Extremal lattices and codes

Gabriele Nebe

Lehrstuhl D für Mathematik
Banff November 2011
RWTHAACHEN

Lattices and sphere packings

$$
\theta=1+6 q+6 q^{3}+6 q^{4}+12 q^{7}+6 q^{9}+\ldots
$$

Even unimodular lattices

Definition

- A lattice L in Euclidean n-space $\left(\mathbb{R}^{n},(),\right)$ is the \mathbb{Z}-span of an \mathbb{R}-basis $B=\left(b_{1}, \ldots, b_{n}\right)$ of \mathbb{R}^{n}

$$
L=\left\langle b_{1}, \ldots, b_{n}\right\rangle_{\mathbb{Z}}=\left\{\sum_{i=1}^{n} a_{i} b_{i} \mid a_{i} \in \mathbb{Z}\right\} .
$$

- The dual lattice is

$$
L^{\#}:=\left\{x \in \mathbb{R}^{n} \mid(x, \ell) \in \mathbb{Z} \text { for all } \ell \in L\right\}
$$

- L is called unimodular if $L=L^{\#}$.
- $Q: \mathbb{R}^{n} \rightarrow \mathbb{R}_{\geq 0}, Q(x):=\frac{1}{2}(x, x)$ associated quadratic form
- L is called even if $Q(\ell) \in \mathbb{Z}$ for all $\ell \in L$.
- $\min (L):=\min \{Q(\ell) \mid 0 \neq \ell \in L\}$ minimum of L.

The sphere packing density of an even unimodular lattice is proportional to its minimum.

Dense lattice sphere packings

- Classical problem to find densest sphere packings:
- Dimension 2: Lagrange (lattices), Fejes Tóth (general)
- Dimension 3: Kepler conjecture, proven by T.C. Hales (1998)
- Dimension ≥ 4 : open
- Densest lattice sphere packings:
- Voronoi algorithm (~ 1900) all locally densest lattices.
- Densest lattices known in dimension 1,2,3,4,5, Korkine-Zolotareff (1872) 6,7,8 Blichfeldt (1935) and 24 Cohn, Kumar (2003).
- Density of lattice measures error correcting quality.

The densest lattices.

n	1	2	3	4	5	6	7	8	24
L	\mathbb{A}_{1}	\mathbb{A}_{2}	\mathbb{A}_{3}	\mathbb{D}_{4}	\mathbb{D}_{5}	\mathbb{E}_{6}	\mathbb{E}_{7}	\mathbb{E}_{8}	Λ_{24}

Theta-series of lattices

Let (L, Q) be an even unimodular lattice of dimension n so a regular positive definite integral quadratic form $Q: L \rightarrow \mathbb{Z}$.

- The theta series of L is

$$
\theta_{L}=\sum_{\ell \in L} q^{Q(\ell)}=1+\sum_{k=\min (L)}^{\infty} a_{k} q^{k}
$$

where $a_{k}=|\{\ell \in L \mid Q(\ell)=k\}|$.

- θ_{L} defines a holomorphic function on the upper half plane by substituting $q:=\exp (2 \pi i z)$.
- Then θ_{L} is a modular form of weight $\frac{n}{2}$ for the full modular group $\mathrm{SL}_{2}(\mathbb{Z})$.
- n is a multiple of 8 .
- $\theta_{L} \in \mathcal{M}_{\frac{n}{2}}\left(\mathrm{SL}_{2}(\mathbb{Z})\right)=\mathbb{C}\left[E_{4}, \Delta\right]_{\frac{n}{2}}$ where $E_{4}:=\theta_{E_{8}}=1+240 q+\ldots$ is the normalized Eisenstein series of weight 4 and

$$
\Delta=q-24 q^{2}+252 q^{3}-1472 q^{4}+\ldots \text { of weight } 12
$$

Extremal modular forms

Basis of $\mathcal{M}_{4 k}\left(\mathrm{SL}_{2}(\mathbb{Z})\right)$:

$$
\begin{array}{lcccl}
E_{4}^{k}= & 1+ & 240 k q+ & * q^{2}+ & \ldots \\
E_{4}^{k-3} \Delta= & q+ & * q^{2}+ & \ldots \\
E_{4}^{k-6} \Delta^{2}= & & & q^{2}+ & \ldots \\
\vdots & & & & \\
E_{4}^{k-3 m_{k}} \Delta^{m_{k}}= & \ldots & & q^{m_{k}}+\ldots
\end{array}
$$

where $m_{k}=\left\lfloor\frac{n}{24}\right\rfloor=\left\lfloor\frac{k}{3}\right\rfloor$.

Definition

This space contains a unique form
$f^{(k)}:=1+0 q+0 q^{2}+\ldots+0 q^{m_{k}}+a\left(f^{(k)}\right) q^{m_{k}+1}+b\left(f^{(k)}\right) q^{m_{k}+2}+\ldots$
$f^{(k)}$ is called the extremal modular form of weight $4 k$.

$$
\begin{aligned}
& f^{(1)}=1+240 q+\ldots=\theta_{E_{8}}, f^{(2)}=1+480 q+\ldots=\theta_{E_{8}}^{2} \\
& f^{(3)}=1+196,560 q^{2}+\ldots=\theta_{\Lambda_{24}} \\
& f^{(6)}=1+52,416,000 q^{3}+\ldots=\theta_{P_{48 p}}=\theta_{P_{48 q}}=\theta_{P_{48 n}} \\
& f^{(9)}=1+6,218,175,600 q^{4}+\ldots=\theta_{\Gamma}
\end{aligned}
$$

Extremal even unimodular lattices

Theorem (Siegel)

$a\left(f^{(k)}\right)>0$ for all k

Corollary

Let L be an n-dimensional even unimodular lattice. Then

$$
\min (L) \leq 1+\left\lfloor\frac{n}{24}\right\rfloor=1+m_{n / 8}
$$

Lattices achieving this bound are called extremal.

Extremal even unimodular lattices $\mathrm{L} \leq \mathbb{R}^{n}$

n	8	16	24	32	40	48	72	80	$\geq 163,264$
$\min (\mathrm{~L})$	1	1	2	2	2	3	4	4	
number of extremal lattices	1	2	1	$\geq 10^{7}$	$\geq 10^{51}$	≥ 3	≥ 1	≥ 4	0

Extremal even unimodular lattices

Theorem (Siegel)

$a\left(f^{(k)}\right)>0$ for all k

Corollary

Let L be an n-dimensional even unimodular lattice. Then

$$
\min (L) \leq 1+\left\lfloor\frac{n}{24}\right\rfloor=1+m_{n / 8}
$$

Lattices achieving this bound are called extremal.

Extremal even unimodular lattices $\mathrm{L} \leq \mathbb{R}^{n}$

n	8	16	24	32	40	48	72	80	$\geq 163,264$
$\min (\mathrm{~L})$	1	1	2	2	2	3	4	4	
number of extremal lattices	1	2	1	$\geq 10^{7}$	$\geq 10^{51}$	≥ 3	≥ 1	≥ 4	0

Extremal even unimodular lattices

Theorem (Siegel)

$a\left(f^{(k)}\right)>0$ for all k and $b\left(f^{(k)}\right)<0$ for large $k(k \geq 20408)$.

Corollary

Let L be an n-dimensional even unimodular lattice. Then

$$
\min (L) \leq 1+\left\lfloor\frac{n}{24}\right\rfloor=1+m_{n / 8}
$$

Lattices achieving this bound are called extremal.

Extremal even unimodular lattices $\mathrm{L} \leq \mathbb{R}^{n}$

n	8	16	24	32	40	48	72	80	$\geq 163,264$
$\min (\mathrm{~L})$	1	1	2	2	2	3	4	4	
number of extremal lattices	1	2	1	$\geq 10^{7}$	$\geq 10^{51}$	≥ 3	≥ 1	≥ 4	0

Extremal even unimodular lattices in jump dimensions

$$
\begin{aligned}
& f^{(3)}=1+196,560 q^{2}+\ldots=\theta_{\Lambda_{24}} . \\
& f^{(6)}=1+52,416,000 q^{3}+\ldots=\theta_{P_{48 p}}=\theta_{P_{48 q}}=\theta_{P_{48 n}} . \\
& f^{(9)}=1+6,218,175,600 q^{4}+\ldots=\theta_{\Gamma} .
\end{aligned}
$$

Let L be an extremal even unimodular lattice of dimension $24 m$ so $\min (L)=m+1$

- All non-empty layers $\emptyset \neq\{\ell \in L \mid Q(\ell)=a\}$ form spherical 11-designs.
- The density of the associated sphere packing realises a local maximum of the density function on the space of all $24 m$-dimensional lattices.
- If $m=1$, then $L=\Lambda_{24}$ is unique, Λ_{24} is the Leech lattice.
- The 196560 minimal vectors of the Leech lattice form the unique tight spherical 11-design and realise the maximal kissing number in dimension 24.
- Λ_{24} is the densest 24-dimensional lattice (Cohn, Kumar).
- For $m=2,3$ these lattices are the densest known lattices and realise the maximal known kissing number.

Turyn's construction

- Let (L, Q) be an even unimodular lattice of dimension n .
- Choose sublattices $M, N \leq L$ such that $M+N=L$, $M \cap N=2 L$, and ($M, \frac{1}{2} Q$), ($N, \frac{1}{2} Q$) even unimodular.
- Such a pair (M, N) is called a polarisation of L.
- For $k \in \mathbb{N}$ let $\quad \mathcal{L}(M, N):=$
$\left\{(m+a, m+b, m+c) \in \perp^{3} L \mid m \in M, a, b, c \in N, a+b+c \in 2 L\right\}$.
- Define $\tilde{Q}: \mathcal{L}(M, N) \rightarrow \mathbb{Z}$,

$$
\tilde{Q}\left(y_{1}, y_{2}, y_{3}\right):=\frac{1}{2}\left(Q\left(y_{1}\right)+Q\left(y_{2}\right)+Q\left(y_{3}\right)\right) .
$$

- $(\mathcal{L}(M, N), \tilde{Q})$ is an even unimodular lattice of dimension $3 n$.

Turyn's construction for lattices

$(m+a, m+b, m+c)$ in $\begin{cases}L \perp L \perp L & m \text { in } M \\ L(M, N) & a, b, c \text { in } N \\ a+b+c \text { in } 2 L\end{cases}$

- $2 \mathrm{~L} \perp 2 \mathrm{~L} \perp 2 \mathrm{~L}$
$d:=\min (L, Q)=\min \left(M, \frac{1}{2} Q\right)=\min \left(N, \frac{1}{2} Q\right)$
Then $\left\lceil\frac{3 d}{2}\right\rceil \leq \min (\mathcal{L}(M, N)) \leq 2 d$.
Proof:

$$
\begin{aligned}
& (a, 0,0) a=2 \ell \in 2 L \text { with } \frac{1}{2} Q(2 \ell)=2 Q(\ell) \geq 2 d . \\
& (a, b, 0) a, b \in N \text { with } \frac{1}{2} Q(a)+\frac{1}{2} Q(b) \geq 2 d . \\
& (a, b, c) \text { then } \frac{1}{2}(Q(a)+Q(b)+Q(c)) \geq \frac{3}{2} d .
\end{aligned}
$$

Theorem (Lepowsky, Meurman; Elkies, Gross)
Let $(L, Q) \cong E_{8}$ be the unique even unimodular lattice of dimension 8 . Then for any polarisation (M, N) of E_{8} the lattice $\mathcal{L}(M, N)$ has minimum ≥ 2.

Turyn's construction for lattices

$(\mathrm{m}+\mathrm{a}, \mathrm{m}+\mathrm{b}, \mathrm{m}+\mathrm{c})$ in	$\left\{\begin{array}{l} \mathrm{L} \perp \mathrm{~L} \perp \mathrm{~L} \\ \mathrm{~L}(\mathrm{M}, \mathrm{~N}) \\ 2 \mathrm{~L} \perp 2 \mathrm{~L} \perp 2 \mathrm{~L} \end{array}\right.$	m in M a,b, \mathbf{c} in \mathbf{N} $a+b+c$ in $2 L$
$d:=\min (L, Q)=\min \left(M, \frac{1}{2} Q\right)=\min \left(N, \frac{1}{2} Q\right)$		
Then $\left\lceil\frac{3 d}{2}\right\rceil \leq \min (\mathcal{L}(M, N)) \leq 2 d$.		

Theorem (Lepowsky, Meurman; Elkies, Gross)
Let $(L, Q) \cong E_{8}$ be the unique even unimodular lattice of dimension 8 . Then for any polarisation (M, N) of E_{8} the lattice $\mathcal{L}(M, N)$ has minimum ≥ 2.

72-dimensional lattices from Leech (Griess)
If $(L, Q) \cong\left(M, \frac{1}{2} Q\right) \cong\left(N, \frac{1}{2} Q\right) \cong \Lambda_{24}$ then $3 \leq \min (\mathcal{L}(M, N)) \leq 4$.

The vectors v with $Q(v)=3$

Assume that $(L, Q) \cong\left(M, \frac{1}{2} Q\right) \cong\left(N, \frac{1}{2} Q\right) \cong \Lambda_{24}$

- All 4095 non-zero classes of $M / 2 L$ are represented by vectors m with $Q(m)=4$.
- For $m \in M$ let $N_{m}:=\{a \in N \mid(a, m) \in 2 \mathbb{Z}\}$ and $N^{(m)}:=\left\langle N_{m}, m\right\rangle$.
- $\left(N^{(m)}, \frac{1}{2} Q\right)$ is even unimodular lattice with root system $24 A_{1}$.
- $y:=\left(y_{1}, y_{2}, y_{3}\right)=(m+a, m+b, m+c) \in \mathcal{L}(M, N)$ with $\tilde{Q}(y)=3$ then $y_{i} \in N^{(m)}$ are roots and $m+y_{1}+y_{2}+y_{3} \in 2 L$.

Enumerate short vectors in $\mathcal{L}(M, N)$

For all 4095 nonzero classes $m+2 L \in M / 2 L$ and all 24^{2} pairs (y_{1}, y_{2}) of roots in $N^{(m)}$ check if $\left\langle 2 L, m+y_{1}+y_{2}\right\rangle$ has minimum ≥ 3. Closer analysis reduces number of pairs $\left(y_{1}, y_{2}\right)$ to $8 \cdot 16$. $4095 \cdot 8 \cdot 16=524,160$
May restrict to representatives of the S-orbits on $M / 2 L \cong L / N$, where $S:=\operatorname{Stab}_{\text {Aut }(L)}(M, N)$.
E.g. 6 orbits for the extremal lattice so need to compute the minimum of $6 \cdot 8 \cdot 16=768$ lattices of dimension 24 .

Stehlé, Watkins proof of extremality

Theorem (Stehlé, Watkins (2010))

Let L be an even unimodular lattice of dimension 72 with $\min (L) \geq 3$. Then L is extremal, if and only if it contains at least $6,218,175,600$ vectors v with $Q(v)=4$.

Proof: L is an even unimodular lattice of minimum ≥ 3, so its theta series is

$$
\begin{aligned}
& \theta_{L}=1+a_{3} q^{3}+a_{4} q^{4}+\ldots=f^{(9)}+a_{3} \Delta^{3} . \\
& f^{(9)}=1+6,218,175,600 q^{4}+\ldots \\
& \Delta^{3}=1 \quad q^{3} r
\end{aligned}
$$

So $a_{4}=6,218,175,600-72 a_{3} \geq 6,218,175,600$ if and only if $a_{3}=0$.

Remark

A similar proof works in all jump dimensions $24 k$ (extremal minimum $=$ $k+1$) for lattices of minimum $\geq k$.
For dimensions $24 k+8$ and lattices of minimum $\geq k$ one needs to count vectors v with $Q(v)=k+2$.

The history of Turyn's construction.

1967 Turyn: Constructed the Golay code \mathcal{G}_{24} from the Hamming code h_{8}

78,82,84 Tits; Lepowsky, Meurman; Quebbemann:
Construction of the Leech lattice Λ_{24} from E_{8}
1996 Gross, Elkies: Λ_{24} from Hermitian structure of E_{8}
1996 N.: Tried similar construction of extremal 72-dimensional lattices (Bordeaux).
1998 Bachoc, N.: 2 extremal 80-dimensional lattices using Quebbemann's generalization and the Hermitian structure of E_{8}
2010 Griess: Reminds Lepowsky, Meurman construction of Leech. proposes to construct 72-dimensional lattices from Λ_{24}
2010 N .: Used one of the nine $\mathbb{Z}\left[\alpha=\frac{1+\sqrt{-7}}{2}\right]$ structures of Λ_{24} to find extremal 72-dimensional lattice $\Gamma_{72}=\mathcal{L}\left(\alpha \Lambda_{24}, \bar{\alpha} \Lambda_{24}\right)$
2011 Parker, N.: Check all other polarisations of Λ_{24} to show that Γ_{72} is the unique extremal lattice of the form $\mathcal{L}(M, N)$ Chance: $1: 10^{16}$ to find extremely good polarisation.

How to find polarisations

Hermitian polarisations

- $\alpha, \beta \in \operatorname{End}(L)$ such that $(\alpha x, y)=(x, \beta y)$ and $\alpha \beta=2$.
- $M:=\alpha L, N:=\beta L$.
- $\alpha^{2}-\alpha+2=0(\mathbb{Z}[\alpha]=$ integers in $\mathbb{Q}[\sqrt{-7}])$.
- $(\alpha x, y)=(x, \beta y)$ where $\beta=1-\alpha=\bar{\alpha}$.
- Then $M:=\alpha L, N:=\beta L$ defines a polarisation of L such that $(L, Q) \cong\left(M, \frac{1}{2} Q\right) \cong\left(N, \frac{1}{2} Q\right)$.

Hermitian structures of the Leech lattice

Theorem (M. Hentschel, 2009)

There are exactly nine $\mathbb{Z}[\alpha]$-structures of the Leech lattice.

	group S	order	\# S orbits on $M / 2 L$
1	$\mathrm{SL}_{2}(25)$	$2^{4} 3 \cdot 5^{2} 13$	6
2	$2 . A_{6} \times D_{8}$	$2^{7} 3^{2} 5$	12
3	$\mathrm{SL}_{2}(13) .2$	$2^{4} 3 \cdot 7 \cdot 13$	9
4	$\left(\mathrm{SL}_{2}(5) \times A_{5}\right) .2$	$2^{6} 3^{2} 5^{2}$	8
5	$\left(\mathrm{SL}_{2}(5) \times A_{5}\right) .2$	$2^{6} 3^{2} 5^{2}$	8
6	soluble	$2^{9} 3^{3}$	11
7	$\pm \mathrm{PSL}_{2}(7) \times\left(C_{7}: C_{3}\right)$	$2^{4} 3^{2} 7^{2}$	9
8	$\mathrm{PSL}_{2}(7) \times 2 . A_{7}$	$2^{7} 3^{3} 5 \cdot 7^{2}$	3
9	$2 . J_{2} .2$	$2^{9} 3^{3} 5^{2} 7$	2

Hermitian polarisations yield tensor products

Remark

$\mathcal{L}(\alpha L, \beta L)=L \otimes_{\mathbb{Z}[\alpha]} P_{b}$ where

$$
P_{b}=\langle(\beta, \beta, 0),(0, \beta, \beta),(\alpha, \alpha, \alpha)\rangle \leq \mathbb{Z}[\alpha]^{3}
$$

with the half the standard Hermitian form

$$
h: P_{b} \times P_{b} \rightarrow \mathbb{Z}[\alpha], h\left(\left(a_{1}, a_{2}, a_{3}\right),\left(b_{1}, b_{2}, b_{3}\right)\right)=\frac{1}{2} \sum_{i=1}^{3} a_{i} \overline{b_{i}} .
$$

P_{b} is Hermitian unimodular and $\operatorname{Aut}_{\mathbb{Z}[\alpha]}\left(P_{b}\right) \cong \pm \operatorname{PSL}_{2}(7)$. So $\operatorname{Aut}(\mathcal{L}(\alpha L, \beta L)) \geq \operatorname{Aut}_{\mathbb{Z}[\alpha]}(L) \times \mathrm{PSL}_{2}(7)$.

In particular $\operatorname{Aut}(\Gamma) \geq \mathrm{SL}_{2}(25) \times \mathrm{PSL}_{2}(7)$.

Hermitian structures of the Leech lattice

	group	$\#\{v \in \mathcal{L}(\alpha L, \beta L) \mid Q(v)=3\}$
1	$\mathrm{SL}_{2}(25)$	0
2	$2 . A_{6} \times D_{8}$	$2 \cdot 20,160$
3	$\mathrm{SL}_{2}(13) .2$	$2 \cdot 52,416$
4	$\left(\mathrm{SL}_{2}(5) \times A_{5}\right) .2$	$2 \cdot 100,800$
5	$\left(\mathrm{SL}_{2}(5) \times A_{5}\right) .2$	$2 \cdot 100,800$
6	$2^{9} 3^{3}$	$2 \cdot 177,408$
7	$\pm \mathrm{PSL}_{2}(7) \times\left(C_{7}: C_{3}\right)$	$2 \cdot 306,432$
8	$\mathrm{PSL}_{2}(7) \times 2 . A_{7}$	$2 \cdot 504,000$
9	$2 . J_{2} .2$	$2 \cdot 1,209,600$

The extremal 72-dimensional lattice Γ

Main result

- Γ is an extremal even unimodular lattice of dimension 72.
- $\operatorname{Aut}(\Gamma)$ contains $\mathcal{U}:=\left(\mathrm{PSL}_{2}(7) \times \mathrm{SL}_{2}(25)\right): 2$.
- \mathcal{U} is an absolutely irreducible subgroup of $\mathrm{GL}_{72}(\mathbb{Q})$.
- All U-invariant lattices are similar to Γ.
- $\operatorname{Aut}(\Gamma)$ is a maximal finite subgroup of $\mathrm{GL}_{72}(\mathbb{Q})$.
- Γ is an ideal lattice in the 91st cyclotomic number field.
- Γ realises the densest known sphere packing
- and maximal known kissing number in dimension 72.
- Structure of Γ can be used for decoding (Annika Meyer)
- Γ is a $\mathbb{Z}\left[\frac{1+\sqrt{5}}{2}\right]$-lattice. This gives $\left(n^{2}+5 n+5\right)$-modular lattices of minimum $8+4 n\left(n \in \mathbb{N}_{0}\right)$.

Γ as $\mathbb{Z}\left[\frac{1+\sqrt{5}}{2}\right]$ lattice

Observation

The Hermitian Leech lattice L with $\operatorname{Aut}(L) \cong S L_{2}(25)$ and hence also Γ has a structure over $R:=\mathbb{Z}\left[\frac{1+\sqrt{5}}{2}\right]$, so $(\Gamma, Q)=(\Gamma, \operatorname{Tr}(q))$ with $q: \Gamma \rightarrow R\left[\frac{1}{5}\right]$ quadratic form.
For any totally positive $a \in R$ we obtain $N(a)$-modular lattice $(\Gamma, \operatorname{Tr}(a q))$. Let $\wp:=\frac{5+\sqrt{5}}{2}$. Then $(\Gamma, \wp q)$ is unimodular R-lattice and its theta series is a Hilbert modular form of weight 36 for the full modular group.

$$
\theta(\Gamma, \wp q) \in \mathbb{C}[A, B, C]
$$

Theorem

Let (Λ, q) be a 36-dimensional R-lattice, such that $(\Lambda, \operatorname{Tr}(q))$ is an even unimodular lattice of minimum 4 and $\wp:=(5+\sqrt{5}) / 2$. For $n \in \mathbb{Z}_{\geq 0}$ put $L_{n}:=(\Lambda, \operatorname{Tr}(\wp+n) q)$. Then L_{n} is an even $\left(n^{2}+5 n+5\right)$-modular lattice of minimum $8+4 n$.

How to obtain all polarisations

A rough estimate shows that there are about 10^{10} orbits of $\operatorname{Aut}\left(\Lambda_{24}\right)$ on the set of polarisations (M, N) such that
$\left(M, \frac{1}{2} Q\right) \cong\left(N, \frac{1}{2} Q\right) \cong \Lambda_{24}$.

Theorem (Richard Parker, N.)

There is a unique orbit of $\operatorname{Aut}\left(\Lambda_{24}\right) \cong 2 . C o_{1}$ for which $\mathcal{L}(M, N)$ is extremal.

Computation: Compute representatives for the $16 \operatorname{Aut}\left(\Lambda_{24}\right)$-orbits on $\left.\overline{\left\{N \left\lvert\,\left(N, \frac{1}{2} Q\right)\right.\right.} \cong \Lambda_{24}\right\}$, and find all good complements M such that $\mathcal{L}(M, N)$ is extremal.
N defines a set of bad vectors $B(N) \subset \Lambda_{24} / 2 \Lambda_{24}$, so that $\mathcal{L}(M, N)$ extremal iff $M \cap B(N)=\emptyset$.
The total computation took about 2 CPU years.

Bad vectors

$\mathcal{L}(M, N)=\{(a+m, b+m, c+m) \mid a, b, c \in N, m \in M, a+c+b \in 2 L\}$ Start with one of the 16 orbit representatives N. Then any nonzero class $0 \neq f+N \in \Lambda_{24} / N$ contains exactly 24 pairs $\left\{ \pm v_{1}, \ldots, \pm v_{24}\right\}$ of minimal vectors in Λ_{24}. The set

$$
B(N, f):=\left\{\left(v_{i}+v_{j}+v_{k}\right)+2 \Lambda_{24} \mid 1 \leq i, j, k \leq 24\right\} \subset \Lambda_{24} / 2 \Lambda_{24}
$$

is called the set of bad vectors for N and f. Their union

$$
B(N):=\bigcup_{0 \neq f+N \in \Lambda_{24} / N} B(N, f)
$$

is called the set of bad vectors for N.

Remark

The lattice $\mathcal{L}(M, N)$ is extremal if and only if $M / 2 L \cap B(N)=\emptyset$.

Orbits on the rescaled Leech sublattices

	stabilizer	order	orbit length
1	$P S L_{2}(25): 2$	$2^{4} 3 \cdot 5^{2} 13$	$2.7 \cdot 10^{14}$
2	$A_{7} \times P S L_{2}(7)$	$2^{6} 3^{3} 5 \cdot 7^{2}$	$9.8 \cdot 10^{12}$
3	$S_{3} \times P S L_{2}(13)$	$2^{3} 3^{2} 7 \cdot 13$	$6.3 \cdot 10^{14}$
4	$3 . A_{6} \times A_{5}$	$2^{6} 3^{4} 5^{2}$	$3.2 \cdot 10^{13}$
5	$P S L_{2}(7) \times P S L_{2}(7)$	$2^{6} 3^{2} 7^{2}$	$1.5 \cdot 10^{14}$
6	$A_{5} \times$ soluble	$2^{15} 3^{3} 5$	$9.4 \cdot 10^{11}$
7	$G_{2}(4) \times A_{4}$	$2^{15} 3^{4} 5^{2} 7 \cdot 13$	$6.9 \cdot 10^{8}$
8	$P S L_{2}(23)$	$2^{3} 3 \cdot 11 \cdot 23$	$6.9 \cdot 10^{14}$
9	soluble	$2^{11} 3$	$6.8 \cdot 10^{14}$
10	soluble	$2^{12} 3^{2}$	$1.1 \cdot 10^{14}$
11	soluble	$2^{8} 3 \cdot 7$	$7.7 \cdot 10^{14}$
12	soluble	$2^{11} 3^{2}$	$2.3 \cdot 10^{14}$
13	$3 . A_{7} .2$	$2^{4} 3^{3} 5 \cdot 7$	$2.7 \cdot 10^{14}$
14	soluble	$2^{9} 3 \cdot 5$	$5.4 \cdot 10^{14}$
15	soluble	$2^{8} 3 \cdot 7$	$7.7 \cdot 10^{14}$
16	soluble	$2^{14} 3^{3}$	$9.3 \cdot 10^{12}$

Doubly-even self-dual codes

Definition

- A linear binary code C of length n is a subspace $C \leq \mathbb{F}_{2}^{n}$.
- The dual code of C is

$$
C^{\perp}:=\left\{x \in \mathbb{F}_{2}^{n} \mid(x, c):=\sum_{i=1}^{n} x_{i} c_{i}=0 \text { for all } c \in C\right\}
$$

- C is called self-dual if $C=C^{\perp}$.
- The Hamming weight of a codeword $c \in C$ is

$$
\operatorname{wt}(c):=\left|\left\{i \mid c_{i} \neq 0\right\}\right| .
$$

- C is called doubly-even if $\operatorname{wt}(c) \in 4 \mathbb{Z}$ for all $c \in C$.
- The minimum distance $d(C):=\min \{\mathrm{wt}(c) \mid 0 \neq c \in C\}$.
- The weight enumerator of C is

$$
p_{C}:=\sum_{c \in C} x^{n-\mathrm{wt}(c)} y^{\mathrm{wt}(c)} \in \mathbb{C}[x, y]_{n} .
$$

The minimum distance measures the error correcting quality of a self-dual code.

Self-dual codes

Remark

- The all-one vector 1 lies in the dual of every even code since $\mathrm{wt}(c) \equiv_{2}(c, c) \equiv_{2}(c, \mathbf{1})$.
- If C is self-dual then $n=2 \operatorname{dim}(C)$ is even and

$$
\mathbf{1} \in C^{\perp}=C \subset \mathbf{1}^{\perp}=\left\{c \in \mathbb{F}_{2}^{n} \mid \operatorname{wt}(c) \text { even }\right\} .
$$

- Self-dual doubly-even codes correspond to totally isotropic subspaces in the quadratic space $1^{\perp} /\langle\mathbf{1}\rangle$.
- Annika Meyer, N. $C=C^{\perp}$ doubly-even \Rightarrow $\operatorname{Aut}(C):=\operatorname{Stab}_{S_{n}}(C) \leq A_{n}$.
$h_{8}:\left[\begin{array}{cccccccc}1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0\end{array}\right]$ extended Hamming code,
the unique doubly-even self-dual code of length 8
$p_{h_{8}}(x, y)=x^{8}+14 x^{4} y^{4}+y^{8}$ and $\operatorname{Aut}\left(h_{8}\right)=2^{3}: \mathrm{GL}_{3}(2)$.

Extremal codes

The binary Golay code \mathcal{G}_{24} is the unique doubly-even self-dual code of length 24 with minimum distance ≥ 8. Aut $\left(\mathcal{G}_{24}\right)=M_{24}$

$$
p_{\mathcal{G}_{24}}=x^{24}+759 x^{16} y^{8}+2576 x^{12} y^{12}+759 x^{8} y^{16}+y^{24}
$$

Theorem (Gleason)

Let $C=C^{\perp} \leq \mathbb{F}_{2}^{n}$ be doubly even. Then

- $n \in 8 \mathbb{Z}$
- $p_{C} \in \mathbb{C}\left[p_{h_{8}}, p_{9_{24}}\right]=\operatorname{Inv}\left(G_{192}\right)$
- $d(C) \leq 4+4\left\lfloor\frac{n}{24}\right\rfloor$

Doubly-even self-dual codes achieving this bound are called extremal.

length	8	16	24	32	48	72	80	≥ 3952
$d(C)$	4	4	8	8	12	16	16	
extremal codes	h_{8}	$h_{8} \perp h_{8}, d_{16}^{+}$	\mathcal{G}_{24}	5	$Q R_{48}$	$?$	≥ 4	0

Extremal polynomials

$\mathbb{C}\left[p_{h_{8}}, p_{\mathcal{G}_{24}}\right]=\mathbb{C}[\underbrace{x^{8}+14 x^{4} y^{4}+y^{8}}_{f}, \underbrace{x^{4} y^{4}\left(x^{4}-y^{4}\right)^{4}}_{g}]=\operatorname{Inv}\left(G_{192}\right)$
Basis of $\mathbb{C}[f(1, y), g(1, y)]_{8 k}$

$$
\begin{array}{lcccc}
f^{k}= & 1+ & 14 k y^{4}+ & * y^{8}+ & \ldots \\
f^{k-3} g= & & y^{4}+ & * y^{8}+ & \ldots \\
f^{k-6} g^{2}= & & & y^{8}+ & \ldots
\end{array}
$$

$$
\vdots
$$

$$
f^{k-3 m_{k}} g^{m_{k}}=
$$

$$
y^{4 m_{k}}+
$$

where $m_{k}=\left\lfloor\frac{n}{24}\right\rfloor=\left\lfloor\frac{k}{3}\right\rfloor$.

Definition

This space contains a unique polynomial

$$
p^{(k)}:=1+0 y^{4}+0 y^{8}+\ldots+0 y^{4 m_{k}}+a_{k} y^{4 m_{k}+4}+b_{k} y^{4 m_{k}+8}+\ldots
$$

$p^{(k)}$ is called the extremal polynomial of degree $8 k$.

$$
\begin{aligned}
& p^{(1)}=p_{h_{8}}, p^{(2)}=p_{h_{8}}^{2}, p^{(3)}=p_{\mathcal{G}_{24}}, p^{(6)}=p_{Q R 48} \\
& p^{(9)}=1+249849 y^{16}+18106704 y^{20}+462962955 y^{24}
\end{aligned}
$$

Turyn's construction of the Golay code

Construction of Golay code

Choose two copies C and D of h_{8} such that

$$
C \cap D=\langle\mathbf{1}\rangle, C+D=\mathbf{1}^{\perp} \leq \mathbb{F}_{2}^{8}
$$

$\mathcal{G}_{24}:=\left\{\left(c+d_{1}, c+d_{2}, c+d_{3}\right) \mid c \in C, d_{i} \in D, d_{1}+d_{2}+d_{3} \in\langle\mathbf{1}\rangle\right\}$
(a) $\mathcal{G}_{24}=\mathcal{G}_{24}^{\perp}$.
(b) \mathcal{G}_{24} is doubly-even.
(c) $d\left(\mathcal{G}_{24}\right)=8$.

Proof: (a) unique expression if c represents classes in $h_{8} /\langle\mathbf{1}\rangle$, so

$$
\left|\mathcal{G}_{24}\right|=2^{3} \cdot 2^{4} \cdot 2^{4} \cdot 2=2^{12}
$$

Suffices $\mathcal{G}_{24} \subseteq \mathcal{G}_{24}^{\perp}:\left(\left(c+d_{1}, c+d_{2}, c+d_{3}\right),\left(c^{\prime}+d_{1}^{\prime}, c^{\prime}+d_{2}^{\prime}, c^{\prime}+d_{3}^{\prime}\right)\right)=$ $3\left(c, c^{\prime}\right)+\left(c, d_{1}^{\prime}+d_{2}^{\prime}+d_{3}^{\prime}\right)+\left(d_{1}+d_{2}+d_{3}, c^{\prime}\right)+\left(d_{1}, d_{1}^{\prime}\right)+\left(d_{2}, d_{2}^{\prime}\right)+\left(d_{3}, d_{3}^{\prime}\right)=0$
(b) Follows since C and D are doubly-even, so generators have weight divisible by 4 .

Turyn's construction of the Golay code

Construction of Golay code.

Choose two copies C and D of h_{8} such that

$$
\begin{aligned}
& C \cap D=\langle\mathbf{1}\rangle, C+D=\mathbf{1}^{\perp} \leq \mathbb{F}_{2}^{8} \\
& \mathcal{G}_{24}:=\left\{\left(c+d_{1}, c+d_{2}, c+d_{3}\right) \mid c \in C, d_{i} \in D, d_{1}+d_{2}+d_{3} \in\langle\mathbf{1}\rangle\right\} \\
& \text { (c) } d\left(\mathcal{G}_{24}\right)=8 .
\end{aligned}
$$

Proof: (c)
$\mathrm{wt}\left(c+d_{1}, c+d_{2}, c+d_{3}\right)=\mathrm{wt}\left(c+d_{1}\right)+\mathrm{wt}\left(c+d_{2}\right)+\mathrm{wt}\left(c+d_{3}\right)$.

- 1 non-zero component: $(d, 0,0)$ with $d \in\langle\mathbf{1}\rangle$, weight 8 .
- 2 non-zero components: $\left(d_{1}, d_{2}, 0\right)$ with $d_{1}, d_{2} \in D \cong h_{8}$, weight $\geq d\left(h_{8}\right)+d\left(h_{8}\right)=4+4=8$.
- 3 non-zero components: All have even weight, so weight $\geq 2+2+2=6$. By (b) the weight is a multiple of 4 , so ≥ 8.
Turyn applied to Golay will not yield an extremal code of length 72. Such an extremal code has no automorphism of order 2 which has fixed points.

Automorphisms of extremal codes

Theorem (Bouyuklieva; O'Brien, Willems; N. Feulner)

Let $C \leq \mathbb{F}_{2}^{72}$ be an extremal doubly even code, $G:=\operatorname{Aut}(C):=\left\{\sigma \in S_{72} \mid \sigma(C)=C\right\}$

- Let p be a prime dividing $|G|, \sigma \in G$ of order p.
- $p \leq 7$.
- If $p=2$ or $p=3$ then σ has no fixed points.
- If $p=5$ or $p=7$ then σ has 2 fixed points.
- G has no element of odd order >7.
- G is solvable.
- No subgroup $C_{3} \times C_{3}, C_{7}, D_{10}, C_{10}$.
- No subgroup $C_{4} \times C_{2}, C_{8}, Q_{8}$.
- Summarize: $|G|=5$ or $|G|$ divides 24.

Existence of an extremal code of length 72 is still open.

