Polyhedral Reduction of Humbert forms over a totally real number field

Takao Watanabe (joint work with Hayashi and Yano)

Osaka University

Let

 $\mathbf{k} =$ a totally real algebraic number field of degree r,

 $\infty=$ the set of archimedian places of ${\bf k},$

$$\mathbf{k}_{\sigma}$$
 = the completion of \mathbf{k} at $\sigma \in \infty$,

$$\mathsf{k}_{\mathrm{R}} = \mathsf{k} \otimes_{\mathrm{Q}} \mathrm{R} = \prod_{\sigma \in \infty} \mathsf{k}_{\sigma} \cong \mathrm{R}^{r},$$

For $x=(x_\sigma)_{\sigma\in\infty}\in {f k}_{
m R}$, the trace of x is defined by

$$\mathrm{Tr}_{\mathsf{k}_{\mathrm{R}}}(x) = \sum_{\sigma} x_{\sigma} \, .$$

Let

 $M_n(\mathbf{k}_{\mathbf{R}}) = \text{the space of all } n \times n \text{ matrices with entries in } \mathbf{k}_{\mathbf{R}},$ $GL_n(\mathbf{k}_{\mathbf{R}}) = \text{the unit group of } M_n(\mathbf{k}_{\mathbf{R}}) = \prod_{\sigma \in \infty} GL_n(\mathbf{k}_{\sigma}),$ $H_n = \{a \in M_n(\mathbf{k}_{\mathbf{R}}) : {}^ta = a\} \cong \text{Sym}_n(\mathbf{R})^{\oplus r},$ $P_n = \{{}^tgg : g \in GL_n(\mathbf{k}_{\mathbf{R}})\} \subset H_n(\mathbf{k}_{\mathbf{R}}),$ An element of P_n is called an Humbert form and denoted by

 $a = (a_{\sigma})_{\sigma \in \infty}$. Each component a_{σ} is a positive definite real symmetric matrix.

Let **o** be the ring of integers of **k**. We fix a projective **o**-module $\Lambda \subset \mathbf{k}^n$ of rank n. Λ is viewed as a lattice in $\mathbf{k}_{\mathbf{R}}^n$ by a natural inclusion $\mathbf{k}^n \hookrightarrow \mathbf{k}_{\mathbf{R}}^n$. The discrete subgroup

$$GL(\Lambda) = \{\gamma \in GL_n(\mathsf{k}_{\mathrm{R}}) \; : \; \gamma \Lambda = \Lambda\}$$

acts on P_n by

$$(a,\gamma)\mapsto a\cdot\gamma={}^t\gamma a\gamma\,.$$

Our purpose is to construct a polyhedral fundamental domain of $P_n/GL(\Lambda)$.

- Voronoï (1908) gave a polyhedral reduction of GL_n over \mathbf{Q} , i.e., of $GL_n(\mathbf{R})/GL_n(\mathbf{Z})$.
- Köcher (1960) extended Voronoï's reduction theory to self-dual homogeneous cones. In particular, Köecher's theory covers a polyhedral reduction of $GL_n(\mathbf{k}_R)/GL_n(\mathbf{o})$, i.e., the case of $\Lambda = \mathbf{o}^n$.
- Theory of perfect forms plays an important role in polyhedral reduction. Ong (1986), Leibak (2005), Gunnells and Yasaki (2010) studied perfect forms over k.

Minimum function and minimal vectors

The minimum function $\mathbf{m} = \mathbf{m}_{\Lambda} \, : \, P_n \longrightarrow \mathrm{R}_{>0}$ is defined by

$$\mathsf{m}(a) = \min_{0 \neq x \in \Lambda} (a, x^t x) \,,$$

where

$$(a,x^tx)={
m Tr}_{{f k}_{
m R}}({
m tr}(a\cdot x^tx))={
m Tr}_{{f k}_{
m R}}({}^txax)\,.$$
 For $a\in P_n$, put

$$S(a)=S_\Lambda(a)=\left\{x\in\Lambda\ :\ (a,x^tx)={\sf m}(a)
ight\}.$$

S(a) is a finite subset.

Definition 1

 $a\in P_n$ is said to be Λ -perfect if $\{x^tx\ :\ x\in S(a)\}$ spans H_n as an ${
m R}$ -vector space. Namely

$$\dim \operatorname{Span} \{ x^t x \; : \; x \in S(a) \} = r \cdot rac{n(n+1)}{2}$$

The domain

$$K_1 = K_1(\mathsf{m}) = \{a \in P_n : \mathsf{m}(a) \ge 1\}.$$

is a closed convex subset in P_n .

For a non-empty finite subset $S\subset \Lambda\setminus\{0\}$, we put

$$\mathcal{F}_S = \left\{ a \in \partial K_1 \; : \; S \subset S(a)
ight\}.$$

The domain

$$K_1 = K_1(\mathsf{m}) = \{a \in P_n : \mathsf{m}(a) \ge 1\}.$$

is a closed convex subset in P_n .

For a non-empty finite subset $S\subset \Lambda\setminus\{0\}$, we put

$$\mathcal{F}_S = \left\{ a \in \partial K_1 \; : \; S \subset S(a)
ight\}.$$

Proposition 1

 K_1 is a locally finite polyhedron, i.e., the intersection of K_1 and any polytope is a polytope. \mathcal{F}_S gives a face of K_1 if $\mathcal{F}_S \neq \emptyset$. Conversely, any face of K_1 is of the form \mathcal{F}_S for some S.

Geometric properties of Λ -perfect forms

Let $\partial^0 K_1$ be the set of all vertices of K_1 .

Let $\partial^0 K_1$ be the set of all vertices of K_1 .

Theorem 2 (Hayashi–W–Yano–Okuda for general k)

1. $a \in \partial^0 K_1$ iff a is Λ -perfect with m(a) = 1.

2. If
$$a\in\partial^0 K_1$$
, then $a\in GL_n({\sf k})$.

3.
$$\partial^0 K_1/GL(\Lambda)$$
 is a finite set.

4. For $a, b \in \partial^0 K_1$, there exists a finite sequence of vertices $a_0, \dots, a_t \in \partial^0 K_1$ such that $a_0 = a$, $a_t = b$ and a_{i+1} is adjacent to a_i for $i = 0, \dots, t-1$, *i.e.*,

$$\overline{a_ia_{i+1}}=\{\lambda a_i+(1-\lambda)a_{i+1}\ :\ 0\leq\lambda\leq 1\}$$

is a 1-dimensional face of ∂K_1 .

Example

The case of $\mathbf{k} = \mathbf{Q}(\sqrt{5})$, n = 1 and $\Lambda = \mathbf{0}$. In this case, $P_1 = \mathbf{R}^2_{>0} \supset K_1$ is given by

Rational closure of P_n

Let P_n^- be the closure of P_n in H_n . For $a \in P_n^-$, the radical of a is defined by

$$\operatorname{rad}(a) = \left\{ x \in \mathsf{k}^n_{\mathrm{R}} \; : \; (a,x^tx) = 0
ight\}.$$

Let

 $\Omega_{\mathsf{k}} = \{ a \in P_n^- \ : \ (\operatorname{rad}(a) \cap \mathsf{k}^n) \otimes_{\mathrm{Q}} \mathrm{R} = \operatorname{rad}(a) \}.$ We have $P_n \subsetneq \Omega_{\mathsf{k}} \subsetneq P_n^-$.

Rational closure of P_n

Let P_n^- be the closure of P_n in H_n . For $a \in P_n^-$, the radical of a is defined by

$$\operatorname{rad}(a) = \left\{ x \in \mathsf{k}^n_{\mathrm{R}} \; : \; (a, x^t x) = 0 \right\}.$$

Let

$$\Omega_{\mathsf{k}} = \{ a \in P_n^- \ : \ (\operatorname{rad}(a) \cap \mathsf{k}^n) \otimes_{\mathrm{Q}} \mathrm{R} = \operatorname{rad}(a) \}.$$

We have $P_n \subsetneq \Omega_{\mathsf{k}} \subsetneq P_n^-$.

Proposition 2

$$\Omega_{\mathsf{k}} = \left\{ \sum_{i} \lambda_i({x_i}^t x_i) \; : \; \lambda_i \in \mathrm{R}_{\geq 0}, \; x_i \in \mathsf{k}^n
ight\} \, .$$

For $a\in\partial^0 K_1$, put

 $D_a =$ the closed cone generated by $\{x^tx \ : \ x \in S(a)\}$.

If $a \neq b$, then $D_a \cap \operatorname{Int}(D_b) = \emptyset$.

For $a\in\partial^0 K_1$, put

 $D_a =$ the closed cone generated by $\{x^tx \ : \ x \in S(a)\}$.

If $a \neq b$, then $D_a \cap \operatorname{Int}(D_b) = \emptyset$.

Proposition 3

For any $a\in \Omega_{\mathsf{k}}\setminus\{0\}$, there exists $b_0\in\partial^0K_1$ such that

$$\inf_{b\in K_1}(a,b)=\left(a,b_0\right),$$

and then $a \in D_{b_0}$. Therefore, we have

$$\Omega_{\mathsf{k}} = igcup_{b\in\partial^0 K_1} D_b \, .$$

 Ω_k is stable by the action of $GL(\Lambda)$. Let $\{b_1, \dots, b_t\}$ be a set of representatives of $\partial^0 K_1/GL(\Lambda)$. For each i, Γ_i denotes the stabilizer of b_i in $GL(\Lambda)$, i.e.,

$$\Gamma_i = \left\{ \gamma \in GL(\Lambda) \; : \; b_i \cdot \gamma = b_i
ight\},$$

which is a finite subgroup and stabilizes D_{b_i} .

 Ω_k is stable by the action of $GL(\Lambda)$. Let $\{b_1, \dots, b_t\}$ be a set of representatives of $\partial^0 K_1/GL(\Lambda)$. For each i, Γ_i denotes the stabilizer of b_i in $GL(\Lambda)$, i.e.,

$$\Gamma_i = \{\gamma \in GL(\Lambda) : b_i \cdot \gamma = b_i\},\$$

which is a finite subgroup and stabilizes D_{b_i} .

Theorem 3

$$\Omega_{\mathsf{k}}/GL(\Lambda) = igcup_{i=1}^t D_{b_i}/\Gamma_i$$
 .

If n=1 and $\Lambda={f o}$, then

$$\Omega_{\mathsf{k}} \setminus \{0\} = \mathsf{k}_{\mathrm{R}}^{+} := \{(\alpha_{\sigma})_{\sigma \in \infty} \in \mathsf{k}_{\mathrm{R}} \; : \; \alpha_{\sigma} > 0 \text{ for all } \sigma \in \infty\}$$

and $GL(\Lambda) = E_k$ the unit group of **o**. The action of E_k on k_R^+ is given by $x \cdot u = u^2 x$ for $(x, u) \in k_R^+ \times E_k$. Let $\{b_1, \dots, b_t\}$ be a set of representatives of $\partial^0 K_1/E_k$. Since $\Gamma_i = \{\pm 1\}$ trivially acts on D_{b_i} , we have

$$\mathsf{k}^+_{\mathrm{R}}/E_\mathsf{k} = E^2_\mathsf{k} ackslash \mathsf{k}^+_{\mathrm{R}} = igcup_{i=1}^t D^*_{b_i}\,, \;\; ext{where}\; D^*_{b_i} = D_{b_i} \setminus \{0\}\,.$$

Namely, a fundamental domain of $E_{\mathbf{k}}^{2} \setminus \mathbf{k}_{\mathbf{R}}^{+}$ decomposes into a union of perfect cones. This result is viewed as a refeinment of Shintani's unit theorem for $E_{\mathbf{k}}^{2}$.

Let

 $d \geq 2$ be a square free positive integer, $\mathbf{k} = \mathbf{Q}(\sqrt{d})$ a real quadratic field, $\tau =$ the Galois involution of \mathbf{k}/\mathbf{Q} , $\omega = \sqrt{d}$ if $d \equiv 2, 3 \mod 4$ or $(1 + \sqrt{d})/2$ if $d \equiv 1 \mod 4$, $\epsilon =$ a fundamental unit with $\epsilon^2 < 1$. In the case of n = 1 and $\Lambda = \mathbf{o} = \mathbf{Z}[\omega]$, the Ryshkov polyhedron K_1 is a convex domain in $\mathbf{k}_{\mathbf{R}}^+ = \mathbf{R}_{>0}^2$ with infinite vertices. For $a \in \partial^0 K_1$, the equivalent class of a is given by

$$\{\epsilon^{2n}a \ : \ n\in {
m Z}\}.$$

It is easy to check

- K_1 is invariant by au, i.e., K_1 is symmetric with respect to the diagonal line $\ell = \mathbb{R}_{>0}(1, 1)$.
- If $a\in\partial^0 K_1$, then $a\in {\sf k}^+_{
 m R}\cap {\sf k}$ and $au(a)\in\partial^0 K_1.$

• There is no **o**-perfect form on ℓ .

Let $t_{\mathsf{k}}=\sharp(E^2_{\mathsf{k}}ackslash\partial^0 K_1)$ be the class number of **o**-perfect unary forms.

Let $t_{\mathbf{k}} = \sharp(E_{\mathbf{k}}^2 \setminus \partial^0 K_1)$ be the class number of **o**-perfect unary forms.

When d < 10000, there exist 154 d such that $t_{k} = 1$, for example, d = 2, 3, 5, 10, 13, 15, 21, 26, 29, 35, 53, 77, 82, 85, 122, 143, 165, 170, 173, 195, 221, 226, 229, 255, 285, 290, 293, 323, 357, 362, 365, 399, 437, 443, 445, 483, 530, 533, 626, 629, 730, 733, 842, 899, 957, 962, 965, ...

Let $t_{\mathbf{k}} = \sharp(E_{\mathbf{k}}^2 \setminus \partial^0 K_1)$ be the class number of **o**-perfect unary forms.

When d < 10000, there exist 154 d such that $t_{k} = 1$, for example, d = 2, 3, 5, 10, 13, 15, 21, 26, 29, 35, 53, 77, 82, 85, 122, 143, 165, 170, 173, 195, 221, 226, 229, 255, 285, 290, 293, 323, 357, 362, 365, 399, 437, 443, 445, 483, 530, 533, 626, 629, 730, 733, 842, 899, 957, 962, 965, ...

Recently, Dan Yasaki proved the following theorem.

Theorem 4 (Yasaki)

There exists infinitely many quadratic fields **k** such that $t_{\mathbf{k}} = 1$.

