Polyhedral Reduction of Humbert forms over a totally real number field

Takao Watanabe
(joint work with Hayashi and Yano)

Osaka University

Notations

Let
$\mathbf{k}=$ a totally real algebraic number field of degree \boldsymbol{r},
$\infty=$ the set of archimedian places of \mathbf{k},
$\mathbf{k}_{\boldsymbol{\sigma}}=$ the completion of \mathbf{k} at $\boldsymbol{\sigma} \in \infty$,
$\mathbf{k}_{\mathbf{R}}=\mathbf{k} \otimes_{\mathrm{Q}} \mathbf{R}=\prod_{\sigma \in \infty} \mathbf{k}_{\sigma} \cong \mathbf{R}^{r}$,
For $\boldsymbol{x}=\left(\boldsymbol{x}_{\boldsymbol{\sigma}}\right)_{\boldsymbol{\sigma} \in \infty} \in \mathbf{k}_{\mathbf{R}}$, the trace of \boldsymbol{x} is defined by

$$
\operatorname{Tr}_{\mathrm{k}_{\mathrm{R}}}(x)=\sum_{\sigma} x_{\sigma}
$$

Humbert forms

Let
$\boldsymbol{M}_{\boldsymbol{n}}\left(\mathbf{k}_{\mathbf{R}}\right)=$ the space of all $\boldsymbol{n} \times \boldsymbol{n}$ matrices with entries in $\mathbf{k}_{\mathbf{R}}$,
$G \boldsymbol{L}_{n}\left(\mathbf{k}_{\mathrm{R}}\right)=$ the unit group of $\boldsymbol{M}_{n}\left(\mathbf{k}_{\mathrm{R}}\right)=\prod_{\sigma \in \infty} G \boldsymbol{L}_{n}\left(\mathbf{k}_{\sigma}\right)$,
$H_{n}=\left\{a \in M_{n}\left(\mathbf{k}_{\mathbf{R}}\right):{ }^{t} a=a\right\} \cong \operatorname{Sym}_{n}(\mathbf{R})^{\oplus r}$,
$P_{n}=\left\{{ }^{t} g g: g \in G L_{n}\left(\mathrm{k}_{\mathrm{R}}\right)\right\} \subset \boldsymbol{H}_{\boldsymbol{n}}\left(\mathrm{k}_{\mathrm{R}}\right)$,
An element of $\boldsymbol{P}_{\boldsymbol{n}}$ is called an Humbert form and denoted by
$\boldsymbol{a}=\left(\boldsymbol{a}_{\boldsymbol{\sigma}}\right)_{\boldsymbol{\sigma} \in \infty}$. Each component $\boldsymbol{a}_{\boldsymbol{\sigma}}$ is a positive definite real symmetric matrix.

Purpose

Let \mathbf{o} be the ring of integers of \mathbf{k}.
We fix a projective o-module $\boldsymbol{\Lambda} \subset \mathbf{k}^{\boldsymbol{n}}$ of rank \boldsymbol{n}.
$\boldsymbol{\Lambda}$ is viewed as a lattice in $\mathbf{k}_{\mathbf{R}}^{n}$ by a natural inclusion $\mathbf{k}^{n} \hookrightarrow \mathbf{k}_{\mathbf{R}}^{n}$.
The discrete subgroup

$$
G L(\Lambda)=\left\{\gamma \in G L_{n}\left(\mathbf{k}_{\mathrm{R}}\right): \gamma \boldsymbol{\Lambda}=\boldsymbol{\Lambda}\right\}
$$

acts on $\boldsymbol{P}_{\boldsymbol{n}}$ by

$$
(a, \gamma) \mapsto a \cdot \gamma={ }^{t} \gamma a \gamma
$$

Our purpose is to construct a polyhedral fundamental domain of $P_{n} / G L(\Lambda)$.

Brief history

- Voronoï (1908) gave a polyhedral reduction of $\boldsymbol{G} \boldsymbol{L}_{\boldsymbol{n}}$ over \mathbf{Q}, i.e., of $G L_{n}(\mathbf{R}) / G L_{n}(\mathbf{Z})$.
- Köcher (1960) extended Voronoï's reduction theory to self-dual homogeneous cones. In particular, Köecher's theory covers a polyhedral reduction of $G \boldsymbol{L}_{\boldsymbol{n}}\left(\mathrm{k}_{\mathrm{R}}\right) / G \boldsymbol{L}_{\boldsymbol{n}}(\mathbf{0})$, i.e., the case of $\boldsymbol{\Lambda}=\mathbf{o}^{n}$.
- Theory of perfect forms plays an important role in polyhedral reduction. Ong (1986), Leibak (2005), Gunnells and Yasaki (2010) studied perfect forms over \mathbf{k}.

Minimum function and minimal vectors

The minimum function $\mathbf{m}=\mathbf{m}_{\boldsymbol{\Lambda}}: \boldsymbol{P}_{\boldsymbol{n}} \longrightarrow \mathbf{R}_{\geq \mathbf{0}}$ is defined by

$$
\mathbf{m}(a)=\min _{0 \neq x \in \Lambda}\left(a, x^{t} x\right)
$$

where

$$
\left(a, x^{t} x\right)=\operatorname{Tr}_{\mathrm{k}_{\mathrm{R}}}\left(\operatorname{tr}\left(a \cdot x^{t} x\right)\right)=\operatorname{Tr}_{\mathrm{k}_{\mathrm{R}}}\left({ }^{t} x a x\right)
$$

For $\boldsymbol{a} \in \boldsymbol{P}_{\boldsymbol{n}}$, put

$$
S(a)=S_{\Lambda}(a)=\left\{x \in \Lambda:\left(a, x^{t} x\right)=\mathbf{m}(a)\right\}
$$

$\boldsymbol{S}(\boldsymbol{a})$ is a finite subset.

Λ-perfection

Definition 1

$\boldsymbol{a} \in \boldsymbol{P}_{\boldsymbol{n}}$ is said to be $\boldsymbol{\Lambda}$-perfect if $\left\{\boldsymbol{x}^{t} \boldsymbol{x}: \boldsymbol{x} \in \boldsymbol{S}(\boldsymbol{a})\right\}$ spans $\boldsymbol{H}_{\boldsymbol{n}}$ as an \mathbf{R}-vector space. Namely

$$
\operatorname{dim} \operatorname{Span}\left\{x^{t} x: x \in S(a)\right\}=r \cdot \frac{n(n+1)}{2}
$$

Ryshkov polyhedron

The domain

$$
K_{1}=K_{1}(\mathbf{m})=\left\{a \in P_{n}: \mathbf{m}(a) \geq 1\right\}
$$

is a closed convex subset in $\boldsymbol{P}_{\boldsymbol{n}}$.
For a non-empty finite subset $\boldsymbol{S} \subset \boldsymbol{\Lambda} \backslash\{\mathbf{0}\}$, we put

$$
\mathcal{F}_{S}=\left\{a \in \partial K_{1}: S \subset S(a)\right\}
$$

Ryshkov polyhedron

The domain

$$
K_{1}=K_{1}(\mathbf{m})=\left\{a \in P_{n}: \mathbf{m}(a) \geq 1\right\}
$$

is a closed convex subset in $\boldsymbol{P}_{\boldsymbol{n}}$.
For a non-empty finite subset $S \subset \boldsymbol{\Lambda} \backslash\{\mathbf{0}\}$, we put

$$
\mathcal{F}_{S}=\left\{a \in \partial K_{1}: S \subset S(a)\right\}
$$

Proposition 1
$\boldsymbol{K}_{\mathbf{1}}$ is a locally finite polyhedron, i.e., the intersection of $\boldsymbol{K}_{\mathbf{1}}$ and any polytope is a polytope. \mathcal{F}_{S} gives a face of $\boldsymbol{K}_{\mathbf{1}}$ if $\mathcal{F}_{S} \neq \emptyset$.
Conversely, any face of $\boldsymbol{K}_{\mathbf{1}}$ is of the form $\mathcal{F}_{\boldsymbol{S}}$ for some \boldsymbol{S}.

Geometric properties of Λ-perfect forms

Let $\boldsymbol{\partial}^{0} \boldsymbol{K}_{\mathbf{1}}$ be the set of all vertices of $\boldsymbol{K}_{\mathbf{1}}$.

Geometric properties of Λ-perfect forms

Let $\boldsymbol{\partial}^{0} \boldsymbol{K}_{\mathbf{1}}$ be the set of all vertices of $\boldsymbol{K}_{\mathbf{1}}$.
Theorem 2 (Hayashi-W-Yano-Okuda for general \mathbf{k})

1. $a \in \partial^{0} K_{1}$ iff a is Λ-perfect with $m(a)=1$.
2. If $a \in \partial^{0} K_{1}$, then $a \in G L_{n}(\mathbf{k})$.
3. $\partial^{0} K_{1} / G L(\Lambda)$ is a finite set.
4. For $a, b \in \partial^{0} K_{1}$, there exists a finite sequence of vertices $a_{0}, \cdots, a_{t} \in \partial^{0} K_{1}$ such that $a_{0}=a, a_{t}=b$ and a_{i+1} is adjacent to a_{i} for $\boldsymbol{i}=0, \cdots, t-1$, i.e.,

$$
\overline{a_{i} a_{i+1}}=\left\{\lambda a_{i}+(1-\lambda) a_{i+1}: 0 \leq \lambda \leq 1\right\}
$$

is a 1-dimensional face of ∂K_{1}.

Example

The case of $\mathbf{k}=\mathbf{Q}(\sqrt{5}), n=1$ and $\boldsymbol{\Lambda}=\mathbf{o}$. In this case, $\boldsymbol{P}_{\mathbf{1}}=\mathrm{R}_{>0}^{2} \supset \boldsymbol{K}_{\mathbf{1}}$ is given by

$$
a=\left(\frac{1}{2}-\frac{\sqrt{5}}{10}, \frac{1}{2}+\frac{\sqrt{5}}{10}\right), \quad \sharp\left(\partial^{0} K_{1} / G L(\Lambda)\right)=1
$$

Rational closure of $\boldsymbol{P}_{\boldsymbol{n}}$

Let $\boldsymbol{P}_{\boldsymbol{n}}^{-}$be the closure of $\boldsymbol{P}_{\boldsymbol{n}}$ in $\boldsymbol{H}_{\boldsymbol{n}}$.
For $a \in P_{n}^{-}$, the radical of \boldsymbol{a} is defined by

$$
\operatorname{rad}(a)=\left\{x \in \mathbf{k}_{\mathbf{R}}^{n}:\left(a, x^{t} x\right)=0\right\}
$$

Let

$$
\Omega_{\mathrm{k}}=\left\{a \in P_{n}^{-}:\left(\operatorname{rad}(a) \cap \mathbf{k}^{n}\right) \otimes_{\mathbf{Q}} \mathbf{R}=\operatorname{rad}(a)\right\}
$$

We have $\boldsymbol{P}_{\boldsymbol{n}} \varsubsetneqq \boldsymbol{\Omega}_{\mathrm{k}} \varsubsetneqq \boldsymbol{P}_{\boldsymbol{n}}^{-}$.

Rational closure of $\boldsymbol{P}_{\boldsymbol{n}}$

Let $\boldsymbol{P}_{\boldsymbol{n}}^{-}$be the closure of $\boldsymbol{P}_{\boldsymbol{n}}$ in $\boldsymbol{H}_{\boldsymbol{n}}$.
For $a \in P_{n}^{-}$, the radical of \boldsymbol{a} is defined by

$$
\operatorname{rad}(a)=\left\{x \in \mathbf{k}_{\mathbf{R}}^{n}:\left(a, x^{t} x\right)=0\right\}
$$

Let

$$
\Omega_{\mathrm{k}}=\left\{a \in P_{n}^{-}:\left(\operatorname{rad}(a) \cap \mathbf{k}^{n}\right) \otimes_{\mathbf{Q}} \mathbf{R}=\operatorname{rad}(a)\right\}
$$

We have $\boldsymbol{P}_{\boldsymbol{n}} \varsubsetneqq \boldsymbol{\Omega}_{\mathbf{k}} \varsubsetneqq \boldsymbol{P}_{\boldsymbol{n}}^{-}$.
Proposition 2

$$
\Omega_{\mathrm{k}}=\left\{\sum_{i} \lambda_{i}\left(x_{i}^{t} x_{i}\right): \lambda_{i} \in \mathbf{R}_{\geq 0}, x_{i} \in \mathbf{k}^{n}\right\}
$$

Subdivision of Ω_{k} by perfect cones

For $a \in \partial^{0} K_{1}$, put

$$
D_{a}=\text { the closed cone generated by }\left\{x^{t} x: x \in S(a)\right\}
$$

If $a \neq b$, then $D_{a} \cap \operatorname{Int}\left(D_{b}\right)=\emptyset$.

Subdivision of Ω_{k} by perfect cones

For $a \in \partial^{0} K_{1}$, put
$D_{a}=$ the closed cone generated by $\left\{x^{t} x: x \in S(a)\right\}$.
If $a \neq b$, then $D_{a} \cap \operatorname{Int}\left(D_{b}\right)=\emptyset$.
Proposition 3
For any $a \in \Omega_{\mathbf{k}} \backslash\{0\}$, there exists $b_{\mathbf{0}} \in \partial^{\mathbf{0}} \mathbf{K}_{\mathbf{1}}$ such that

$$
\inf _{b \in K_{1}}(a, b)=\left(a, b_{0}\right)
$$

and then $\boldsymbol{a} \in \boldsymbol{D}_{b_{0}}$.
Therefore, we have

$$
\Omega_{\mathrm{k}}=\bigcup_{b \in \partial^{0} K_{1}} D_{b}
$$

Polyhedral reduction of $\Omega_{\mathrm{k}} / G L(\Lambda)$

Ω_{k} is stable by the action of $\boldsymbol{G} \boldsymbol{L}(\boldsymbol{\Lambda})$.
Let $\left\{b_{1}, \cdots, b_{t}\right\}$ be a set of representatives of $\partial^{0} K_{1} / G L(\Lambda)$.
For each $\boldsymbol{i}, \boldsymbol{\Gamma}_{\boldsymbol{i}}$ denotes the stabilizer of $\boldsymbol{b}_{\boldsymbol{i}}$ in $\boldsymbol{G} \boldsymbol{L}(\boldsymbol{\Lambda})$, i.e.,

$$
\Gamma_{i}=\left\{\gamma \in G L(\Lambda): b_{i} \cdot \gamma=b_{i}\right\}
$$

which is a finite subgroup and stabilizes $\boldsymbol{D}_{\boldsymbol{b}_{i}}$.

Polyhedral reduction of $\Omega_{\mathrm{k}} / G L(\Lambda)$

Ω_{k} is stable by the action of $\boldsymbol{G} \boldsymbol{L}(\boldsymbol{\Lambda})$.
Let $\left\{b_{1}, \cdots, b_{t}\right\}$ be a set of representatives of $\partial^{0} K_{1} / G L(\Lambda)$.
For each $\boldsymbol{i}, \Gamma_{i}$ denotes the stabilizer of b_{i} in $G L(\Lambda)$, i.e.,

$$
\Gamma_{i}=\left\{\gamma \in G L(\Lambda): b_{i} \cdot \gamma=b_{i}\right\}
$$

which is a finite subgroup and stabilizes $\boldsymbol{D}_{\boldsymbol{b}_{\boldsymbol{i}}}$.
Theorem 3

$$
\Omega_{\mathrm{k}} / G L(\Lambda)=\bigcup_{i=1}^{t} D_{b_{i}} / \Gamma_{i}
$$

The case of $n=1$

If $\boldsymbol{n}=\mathbf{1}$ and $\boldsymbol{\Lambda}=\mathbf{o}$, then
$\Omega_{\mathrm{k}} \backslash\{0\}=\mathrm{k}_{\mathbf{R}}^{+}:=\left\{\left(\alpha_{\sigma}\right)_{\sigma \in \infty} \in \mathrm{k}_{\mathbf{R}}: \alpha_{\sigma}>\mathbf{0}\right.$ for all $\left.\sigma \in \infty\right\}$ and $\boldsymbol{G} \boldsymbol{L}(\boldsymbol{\Lambda})=\boldsymbol{E}_{\mathbf{k}}$ the unit group of \mathbf{o}. The action of $\boldsymbol{E}_{\mathrm{k}}$ on $\mathbf{k}_{\mathbf{R}}^{+}$is given by $\boldsymbol{x} \cdot \boldsymbol{u}=\boldsymbol{u}^{2} \boldsymbol{x}$ for $(\boldsymbol{x}, \boldsymbol{u}) \in \mathbf{k}_{\mathbf{R}}^{+} \times \boldsymbol{E}_{\mathbf{k}}$.
Let $\left\{b_{1}, \cdots, b_{t}\right\}$ be a set of representatives of $\boldsymbol{\partial}^{0} \boldsymbol{K}_{1} / \boldsymbol{E}_{\mathrm{k}}$. Since $\Gamma_{i}=\{ \pm 1\}$ trivially acts on $D_{b_{i}}$, we have

$$
\mathrm{k}_{\mathrm{R}}^{+} / \boldsymbol{E}_{\mathrm{k}}=E_{\mathrm{k}}^{2} \backslash \mathrm{k}_{\mathrm{R}}^{+}=\bigcup_{i=1}^{t} D_{b_{i}}^{*}, \quad \text { where } D_{b_{i}}^{*}=D_{b_{i}} \backslash\{0\}
$$

Namely, a fundamental domain of $\boldsymbol{E}_{\mathbf{k}}^{\mathbf{2}} \backslash \mathbf{k}_{\mathbf{R}}^{+}$decomposes into a union of perfect cones. This result is viewed as a refeinment of Shintani's unit theorem for $\boldsymbol{E}_{\mathrm{k}}^{\boldsymbol{2}}$.

Example: the case of $\mathrm{k}=\mathrm{Q}(\sqrt{d}), n=1$ and $\Lambda=\mathrm{o}$

Let
$d \geq 2$ be a square free positive integer,
$\mathbf{k}=\mathbf{Q}(\sqrt{d})$ a real quadratic field,
$\tau=$ the Galois involution of \mathbf{k} / \mathbf{Q},
$\omega=\sqrt{d}$ if $d \equiv 2,3 \bmod 4$ or $(1+\sqrt{d}) / 2$ if $d \equiv 1 \bmod 4$, $\epsilon=$ a fundamental unit with $\epsilon^{2}<1$.
In the case of $\boldsymbol{n}=\mathbf{1}$ and $\boldsymbol{\Lambda}=\mathbf{o}=\mathbf{Z}[\boldsymbol{\omega}]$, the Ryshkov polyhedron
$\boldsymbol{K}_{\mathbf{1}}$ is a convex domain in $\mathbf{k}_{\mathbf{R}}^{+}=\mathbf{R}_{>0}^{2}$ with infinite vertices.
For $a \in \partial^{0} K_{1}$, the equivalent class of a is given by

$$
\left\{\epsilon^{2 n} a: n \in \mathbf{Z}\right\}
$$

Example: the case of $\mathrm{k}=\mathrm{Q}(\sqrt{d}), n=1$ and $\Lambda=\mathrm{o}$

It is easy to check

- $\boldsymbol{K}_{\boldsymbol{1}}$ is invariant by $\boldsymbol{\tau}$, i.e., $\boldsymbol{K}_{\boldsymbol{1}}$ is symmetric with respect to the diagonal line $\ell=R_{>0}(1,1)$.
- If $a \in \partial^{0} K_{1}$, then $a \in \mathbf{k}_{\mathbf{R}}^{+} \cap \mathbf{k}$ and $\tau(a) \in \partial^{0} K_{1}$.
- There is no o-perfect form on $\boldsymbol{\ell}$.

Example: the case of $\mathrm{k}=\mathrm{Q}(\sqrt{d}), n=1$ and $\Lambda=\mathrm{o}$

Let $\boldsymbol{t}_{\mathrm{k}}=\sharp\left(\boldsymbol{E}_{\mathrm{k}}^{\mathbf{2}} \backslash \boldsymbol{\partial}^{\mathbf{0}} \boldsymbol{K}_{\mathbf{1}}\right)$ be the class number of o-perfect unary forms.

Example: the case of $\mathrm{k}=\mathrm{Q}(\sqrt{d}), n=1$ and $\Lambda=\mathrm{o}$

Let $t_{\mathrm{k}}=\sharp\left(E_{\mathrm{k}}^{2} \backslash \partial^{0} K_{1}\right)$ be the class number of \mathbf{o}-perfect unary forms.

When $\boldsymbol{d}<\mathbf{1 0 0 0 0}$, there exist $154 \boldsymbol{d}$ such that $t_{\mathrm{k}}=\mathbf{1}$, for example, $\mathrm{d}=2,3,5,10,13,15,21,26,29,35,53,77,82,85$, 122, 143, 165, 170, 173, 195, 221, 226, 229, 255, 285, 290, 293, 323, 357, 362, 365, 399, 437, 443, 445, 483, 530, 533, 626, 629, $730,733,842,899,957,962,965, \ldots$

Example: the case of $\mathrm{k}=\mathrm{Q}(\sqrt{d}), n=1$ and $\Lambda=\mathrm{o}$

Let $t_{\mathrm{k}}=\sharp\left(E_{\mathrm{k}}^{2} \backslash \partial^{0} K_{1}\right)$ be the class number of \mathbf{o}-perfect unary forms.

When $\boldsymbol{d}<\mathbf{1 0 0 0 0}$, there exist $154 d$ such that $t_{\mathrm{k}}=\mathbf{1}$, for example, $\mathrm{d}=2,3,5,10,13,15,21,26,29,35,53,77,82,85$, $122,143,165,170,173,195,221,226,229,255,285,290,293$, 323, 357, 362, 365, 399, 437, 443, 445, 483, 530, 533, 626, 629, 730, 733, 842, 899, 957, 962, 965, ...

Recently, Dan Yasaki proved the following theorem.
Theorem 4 (Yasaki)
There exists infinitely many quadratic fields \mathbf{k} such that $\boldsymbol{t}_{\mathbf{k}}=\mathbf{1}$.

Example of k with $t_{k}=3$

$$
\mathrm{k}=\mathrm{Q}(\sqrt{\mathbf{1 7}}) . \text { In this case, } t_{\mathrm{k}}=\mathbf{3}
$$

$$
\circ=\left(\frac{1}{2}-\frac{11 \sqrt{17}}{102}, \frac{1}{2}+\frac{11 \sqrt{17}}{102}\right)
$$

