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1. Backstory

In 1913, Ramanujan posed to the Journal of the Indian

Mathematical Society the following question: “Shew that

(6x2 − 4xy + 4y2)3 = (3x2 + 5xy − 5y2)3+

(4x2 − 4xy + 6y2)3 + (5x2 − 5xy − 3y2)3,

and find other quadratic expressions satisfying similar
relations.”

The next year, S. Narayanan gave the more general expression

(�x2 − nxy + ny2)3 = (px2 +mxy −my2)3+

(nx2 − nxy + �y2)3 + (mx2 −mxy − py2)3,

where

� = λ(λ3 + 1), m = 2λ3 − 1, n = λ(λ3 − 2), p = λ3 + 1.

(Set λ = 2 and divide by 3 to get Ramanujan’s formula.)
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1. Backstory

When Bruce Berndt presented this exchange at a seminar in
Urbana in the late 90’s, I was convinced that there was an
opportunity to analyze this problem from a more algebraic
point of view. This led to a project that’s become more
combinatorial than one might expect and is strongly
reminiscent of both a rabbit hole and a white whale.

Consider Ramanujan’s expression as a single equation
q31 + q32 + q33 + q34 = 0. This can be transposed into equal sums of
two cubes in three different ways, and there are some pleasant
surprises.
First we have

(4x2 − 4xy + 6y2)3 + (5x2 − 5xy − 3y2)3

= (6x2 − 4xy + 4y2)3 − (3x2 + 5xy − 5y2)3

= (6x2 − 8xy + 6y2)3 − (3x2 − 11xy + 3y2)3,
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1. Backstory

A second transposition also has a third representation:

(6x2 − 4xy + 4y2)3 − (5x2 − 5xy − 3y2)3

= (4x2 − 4xy + 6y2)3 + (3x2 + 5xy − 5y2)3

=
�
94
21x

2 − 8
21xy +

94
21y

2
�3

+
�
23
21x

2 − 199
21 xy +

23
21y

2
�3

.

Furthermore, this second set of identities can be derived from
the first by making the unimodular linear change of variables:

(x, y) →
�
5x− 2y√

21
,
3x+ 3y√

21

�
.

Alas, the third transposition does not have a third
representation.
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1. Backstory

It turns out that these properties (of a third representation, and
the equivalence under linear change), are not specific to
Ramanujan’s example. One can also write down equivalent
versions for the Narayanan formulas. More to the point, up to
changes of variable, these completely describe the solution in
complex quadratic forms to q31 + q32 + q33 + q34 = 0, although I’ll
give a more symmetric formulation later.

There is a huge literature on equal sums of two cubes of
quadratic forms, (see e.g. Dickson’s History of the Theory of

Numbers, Vol. 2, XXI–XXIII) which become instances of this
one-parameter family after a change of variables.
In 1996, C. Sándor completely solved the problem of equal sums
of two cubes of quadratic forms over C, in the sense that he
gives all sets, with parameters satisfying a side-condition. He
didn’t present the three-fold sum of two cubes.
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2. Introductory material – notations

First, I’d like to introduce a few standard (and non-standard)
definitions and conventions:

All forms (homogeneous polynomials) are in C[x, y].
Linear forms are “�(x, y)”; quadratic forms are “q(x, y)”.

Two forms are distinct if they are not proportional; if f
and g are distinct, so are fd and gd.

A set of forms is honest if it is pairwise distinct.

A linear change is an invertible linear change of variables:
(x, y) �→ (ax+ by, cx+ dy) with ad− bc �= 0.

ζm = e2πi/m; except that ζ2 = −1, ζ3 = ω, ζ4 = i.

“ALL” is short for “annoying little lemma”, a semi-routine
bit of business which will not be proved today.
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2. Introductory material – the linear case

Suppose {�i(x, y) = αix+ βiy : 1 ≤ i ≤ m} is an honest set of
linear forms. If m ≥ d+ 2, then {�di } must be a linearly
dependent set, since the vector space of binary forms of degree
d has basis {

�d
j

�
xd−jyj : 0 ≤ j ≤ d} and so has dimension d+ 1.

What happens if m = d+ 1? It is not hard to show that,
without exception, an honest set of d+ 1 {�di }’s is linearly
independent. There are no singular cases.
What happens if you have an honest set of quadratic forms
{qi : 1 ≤ i ≤ m}? Since deg qdi = 2d, we again find that if
m ≥ 2d+ 2, then {qdi } must be dependent. If m = 2d+ 1, then
it is true that a general set {qdi } is linearly independent ....
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2. Introductory material – the quadratic case

...but there are exceptions with quadratic forms. For example,
any set

{(αjx
2 + βjy

2)d : 1 ≤ j ≤ d+ 2}
must be dependent, because each element lives in the
(d+ 1)-dimensional subspace < x2d−2ky2k >. (The same is true
if qj = αjF + βjG for any two distinct quadratic forms F,G.)

By the two-square identity, for any linear forms �j ,
(�1�2 + �3�4)2 + (�1�3 − �2�4)2 = (�1�2 − �3�4)2 + (�1�3 + �2�4)2.
Not to mention the action of the orthogonal group:

q21 + q22 = (cos θq1 + sin θq2)
2 + (− sin θq1 + cos θq2)

2.

But wait, there’s more, I mean “less”, um, “fewer”:

(x2 − y2)2 + (2xy)2 = (x2 + y2)2.

Key here is that xy /∈< F,G > for {F,G} = {x2, y2} but
(xy)2 ∈< F 2, FG,G2 >.
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3. The main definitions and some remarks

We make two definitions.

Definition

Given positive integers (r, d), r < 2d+ 2, we say that an
honest set of quadratic forms {q1, . . . , qr} is a W(r, d) set if
{qdj } is linearly dependent.

Φ(d) is the smallest r so that a W(r, d) set exists.

Note that honesty implies Φ(d) ≥ 3. The determination of
whether {qdj } is linearly dependent or independent is not
affected by linear changes, or by replacing qj with cjqj , cj �= 0.
Thus W(Φ(d), d) sets can only be characterized up to
linear changes, permutations and the scaling of
individual elements, and there is no loss of generality in
assuming that the linear dependence is qd1 + · · ·+ qdr = 0.
(This is one way that the solutions in C[x, y] are hugely easier
to analyze than the subset of Diophantine solutions over Z.)
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4. Known results about Φ(d)

The old results in this section have been phrased in the new
notation W(r, d) and Φ(d).

Φ(2) = 3. All W(3, 2) sets come from {x2 − y2, xy, x2 + y2}
after permutation, linear changes and scaling. The proof is
similar to the one for Pythagorean triples.

Liouville proved that Fermat’s Last Theorem is true for non-
constant (and pairwise relatively prime) complex polynomials.

Thus Φ(d) ≥ 4 for d ≥ 3. The proof can be found as one of

Paulo Ribenboim’s 13 Lectures on Fermat’s Last Theorem.

And the case of even quadratic forms implies Φ(d) ≤ d+ 2.
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4. Known results about Φ(d)

In view of Liouville, Φ(3) = Φ(4) = Φ(5) = 4 follows from

(x2 + xy − y2)3 + (x2 − xy − y2)3 = 2(x2)3 − 2(y2)3;

(x2 + y2)4 + (ωx2 + ω2y2)4 + (ω2x2 + ωy2)4 = 18(xy)4;
3�

k=0

(ikx2 + i2k
√
−2 xy + i3ky2)5 = 0.

I’m not sure who proved the cubic one first. The quartic is a
simple application of a central technique we’ll talk about more
later (and also goes back in some sense to Diophantus), and the
quintic was found independently by Adolphe Desboves in 1880
(it’s in Dickson) and by Noam Elkies in 1996. Noam told me he
found it by replacing

√
−2 with a parameter and solving; there

are actually several “natural” ways to derive it.
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4. Known results about Φ(d)

A deep theorem of Mark Green from 1975 states that if {φj},
1 ≤ j ≤ r, is an honest set of holomorphic functions in n
complex variables and

r�

j=1

φd
j = 0,

then d ≤ (r − 1)2 − 1. This implies that 1 +
√
d+ 1 ≤ r, and so

� 1 +
√
d+ 1 � ≤ Φ(d). This implies Liouville’s result for

d ≥ 4. Green’s approach does not lend itself to the construction
of quadratic form examples.

Gary Gunderson has constructed four entire functions fj so
that

�4
j=1 f

6
j = 0. It is not known whether this can be done

with polynomials. It can’t be done with quadratic forms.
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5. Announcement of new results

The first four items give the bulk of the expository grief. They
follow from a complete analysis of W(4, d).

W(4, 3) comes from a one-parameter family of solutions.

W(4, 4) comes from two different solutions.

W(4, 5) comes from the Desboves-Elkies solution.

If d ≥ 6, then Φ(d) ≥ 5.

Φ(6) = Φ(7) = 5. (Examples)

Φ(14) ≤ 6. (A very special example)

A family of examples which implies that Φ(d) ≤ �d/2�+ 2
when d ≥ 4. These are explicitly given for even d.

The only sextics which are a sum of two cubes in more
than 3 ways are x6 + y6 and xy(x4 − y4).
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5. Announcement of new results

All known W(Φ(d), d)’s seem to be be very symmetric
collections of quadratic forms. It’s unclear whether these
symmetries are inherent, a “Strong Law of Small Numbers”
phenomenon, or artifacts of the techniques used. Extremal sets
are often symmetric, though as we’ve seen this week, not
necessarily as symmetric as we’d like.

For example, in each case, there is a linear change after which
all coefficients of the qj ’s are algebraic numbers of relatively low
degree; this degree seems to slowly increases with d.
More surprisingly, for every known W(Φ(d), d), there is a linear
change after which |αj | = |γj | in every

qj(x, y) = αjx
2 + βjxy + γjy

2.

These observations suggest a new look at an old idea of Felix
Klein, introduced in his book The Icosahedron.
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6. Klein polyhedra

Associate to each non-zero linear form �(x, y) = sx− ty the
image of t/s ∈ C∗ in the unit sphere S2 under the Riemann
map and vice-versa. (Assign �(x, y) = y to ∞ to (0, 0, 1). A
concrete implementation of the Riemann map is:

p+ iq �→
�

2p
p2+q2+1 ,

2q
p2+q2+1 ,

p2+q2−1
p2+q2+1

�

(u, v, w) �→ u+iv
1−w .

Since �(ax+ by, cx+ dy) = (sa− tc)x+ (sb− td)y, note that
t/s �→ T (t/s), where T (z) = dz−b

a−cz is a Möbius transformation.
Any rotation of the unit sphere corresponds to a Möbius
transformation on C∗, and thus to linear changes, although not
all linear changes in (x, y) correspond to Möbius
transformations which give rotations.
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transformations which give rotations.

Bruce Reznick, UIUC Dependent powers of quadratic forms



6. Klein polyhedra

It can be routinely checked that if (u, v, w) �→ z = reiθ, then
(−u,−v,−w) �→ −1/z̄ = −r−1eiθ. The quadratic which is the
product of linear forms associated with such an antipodal pair is

(x− reiθy)(x+ r−1eiθy) = x2 + 1−r2

r eiθxy − e2iθy2.

It follows that x2 +Axy +By2 comes from an antipodal pair if
and only if |B| = 1 and −A2/B is a non-negative real. For
example, if B = 1, then A has to be purely imaginary. This will
happens a lot.

If the quadratic q(x, y) corresponds to points (w1, w2), then
p(x, eiθy) corresponds to (w1, w2) rotated along a parallel of
latitude by θ.
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6. Klein polyhedra

Klein’s original motivation was that a highly regular set of
points on S2, such as the vertices of a Platonic solid, will be
invariant under a large number of rotations, hence the product
of the linear forms associated to the vertices will be invariant
(up to multiple) under many linear changes.

We have repeatedly found that highly symmetric figures created
by looking at the {qj}’s in W(Φ(d), d), in terms of the
corresponding pairs of points on S2.
For example, the quadratic forms from the Pythagorean
parameterization {x2 − y2, x2 + y2, xy} come from the antipodal
pairs of the vertices of an octahedron:

(±1, 0, 0) �→ ±1 �→ x∓ y, (0,±1, 0) �→ ±i �→ x∓ iy,

(0, 0, 1) �→ ∞ �→ y, (0, 0,−1) �→ 0 �→ x.
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6. Klein polyhedra

The antipodal pairs of the vertices of the cube 1√
3
(±1,±1,±1)

correspond to the Desboves-Elkies form:
�

q5j = 0 and note

that
�

j qj = x8 + 14x4y4 + y8 (up to multiple).

The (six) antipodal pairs of the vertices of an icosahedron
correspond to six quadratic forms satisfy

�
q14j = 0 and�

j qj = xy(x10 + 11ix5y5 + y10), up to multiple.
The 10 quadratic forms corresponding to the dodecahedron
only give

�
q14j = 0; no higher exponent.

A sum of the form

m−1�

k=0

(ζkmx2 + axy + ζ−k
m y2)d = c(xy)d

corresponds to two horizontal regular m-gons equally spaced
with respect to the equator, plus the north and south poles.
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7. The strategy for W(4, d)

Suppose p = qd1 + qd2 = qd3 + qd4 , d ≥ 3.

1. Several ALL’s let us assume that the qi’s are pairwise
relatively prime and that p has 2d distinct linear factors.
2. It is not hard to show that if (q1, q2) are distinct and
relatively prime, then there is a linear change which
simultaneously diagonalizes them. Thus, wlog we may assume
that qj(x, y) = αjx2 + βjy2, j = 1, 2, so p is even!
3. Another ALL implies that neither q3 nor q4 is even.
4. We now back up and study the cases in which

(a3x
2 + b3xy + c3y

2)d + (a4x
2 + b4xy + c4y

2)d

can be an even polynomial for d ≥ 3.
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7. The strategy for W(4, d) – the rabbit hole

5. There are three “obvious cases”: b1 = b2 = 0,

(ax2 + bxy + cy2)d + (ax2 − bxy + cy2)d,

(ax2 + cy2)d + (bxy)d, d even.

6. There are exceptional solutions for d = 3, 4, 5. For example,
the family for d = 3 is (after scaling x, y):

�
x2 − αβxy + y2

�3
+ α

�
x2 + βxy − y2

�3

α �= ±1, β2(1− α2) = 12.

Without the constraint on β, the coefficients of x5y and xy5

vanish; the condition comes from requiring the same for x3y3.
In an exceptional solution, y �→ −y gives a different solution.
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7. The strategy for W(4, d) – the rabbit hole

7. Once we know all the cases in which p, a sum of two d-th
powers of quadratic forms, has the shape h(x2, y2) for a form h
of degree d, we use an 1851 algorithm of Sylvester to find the
minimal number of linear forms �i so that h(x, y) =

�
�i(x, y)d

and so p(x, y) =
�

�di (x
2, y2).

8. For example, if the number of summands is 2, then a certain
(d− 1)× 3 Hankel matrix of coefficients has rank 2. When
d = 3, this will always be the case; not so for d > 3.

9. The implementation of this strategy, which currently takes
about 20 pages to work out completely, simultaneously
establishes the uniqueness description of solutions for W(4, 3),
W(4, 4), W(4, 5) and the non-existence of W(4, d) for d ≥ 6.
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8. Characterization of W(4, 3)

Theorem: Every W(4, 3) set is derived from the first two lines of

(αx2 − xy + αy2)3 + α(−x2 + αxy − y2)3 =

(ωαx2 − xy + ω2αy2)3 + α(−ωx2 + αxy − ω2y2)3 =

(ω2αx2 − xy + ωαy2)3 + α(−ω2x2 + αxy − ωy2)3

= (α2 − 1)(αx3 + y3)(x3 + αy3), α2 �= 1.

This identity can be easily verified! Let F = x2 + y2 and
G = xy. Then F 3 − 3FG2 = (x2 + y2)3 − 3(x2 + y2)x2y2

= x6 + y6, and

(αx2 − xy + αy2)3 + α(−x2 + αxy − y2)3 =

(αF −G)3 + α(−F + αG)3 =

= (α3 − α)(F 3 − 3FG2) + (α4 − 1)G3

= (α2 − 1)(α(x6 + y6) + (α2 + 1)x3y3).
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8. Characterization of W(4, 3)

The three-fold symmetry is a consequence of the sum of the
cubes being a quadratic in {x3, y3}. Under the linear change
(x, y) �→ (x+ iy, x− iy), we get a formally real version, in which
the symmetry is obscured: q31 + αq32 = q33 + αq34 = q35 + αq36,
where

q1 = (2α− 1)x2 − (2α+ 1)y2,

q2 = (α− 2)x2 + (α+ 2)y2

q3 = −(1 + α)x2 −
√
12 α xy − (1− α)y2

q4 = (1 + α)x2 +
√
12 xy − (1− α)y2

q5 = −(1 + α)x2 +
√
12 α xy − (1− α)y2

q6 = (1 + α)x2 −
√
12 xy − (1− α)y2.
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where

q1 = (2α− 1)x2 − (2α+ 1)y2,

q2 = (α− 2)x2 + (α+ 2)y2

q3 = −(1 + α)x2 −
√
12 α xy − (1− α)y2

q4 = (1 + α)x2 +
√
12 xy − (1− α)y2

q5 = −(1 + α)x2 +
√
12 α xy − (1− α)y2

q6 = (1 + α)x2 −
√
12 xy − (1− α)y2.
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8. Characterization of W(4, 3)

Although this last expression is hard to read, notice that it’s
almost what Ramanujan and Narayanan were looking at. First
take y �→

√
3y, so that

√
12xy �→ 6xy and y2 �→ 3y2. Now let

α = λ3, so that q32j−1 + αq32j = q32j−1 + (λq2j)3. Narayanan’s
formula arises by taking x �→ 2x− y and dividing by 4.

Sándor used a different approach to this problem. He showed
that all W(4, 3) sets are given up to linear change by:

q1 = w2(w1 − w3)x
2 + (w2

1 − w2
3)xy + w4(w4 − w2)y

2

q2 = −w3(w1 − w3)x
2 + (w2

2 − w2
4)xy − w1(w4 − w2)y

2

q3 = w4(w1 − w3)x
2 + (w2

1 − w2
3)xy + w2(w4 − w2)y

2

q4 = −w1(w1 − w3)x
2 + (w2

2 − w2
4)xy − w3(w4 − w2)y

2

where w3
1 + w3

2 = w3
3 + w3

4, wi ∈ C.
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8. Characterization of W(4, 3) – the rabbit hole

One other complication in figuring this out is that there is a
peculiar symmetry. If we apply the unimodular transformation:

(x, y) �→
�
x+ ωαy√
α2 − 1

,
−ω2αx− y√

α2 − 1

�
,

to q31 + αq32 = q33 + αq34 = q35 + αq36, then it turns out that
(q1, q2, q3, q4) �→ (q3,−q2, q1,−q4), so

q31 + αq32 = q33 + αq34 �→ q33 − αq32 = q31 − αq34

And (q5, q6) gain the denominators we saw earlier, going to

1

α2 − 1

�
ω2α(2 + α2)x2 + (1 + 5α2)xy + ωα(2 + α2)y2

�
;

− 1

α2 − 1

�
ω2α(1 + 2α2)x2 + α(5 + α2)xy + ωα(1 + 2α2)y2

�
.
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8. Characterization of W(4, 3) – the rabbit hole

Put another way, suppose {q1, q2, q3, q4} ∈ W(4, 3). Then up to
a permutation,

There exists {q5, q6} so that {q1, q2, q5, q6} ∈ W(4, 3) and
{q3, q4, q5, q6} ∈ W(4, 3).

There exists {q7, q8} so that {q1, q4, q7, q8} ∈ W(4, 3) and
{q2, q3, q7, q8} ∈ W(4, 3).

There is no pair that joins simultaneously with {q1, q3} and
{q2, q4}.

There is a lot of combinatorics here yet to explore.
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8. Characterization of W(4, 3) – the rabbit hole

So, suppose you are given four quadratics f1, f2, f3, f4 which
satisfy f3

1 + f3
2 + f3

3 + f3
4 = 0, how do you determine which one

of the one-parameter family does it come from, how do you find
the linear change, and how do you find α? It can be done;
here’s the start of how you do it. Recall:

q1 = αx2 − xy + αy2, q2 = α1/3(−x2 + αxy − y2),

q3 = ωαx2 − xy + ω2αy2, q4 = α1/3(−ωx2 + αxy − ω2y2).

There is a linear change after which the fi’s become cjqj for
some cj ’s. Observe that < f1, f2 > is a two-dimensional
subspace as is < f3, f4 > and that the intersection of these two
subspaces is < xy >. The corresponding intersections of the
other pairs of subspaces turn out to be < (x− ωy)(x+ ωy) >
and < (ax+ ωy)(x+ ωay) >. Now compute the same
intersections for the qi’s, and try to match up factors for the
linear change.
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8. Characterization of W(4, 3) – the rabbit hole

The analysis is aided by another elementary result:

Theorem

If p is a form, then there exist f, g ∈ C[x, y] such that

p = f3 + g3 if and only if p is a cube, or p = q1q2q3, where qi’s
are distinct, but linearly dependent.

Suppose p = q31 + q32 = q33 + q34 is a sum of two cubes of
quadratics in more than one way. After a linear change, q1, q2
and p are even. Using a bunch of ALL’s we can assume that

p(x, y) = (x2 − r2y2)(x2 − s2y2)(x2 − t2y2)

where rst �= 0 and ±r,±s,±t are distinct.
More ALL’s imply that each linearly dependent factorization
corresponds to one representation of p as a sum of two cubes.
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8. Characterization of W(4, 3) – the rabbit hole

The set {x2 − r2y2, x2 − s2y2, x2 − t2y2} corresponds to
p = q31 + q32. There are 15 ways to partition the six linear factors
of p into three pairs, and we test them for linear dependence.

For example

{x2 − r2y2, (x− sy)(x+ ty), (x+ sy)(x− ty)}

is dependent iff r2 = st.
Similarly, we have to look at dependence in sets like

{(x− ry)(x+ sy), (x− sy)(x+ ty), (x− ty)(x+ ry)}

I’ll skip the details. A exhaustive (exhausting?) analysis shows
that everything is a linear change from the one-parameter
family described earlier.
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8. Characterization of W(4, 3) – extras

There are two cases where the solutions coalesce:

(x2 + xy − y2)3 + (x2 − xy − y2)3 = 2x6 − 2y6

is, as it stands, a sum of two cubes in two ways, and two others
come from taking y �→ ωy,ω2y. (Take α = ±i and y �→ iy.)

Let h(x, y) = xy(x4 + y4) (an octahedron!) The representations

are (with η = ζ24 =
√
6+

√
2

4 + i ·
√
6−

√
2

4 ):

63/2h(x, y) = (x2 +
√
6xy − y2)3 + (−x2 +

√
6xy + y2)3

63/2h(x, y) = (ix2 −
√
6xy + iy2)3 + (−ix2 −

√
6xy − iy2)3

33/2h(x, y) = (ηx2 + xy + η11y2)3 + (η5x2 − xy + η7y2)3

33/2h(x, y) = (−ηx2 + xy − η11y2)3 + (−η5x2 − xy − η7y2)3

33/2h(x, y) = (η11x2 + xy + ηy2)3 + (η7x2 − xy + η5y2)3

33/2h(x, y) = (−η11x2 + xy − ηy2)3 + (−η7x2 − xy − η5y2)3.
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8. Characterization of W(4, 3) – extras
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is, as it stands, a sum of two cubes in two ways, and two others
come from taking y �→ ωy,ω2y. (Take α = ±i and y �→ iy.)
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9. Characterization of W(4, 4)

All W(4, 4)’s come from two identities: The first is

(x2 + y2)4 + (ωx2 + ω2y2)4 + (ω2x2 + ωy2)4 = 18(xy)4.

After (x, y) �→ (x+ iy, x− iy), this becomes

(2x2 − 2y2)4 + (x2 − 2
√
3xy − y2)4 + (x2 + 2

√
3xy − y2)4

= 18(x2 + y2)4.

Setting y �→
√
3y makes the coefficients integral.

Diophantus observed that

u4 + v4 + (u+ v)4 = 2(u2 + uv + v2)2,

so any quadratic substitution making u2 + uv + v2 a square
gives a W(4, 4). If u = x2 + y2 and v = ωx2 + ω2y2, then
u+ v = −(ω2x2 + ωy2) and u2 + uv + v2 = 3x2y2.
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9. Characterization of W(4, 4)

The other identity for fourth powers is three-fold
�
8
√
3
�
xy(x6 − y6) =

(x2 +
√
3xy − y2)4 − (x2 −

√
3xy − y2)4

= (ω2x2 +
√
3xy − ωy2)4 − (ω2x2 −

√
3xy − ωy2)4

= (ωx2 +
√
3xy − ω2y2)4 − (ωx2 −

√
3xy − ω2y2)4.

(Note that the sum is invariant under (x, y) �→ (ωx,ω2y), giving
the other sums.) If you take a pair of the identities and flip the
summands above, sometimes you get another image of the
original, under a linear change, and sometimes you get

18x8 − 28x4y4 + 18y8

= (
√
3 x2 +

√
2 xy −

√
3 y2)4 + (

√
3 x2 −

√
2 xy −

√
3 y2)4

= (
√
3 x2 + i

√
2 xy +

√
3 y2)4 + (

√
3 x2 − i

√
2 xy +

√
3 y2)4,

which has no third pair.
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10. Characterization of W(4, 5)

The only W(4, 5) comes from Desboves-Elkies. Let

qk(x, y) = ikx2 + i2k
√
−2 xy + i3ky2.

Then
�4

k=1 q
5
k(x, y) = 0, but also, by the interplay of the roots

of unity,
4�

i=1

qi =
4�

i=1

q2i = 0.

The qk’s can be derived from these by making the substitution
q4 = −(q1+ q2+ q3) and solving q21 + q22 + q23 +(q1+ q2+ q3)2 = 0
in the usual Pythagorean way. But wait a minute!
The equations

�4
i=1Xi =

�4
i=1X

2
i = 0 define the intersection

of a plane and a sphere in C4. This is, projectively, a curve.
Unless something special is going on, this curve shouldn’t
contain another curve (q1, q2, q3, q4).
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10. Characterization of W(4, 5)

What’s special is that the ideal generated by
�4

i=1Xi and�4
i=1X

2
i contains

�4
i=1X

5
i .

More generally,

Theorem

If m cannot be written as a(n− 1) + bn, 0 ≤ a, b ∈ Z, then any

symmetric form in n variables of degree m, is contained in the

ideal generated by {
�n

i=1 xi, . . . ,
�n

i=1 x
n−2
i }. In particular, this

is true for m = n2 − 3n+ 1.

The proof combines the Frobenius problem with Newton’s
theorem on symmetric forms. Unfortunately, for n ≥ 5, the
intersection ∩n−2

r=1

�n
i=1 x

r
i has positive genus and so has no

polynomial parameterization.
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11. That synching feeling

Most of the examples in this talk involving higher degrees come
from the orthogonality properties of sums of roots of unity. One
simple application is:

Theorem

k�

j=0

(ζ−j
2k+2x

2 + ζj2k+2y
2)2k

= (k + 1)

�
2k

k

�
x2ky2k = (k + 1)

�
2k

k

�
(xy)2k

This implies that Φ(2k) ≤ k + 2.
If 2k = 2, ζ2k+2 = i and (x2 + y2)2 + (ix2 − iy2)2 = 2

�2
1

�
(xy)2; if

2k = 4, this is the Diophantus quartic example, in its ω-form.
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11. That synching feeling

We can take (x, y) �→ (x+ iy, x− iy) and let θk = π
k+1 to get a

version with real coefficients:

k�

j=0

(2 cos(jθk)(x
2 − y2)− 4 sin(jθk)xy)

2k

= (k + 1)

�
2k

k

�
(x2 + y2)2k.

Taking k = 5 and making a further linear change gives

(x2 − 4xy + y2)10 + 35(x2 − y2)10 + 35(2xy − y2)10

+35(2xy − x2)10 + (−2x2 + 2xy + y2)10 + (x2 + 2xy − 2y2)10

= 1512(x2 − xy + y2)10.
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11. That synching feeling

More generally, for a parameter a,

m−1�

j=0

ζ−rj
m (x2 + aζjmxy + ζ2jm y2)d

will only have terms of the form x2d−kyk where k ≡ r mod m.

These coefficients will be polynomials in a with positive
coefficients. If we choose r symmetrically with respect to (d,m),
then there are half as many polynomials to solve.
For example,

2�

k=0

(ω−kx2 + axy + ωky2)2 = 3(a2 + 2)x2y2,

Set a =
√
−2; the Klein polytope of this version of the

Pythagorean formula is an octahedron resting on a face.
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11. That synching feeling

What Elkies did for quintics was to observe that

3�

k=0

(ikx2 + i2kaxy + i3ky2)5 = 40a(a2 + 2)(x7y3 + x3y7),

Alternatively, he might have observed that

2�

k=0

(ω−kx2 + axy + ωky2)5 =

(15 + 30a2)(x8y2 + x2y8) + 3a(30 + 2a2a4)x5y5

=⇒
2�

k=0

(ω−kx2 + i√
2
xy + ωky2)5 =

�
3i√
2
xy

�5
.

The Klein polytope rotates from a cube from its xyz orientation
to one in which vertices are at the north and south poles.
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(15 + 30a2)(x8y2 + x2y8) + 3a(30 + 2a2a4)x5y5

=⇒
2�

k=0

(ω−kx2 + i√
2
xy + ωky2)5 =

�
3i√
2
xy

�5
.

The Klein polytope rotates from a cube from its xyz orientation
to one in which vertices are at the north and south poles.
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11. That synching feeling

One can do this for higher degrees, at the cost of either more
terms or more complicated equations for a. For example,

3�

k=0

(i−kx2 + axy + iky2)6 = 12(2 + 5a2)(x10y2 + x2y10) + p(a)x6y6.

=⇒
3�

k=0

�
i−kx2 +

�
−2

5xy + iky2
�6

= −5632

125
x6y6 = 11 ·

��
−8
5 xy

�6

,

showing that Φ(6) = 5. Three other W(5, 6)’s have the shape

(x2 + cxy + y2)6 + (x2 − cxy + y2)6 =
3�

k=1

(αkx
2 + βky

2)6,

where c2 is a root of t3 + 80t2 + 1360 + 4480; c is purely
imaginary. There may be other W(5, 6)’s as well.
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11. That synching feeling

Similarly, but more uglily,

3�

k=0

�
i−kx2 +

�
−6

5xy + iky2
�7

= −223/231/2 · 13
57/2

i(xy)7.

which comes from zapping the coefficients of x11y3 and x3y11.

More generally, if d = 2k + 1, then

k�

j=0

�
ζjk+1x

2 + axy + ζ−j
k+1y

2
�2k+1

=

f(a)(x3k+2yk + xky3k+2) + g(a)x2k+1y2k+1.

Choose a �= 0 so that f(a) = 0 (possible when k ≥ 2 since
deg f = k + 1), and it follows that Φ(2k + 1) ≤ k + 2.
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11. That synching feeling

Finally and miraculously,

4�

k=0

(ζk5x
2 + a x y + ζ−k

5 y2)14 =

f(a)(x24y4 + x4y24) + g(a)(x19y9 + x9y19) + h(a)x14y14,

where f(a) = 455(1 + a2)(1 + 11a2) and

g(a) = 10010a(1 + a2)(5 + 25a2 + 11a4 + a6).

Take a = i. Let qk(x, y) = ζk5x
2 + i x y + ζ−k

5 y2, 0 ≤ k ≤ 4 and
q5(x, y) =

√
−5 x y (another miracle in the constant). Then

5�

j=0

q14j (x, y) = 0.
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11. That synching feeling

The Klein polyhedron is two antipodal pentagons at height
±1/

√
5, and both poles. These are precisely the vertices of a

regular icosahedron.

If you rotate the icosahedron to consist of four parallel triangles
of points, the identity becomes two sets of three involving ω and
the golden ratio. I won’t spoil your fun by writing it down here.
An extensive Mathematica searching shows that this is the only
case up to d = 100 of a common factor in the coefficients you
want to disappear in a synching sum.
I don’t know why the 14th degree identity is true. Possible hint:

5�

j=0

q2kj (x, y) = 0 for k = 1, 2, 4, 7

But why do the quartic q2j ’s lie on ∩
�6

i−1X
k
i for k = 1, 2, 4, 7?
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12. What’s next?

Open questions:

Can one find a formula for Φ(d)?

What about asymptotics? Is Φ(d) = Ω(d)?

Is there some structure to the minimal W(Φ(d), d) sets?

What is so special about d = 14?

Can the analysis for Φ(d) = 4 be extended to Φ(d) = 5? A
crucial step for Φ(d) = 5 would be characterizing sets of
three quadratic forms whose d-th powers have an even sum.

What can be said about W(r, d1) ∩W(r, d2)? The
examples at d = 5, 14 suggest that the champions can fight
in several different weight divisions.
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12. What’s next?

Given a family, is there an easy way to determine whether
there is a linear change making it real, or rational?

It is provable that no linear change makes the
Desboves-Elkies example real, but it’s not hard to give a
W(5, 5) ⊂ Z[x, y]. It may be sensible to define ΦR(d) and
ΦQ(d).
Euler gave a famous example of binary septics over Q
which satisfy f4

1 + f4
2 = f4

3 + f4
4 . What happens if you

replace “quadratic forms” with “degree k forms”?
Many algebraic geometers in the audience have been
internally screaming during this talk that all I’m doing is
looking at curves parameterized by quadratics which lie on
the Fermat surface:

Xd
1 + · · ·+Xd

r = 0

Granted. Aside from Green’s theorem, how does this help?
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13. Oh, look, I have some more time

Bruce Reznick, UIUC Dependent powers of quadratic forms


