associated
spherical transforms.

Gabriel Maresch presented his joint work with Franz Schuster on The Sine
Transform of Isotropic Measures.

Recall that a non-negative finite Borel measure µ on the unit sphere Sn−1

is said to be isotropic if for all x ∈ Rn,

‖x‖2 =
∫

Sn−1

〈x, u〉2dµ(u).

The sine transform Sµ of a finite Borel measure µ on Sn−1 is the continuous
function defined by

(Sµ)(x) =
∫

Sn−1

‖x|u⊥‖dµ(u), x ∈ R
n.

The latter defines a norm on Rn whose unit ball is denoted by S∗
µ and its

polar by Sµ.
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Let κn denote the volume of the Euclidean unit ball in Rn and define

αn :=
n(n− 1)2n

Γ(n)1/(n−1)
, and γn :=

(n− 1)κ2
n−1

κn−2κn
.

Their main result is

Theorem 2.3 If µ is an even isotropic measure on Sn−1, then
1)

κn

γn
n
≤ V (S∗

µ) ≤
κnγn

n

αn
,

with equality on the left if and only if µ is normalized Lebesgue measure.
2)

κnαn

γn
n

≤ V (Sµ) ≤ κnγ
n
n ,

with equality on the right if and only if µ is normalized Lebesgue measure.

Rolf Schneider gave a talk on zonoids with isotropic generating measures,
based on a joint work with Daniel Hug.

A convex body Z ⊂ Rn is a zonoid if its support function has a representation

h(Z, u) =

∫

Sn−1

|〈u, v〉|µ(dv), u ∈ R
n,

with an even, finite Borel measure µ on the unit sphere Sn−1.
They proved

Theorem 2.4 If j ∈ {1, ..., n} and if Z1, ..., Zj ⊂ Rn are zonoids with isotropic
generating measures, then

V (Z1, ..., Zj ;B
n
2 [n− j]) ≥ 2jκn−j .

For j = 1, the latter inequality holds with equality. For j ≥ 2, equality holds if
and only if Z1 = · · · = Zj is a cube of side length 2.

As a corollary, they obtained

Theorem 2.5 Let Z ⊂ Rn be a zonoid with isotropic generating measure µ. If
j ∈ {1, ..., n}, then

Vj(Z) ≥ 2j
(
n

j

)

.

For j = 1, the latter inequality holds with equality. For j ≥ 2, equality holds if
and only if Z is a cube of side length 2.
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A few talks at the workshop were devoted to the theory of valuations.
Let Kn be the set of convex bodies in an n-dimensional Euclidean vector

space V and let A be an abelian semigroup. A function φ : Kn → A is called a
valuation if

φ(K) + φ(L) = φ(K ∪ L) + φ(K ∩ L)

whenever K, L, K ∪ L ∈ Kn.
Valuations on convex bodies have been actively studied. A famous classical

result in this area is Hadwigers classification of rigid motion invariant real valued
continuous valuations as linear combinations of the intrinsic volumes. Among
many applications, this result gives an effortless proof of the famous Principal
Kinematic Formula from integral geometry.

In his talk, Franz Schuster presented a joint work with Semyon Alesker
and Andreas Bernig where they obtained the decomposition of the space of
continuous and translation invariant valuations into a sum of SO(n) irreducible
subspaces. To describe their result, we will recall some definitions and notation.

A valuation φ is called translation invariant if φ(K+x) = φ(K) for all x ∈ V
and K ∈ Kn and φ is said to have degree i if φ(tK) = tiφ(K) for all K ∈ Kn

and t > 0. We call φ even if φ(−K) = φ(K) and odd if φ(−K) = −φ(K) for
all K ∈ Kn. We denote by Val the vector space of all continuous translation
invariant complex valued valuations and we write Val±i for its subspace of all
valuations of degree i and even/odd parity. An important result by McMullen
is that

Val =
⊕

0≤i≤n

Val+i ⊕Val−i .

We need the following basic fact from the representation theory of the group
SO(n): The isomorphism classes of irreducible representations of SO(n) are
parametrized by their highest weights, namely sequences of integers (λ1,λ2, ...,
λ&n/2') such that

{

λ1 ≥ λ2 ≥ ... ≥ λ&n/2' ≥ 0, n odd,
λ1 ≥ λ2 ≥ ... ≥ λn/2−1 ≥ |λn/2|, n even.

The natural action of the group SO(n) on the space Val is given by

(θφ)(K) = φ(θ−1K), θ ∈ SO(n), φ ∈ Val.

The authors prove the following decomposition of the space Val into irreducible
SO(n)-modules.

Theorem 2.6 Let 0 ≤ i ≤ n. The space Vali is the direct sum of the irreducible
representations of SO(n) with highest weights (λ1,λ2, ...,λ&n/2') precisely satis-
fying the following additional conditions:

(i) λj = 0 for j > min{i, n− i};
(ii) |λj | -= 1 for 1 ≤ j ≤ .n/2/;
(iii) |λ2| ≤ 2.
In particular, under the action of SO(n) the space Vali is multiplicity free.
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They give also give applications of this theorem to geometric inequalities.

Judit Abardia presented her joint work with Andreas Bernig on projection
bodies in complex vector spaces.

Let V be a real vector space of dimension n, and Let K be a convex body in
V . The projection body of K is denoted by ΠK and is defined by its support
function:

hΠK(u) = voln−1(K|u⊥) =
n

2
V (K, ...,K, [−u, u]), u ∈ Sn−1.

Theorem 2.7 Let W be a complex vector space of complex dimension m, m ≥
3. If the operator Z : K(W ) → K(W ) is

1) translation invariant,
2) SL(W,C)-contravariant,
3) continuous Minkowski valuation,
then Z = ΠC , where C ∈ C is a convex body and

h(ΠCK,u) = V (K, ...,K,Cu), u ∈ S2m−1,

Cu = {cu : c ∈ C ⊂ C}.
The converse also holds for every C ∈ K(C).

This is a complex version of the result, proved earlier by Monika Ludwig: If
an operator Z : Kn → Kn is

1) translation invariant,
2) SL(V,R)-contravariant,
3) continuous Minkowski valuation,
then Z = cΠ, c ∈ R+.

The dual notion of the projection body is the intersection body. It was
introduced by E. Lutwak in 1988 and played a crucial role in the solution to the
Busemann-Petty problem. Let K be a star body in Rn. Its intersection body
IK is the star body whose radial function is given by

ρIK(ξ) = voln−1(K ∩ ξ⊥), ξ ∈ Sn−1.

If K is origin-symmetric and convex, then Busemann’s theorem asserts that
IK is also convex. However, this is not true without the symmetry assumption
on K.

Mathieu Meyer jointly with Shlomo Reisner introduced the notion of the
convex intersection body CI(L) of L. It is defined by its radial function

ρCI(L)(u) = minz∈Pu(L∗g(L))voln−1

([

Pu(L
∗g(L))

]∗z)

.

In this formula, g(L) is the centroid of L, Pu denotes the orthogonal projection
from Rn onto u⊥, and if E ⊂ Rn is an affine subspace, M ⊂ E and z ∈ E,

M∗z = {y ∈ E; 〈y − z, x− z〉 ≤ 1 for every x ∈ M}.
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They prove that the body CI(L) obtained from this construction is actually
convex!

If K is symmetric and convex, then IK is convex. But what can we say
about IK if K is merely a star body?

Jaegil Kim presented his work (joint with V. Yaskin and A. Zvavitch), where
they extend Busemann’s theorem to p-convex bodies. Recall that given a star
body K and p ∈ (0, 1], we say that K is p-convex if, for all x, y ∈ Rn,

‖x+ y‖pK ≤ ‖x‖pK + ‖y‖pK ,

or, equivalently t1/px+(1−t)1/py ∈ K whenever x and y are in K and t ∈ (0, 1).

Theorem 2.8 Let K be a p-convex symmetric body in Rn for p ∈ (0, 1]. Then
the intersection body IK of K is q-convex for every q ≤ [(1/p− 1) (n− 1) + 1]−1.

The sharpness of this result, its generalizations to some general measure
spaces with log-concave or s-concave measures, as well as other geometric im-
plications were also discussed.

Hermann König presented a joint work with Alexander Koldobsky “On the
maximal measure of sections of the n-cube”.

They study the analogues of Ball’s cube slicing theorem for the Gaussian
measure and more general measures.

Let h : [−1, 1] → R>0 be even and in C1. Then

dµh(s) :=
n∏

j=1

h(sj)dsj/

(∫ 1

−1
h(r)dr

)n

, s = (sj)
n
j=1 ∈ Bn

∞,

defines a probability measure on the n-cube Bn
∞. For a ∈ Sn−1 let

A(a, h) := µh{x ∈ Bn
∞|〈x, a〉 = 0}

be the (n− 1)-dimensional measure of the central section orthogonal to a. For
k ∈ {1, ..., n}, let

fk :=
1√
k
(1, ...1
︸ ︷︷ ︸

k

, 0, ..., 0) ∈ Sn−1.

Theorem 2.9 Let h : [−1, 1] → R>0 be even and in C3 with h′ ≤ 0, h′′ ≤ 0,
h′′′ ≥ 0 on [0, 1] and h(0) ≤ 3

2h(1). Suppose further that

π

(∫ 1

0
r2h(r)dr

)(∫ 1

0
h(r)2dr

)2

≥
(∫ 1

0
h(r)dr

)5

.

Consider

dµh(s) :=
n
∏

j=1

h(sj)dsj/

(∫ 1

−1
h(r)dr

)n

, s = (sj)
n
j=1 ∈ Bn

∞.
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Let a = (aj)nj=1 ∈ Sn−1 with a1 ≥ · · · ≥ an ≥ 0. Then, if a1 ≤ 1/
√
2,

A(a, h) ≤ A(f2, h).

This theorem applied to the Gaussian measure gives

Corollary 2.10 For λ > 0 consider the Gaussian measure with h(r) = exp(−λr2),

dµ(s) = exp(−λ‖s‖22)ds/
(∫ 1

−1
exp(−λr2)dr

)n

, s ∈ Bn
∞.

Then for λ ≤ 0.196262 and a1 ≤ 1/
√
2,

A(a, h) ≤ A(f2, h),

while for λ > 0.196263 and large n,

A(fn, h) > A(f2, h).

Alex Iosevich and Eric Grinberg presented their results in discrete geometry
and tomography.

Alex Iosevich spoke about distribution of lattice points near families of con-
vex surfaces. He used the operator bounds for generalized Radon transforms
to obtain lattice point bounds previously approached using hands on number
theoretic methods.

Eric Grinberg presented his joint results with David Feldman.
In the standard mathematical model of tomography, an unknown function in

Euclidean space is to be recovered from data regarding its integrals over certain
families of lines, planes, etc. The treatment of this problem involves both the
geometry of the collection of lines, planes etc., and the analysis of function
spaces that model the data. Grinberg and Feldman replaced the Euclidean
space by an affine or projective space over a finite field, so as to focus the
recovery and inversion problem on the collection lines involved. They also gave
a series of properties of the Radon transform in this context culminating in a
Gelfand-style admissibility theorem, which characterizes minimal sets of lines
whose x-rays determine a function.

Several speakers presented their results on probability and random matrices.
Rafal Latala talked about the tail inequalities for order statistics of log-

concave vectors and their applications. He presented the new tail estimates for
order statistics of isotropic log-concave vectors and showed how they may be
applied to derive deviation inequalities for lr norms and norms of projections
of such vectors. Part of the talk was based on his joint work with Radoslaw
Adamczak, Alexander Litvak, Alain Pajor and Nicole Tomczak-Jaegermann.

Mark Rudelson studied the following question: to which extent the spectral
and geometric properties of the row product of independent random matrices
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resemble those properties for a matrix with independent random entries, (the
row product of K matrices of size d by n as a dK by n matrix, whose rows are
entry-wise products of rows of these matrices). In particular, he showed that
while the general volume ratio property does not hold for these matrices, it still
holds in case of a cross-polytope.

Peter Pivovarov presented his joint work with G. Paouris on the rearrange-
ments and Isoperimetric Inequalities . They studied the rearrangement inequal-
ities and their use in isoperimetric problems for convex bodies and classes of
measures.

Let P[n] be the class of probability measures on Rn, absolutely continuous
with respect to Lebesgue measure.

For N ≥ n, x1, ..., xN ∈ Rn, consider the n×N matrix [x1...xN ]. If C ⊂ RN

is a convex body, then

[x1...xN ]C =

{
N
∑

i=1

cixi : (ci) ∈ C

}

⊂ R
n.

Theorem 2.11 Suppose
1) N ≥ n and µ1, ... , µN ∈ P[n]; fi =

dµi

dx ;
2) C ⊂ RN is a convex body. Set

FC(f1, ..., fN) =

∫

Rn

...

∫

Rn

vol([x1...xN ]C)
N
∏

i=1

fi(xi)dxn...dx1.

If ‖fi‖∞ ≤ 1 for i = 1, ..., N , then

FC(f1, ..., fN ) > FC(1IDn
, ..., 1IDn

),

where Dn ⊂ Rn is the Euclidean ball of volume one.

There were two talks on the quantum information theory. This theory is now
one of the most active fields in science since the prospect of building quantum
computers becomes more and more concrete.

Elisabeth Werner spoke about her joint results with S. Szarek and K. Zy-
czkowski. They investigated the nested subsets of a convex body formed by
the set of trace preserving, positive maps acting on density matrices of a fixed
size. Working with the measure induced by the Hilbert-Schmidt distance they
derived asymptotically tight bounds for the volumes of these sets.

Deping Ye gave a talk about his joint results with G. Aubrun and S. Szarek.
He discussed the problem of the detecting quantum entanglement , which is
a central problem in the quantum information theory. First discovered by
Einstein-Podolsky-Rosen in 1935, quantum entanglement serves as fundamental
and key ingredients for many objects in quantum information, such as, quantum
algorithms, quantum key distributions, and quantum teleportation.
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A quantum state ρ on the N dimensional system HN may be identified as
a density matrix, i.e., an N × N positive semi-definite matrix with trace 1.
It can be obtained by partial tracing over the K dimensional environmental
system HKH ; namely, ρ = MM † where M is a N ×K (complex) matrix and
M † denotes its complex conjugate. Deping presented the recent progress on
estimating the threshold K, such that a random induced quantum state being
separable and/or entangled.

The vast majority of the participants were interested in problems related
to duality. The duality problems discuss the relations between the properties
of a given convex body K, and the properties of its polar K∗. In particular,
many questions about sections and projections of convex bodies fall into this
category. Several conjectures stipulate that a direct duality connection between
projections and sections, if found, would lead to a significant progress in the
area of convex geometry.

Mahler conjecture, asking for the minimum, among all convex K, of the
volume product voln(K)voln(K∗) is, in a way, a step to resolve the mystery.
Despite many important partial results, the problem is still open in dimensions
3 and higher.

At the workshop, several participants reviewed the known results related
to the conjecture. Carsten Schütt explained that the minimum of the volume
product may not be reached for the body having a positive curvature at a point.
Yehoram Gordon presented a proof of the functional version of the above result.
The approach was extensively discussed by a group of participants.

An interest has been expressed in discrete versions of results related to du-
ality and volumes of polytopes. Shlomo Reisner discussed the relations of the
volume product of polygons, and presented a method that allows to prove the
following result: the volume product of polygons in R2 with at most n vertices is
bounded from above by the volume product of regular polygons with n vertices.

A classical bound on the minimum of the volume product, given by Mahler
himself in the two-dimensional case, is based on a beautiful procedure of “erasing
vertices”. The analogue of this idea in the three (and higher)-dimensional space
is not known, and it would be very interesting to understand the structure of
“neighbouring” polytopes that has the same vertices plus(minus) one additional
vertex. Viktor Vigh gave a talk on on the sewing construction of polytopes,
which allows one to construct a wide variety of neighbourly polytopes that
are not necessarily cyclic. He also presented some new results on the sewing
construction and, as a corollary, a fast algorithm for sewing in practice.

There were other results on lattice polytopes. Ivan Soprunov explained how
the bound on the number of interior lattice points of a lattice polytope P , in
terms of the volume of P , is related to zeroes of polynomial systems.

David Alonso-Gutiérrez gave a talk on the factorization of Sobolev inequal-
ities through classes of functions, based on a joint work with J. Bastero and J.
Bernués.
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For 1 ≤ p < ∞ and a function f : Rn → R, define

‖f‖∞,p =

(∫ ∞

0
(f∗∗(t)− f∗(t))p

dt

tp/n

)1/p

,

where f∗ is the decreasing rearrangement of f , and f∗∗ is the Hardy transform
of f∗ defined by f∗∗(t) = 1

t

∫ t
0 f

∗(s)ds.
Let

E+
p (f) :=

21/p

Ip

(∫

Sn−1

‖D+
u f‖−n

p du

)−1/n

,

where D+
u f := max{〈∇f(x), u〉, 0}, and Ipp :=

∫

Sn−1 |u1|pdu.
The authors use tools from classical real analysis and recent advances in

convex geometry to establish the correct relation between E+
p (f) and ‖f‖∞,p.

Theorem 2.12 Let 1 ≤ p < ∞ and 1
q = 1

p − 1
n , q ∈ (−∞,−n) ∪

[
n

n−1 ,∞
]

.

Then

E+
p (f) ≥

(

1−
1

q

)

nω1/n
n ‖f‖∞,p, ∀f ∈ W 1,p(Rn).

Moreover the constant is sharp.

Igor Rivin talked about the “limit” convex sets of finite volume in hyperbolic
space. He indicated some results on the dimension (Minkowski and Hausdorff)
of such sets, and gave some geometric corollaries. He also presented an analogue
of Dvoretzky’s Theorem in the context of Hyperbolic Geometry.

3 Outcome of the meeting

The meeting was very successful, we were lucky to bring together mathemati-
cians from many countries and many research areas, such as harmonic analysis,
theory of valuations, discrete geometry and tomography, probability and ran-
dom matrices, quantum information theory. Besides the leading scientists, we
also had 14 graduate students and recent PhDs participating in the workshop.
The friendly atmosphere created during the workshop helped many participants
not only to identify the promising ways to attack the old problems but also to
get acquainted with many open new ones.
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