Extremal lattices and codes

Gabriele Nebe

Lehrstuhl D für Mathematik

Banff November 2011

Lattices and sphere packings

Hexagonal Circle Packing

$$\theta = 1 + 6q + 6q^3 + 6q^4 + 12q^7 + 6q^9 + \dots$$

Even unimodular lattices

Definition

▶ A lattice L in Euclidean n-space $(\mathbb{R}^n, (,))$ is the \mathbb{Z} -span of an \mathbb{R} -basis $B = (b_1, \ldots, b_n)$ of \mathbb{R}^n

$$L = \langle b_1, \dots, b_n \rangle_{\mathbb{Z}} = \{ \sum_{i=1}^n a_i b_i \mid a_i \in \mathbb{Z} \}.$$

The dual lattice is

$$L^{\#} := \{ x \in \mathbb{R}^n \mid (x, \ell) \in \mathbb{Z} \text{ for all } \ell \in L \}$$

- ▶ L is called unimodular if $L = L^{\#}$.
- $ightharpoonup Q: \mathbb{R}^n o \mathbb{R}_{\geq 0}, Q(x):= rac{1}{2}(x,x)$ associated quadratic form
- ▶ L is called even if $Q(\ell) \in \mathbb{Z}$ for all $\ell \in L$.
- $lackbox{ } \min(L) := \min\{Q(\ell) \mid 0 \neq \ell \in L\}$ minimum of L.

The sphere packing density of an even unimodular lattice is proportional to its minimum.

Dense lattice sphere packings

- Classical problem to find densest sphere packings:
- ▶ Dimension 2: Lagrange (lattices), Fejes Tóth (general)
- Dimension 3: Kepler conjecture, proven by T.C. Hales (1998)
- ▶ Dimension ≥ 4 : open
- Densest lattice sphere packings:
- ▶ Voronoi algorithm (~1900) all locally densest lattices.
- Densest lattices known in dimension 1,2,3,4,5, Korkine-Zolotareff (1872) 6,7,8 Blichfeldt (1935) and 24 Cohn, Kumar (2003).
- Density of lattice measures error correcting quality.

The densest lattices.

n	1	2	3	4	5	6	7	8	24
L	\mathbb{A}_1	\mathbb{A}_2	\mathbb{A}_3	\mathbb{D}_4	\mathbb{D}_5	\mathbb{E}_6	\mathbb{E}_7	\mathbb{E}_8	Λ_{24}

Theta-series of lattices

Let (L,Q) be an even unimodular lattice of dimension n so a regular positive definite integral quadratic form $Q:L\to\mathbb{Z}$.

► The theta series of L is

$$\theta_L = \sum_{\ell \in L} q^{Q(\ell)} = 1 + \sum_{k=\min(L)}^{\infty} a_k q^k$$

where $a_k = |\{\ell \in L \mid Q(\ell) = k\}|.$

- θ_L defines a holomorphic function on the upper half plane by substituting $q := \exp(2\pi i z)$.
- ▶ Then θ_L is a modular form of weight $\frac{n}{2}$ for the full modular group $\mathrm{SL}_2(\mathbb{Z})$.
- n is a multiple of 8.
- ▶ $\theta_L \in \mathcal{M}_{\frac{n}{2}}(\mathrm{SL}_2(\mathbb{Z})) = \mathbb{C}[E_4, \Delta]_{\frac{n}{2}}$ where $E_4 := \theta_{E_8} = 1 + 240q + \dots$ is the normalized Eisenstein series of weight 4 and

$$\Delta = q - 24q^2 + 252q^3 - 1472q^4 + \dots$$
 of weight 12

Extremal modular forms

Basis of $\mathcal{M}_{4k}(\mathrm{SL}_2(\mathbb{Z}))$:

$$E_{4}^{k} = 1 + 240kq + *q^{2} + \dots$$

$$E_{4}^{k-3}\Delta = q + *q^{2} + \dots$$

$$E_{4}^{k-6}\Delta^{2} = q^{2} + \dots$$

$$\vdots$$

$$E_{4}^{k-3m_{k}}\Delta^{m_{k}} = \dots \qquad q^{m_{k}} + \dots$$

where $m_k = \lfloor \frac{n}{24} \rfloor = \lfloor \frac{k}{3} \rfloor$.

Definition

This space contains a unique form

$$f^{(k)} := 1 + 0q + 0q^2 + \ldots + 0q^{m_k} + a(f^{(k)})q^{m_k+1} + b(f^{(k)})q^{m_k+2} + \ldots$$

 $f^{(k)}$ is called the extremal modular form of weight 4k.

$$f^{(1)} = 1 + 240q + \dots = \theta_{E_8}, f^{(2)} = 1 + 480q + \dots = \theta_{E_8}^2,$$

$$f^{(3)} = 1 + 196, 560q^2 + \dots = \theta_{\Lambda_{24}},$$

$$f^{(6)} = 1 + 52, 416, 000q^3 + \dots = \theta_{P_{48p}} = \theta_{P_{48q}} = \theta_{P_{48n}},$$

$$f^{(9)} = 1 + 6, 218, 175, 600q^4 + \dots = \theta_{\Gamma}.$$

Extremal even unimodular lattices

Theorem (Siegel)

$$a(f^{(k)}) > 0$$
 for all k

Corollary

Let L be an n-dimensional even unimodular lattice. Then

$$\min(L) \le 1 + \lfloor \frac{n}{24} \rfloor = 1 + m_{n/8}.$$

Lattices achieving this bound are called extremal.

Extremal even unimodular lattices L $\leq \mathbb{R}^n$

n	8	16	24	32	40	48	72	80	$\geq 163, 264$
min(L)	1	1	2	2	2	3	4	4	
number of									
extremal	1	2	1	$\geq 10^{7}$	$\geq 10^{51}$	≥ 3	≥ 1	≥ 4	0
lattices									

Extremal even unimodular lattices

Theorem (Siegel)

$$a(f^{(k)}) > 0$$
 for all k

Corollary

Let L be an n-dimensional even unimodular lattice. Then

$$\min(L) \le 1 + \lfloor \frac{n}{24} \rfloor = 1 + m_{n/8}.$$

Lattices achieving this bound are called extremal.

Extremal even unimodular lattices L $\leq \mathbb{R}^n$

n	8	16	24	32	40	48	72	80	$\geq 163, 264$
min(L)	1	1	2	2	2	3	4	4	
number of									
extremal	1	2	1	$\geq 10^{7}$	$\geq 10^{51}$	≥ 3	≥ 1	≥ 4	0
lattices									

Extremal even unimodular lattices

Theorem (Siegel)

 $a(f^{(k)}) > 0$ for all k and $b(f^{(k)}) < 0$ for large k ($k \ge 20408$).

Corollary

Let L be an n-dimensional even unimodular lattice. Then

$$\min(L) \le 1 + \lfloor \frac{n}{24} \rfloor = 1 + m_{n/8}.$$

Lattices achieving this bound are called extremal.

Extremal even unimodular lattices $L \leq \mathbb{R}^n$

n	8	16	24	32	40	48	72	80	$\geq 163, 264$
min(L)	1	1	2	2	2	3	4	4	
number of extremal lattices	1	2	1	$\geq 10^{7}$	$\geq 10^{51}$	≥ 3	≥ 1	≥ 4	0

Extremal even unimodular lattices in jump dimensions

$$\begin{split} f^{(3)} &= 1 + 196,560q^2 + \ldots = \theta_{\Lambda_{24}}, \\ f^{(6)} &= 1 + 52,416,000q^3 + \ldots = \theta_{P_{48p}} = \theta_{P_{48q}} = \theta_{P_{48n}}, \\ f^{(9)} &= 1 + 6,218,175,600q^4 + \ldots = \theta_{\Gamma}. \end{split}$$

Let L be an extremal even unimodular lattice of dimension 24m so $\min(L) = m + 1$

- ▶ All non-empty layers $\emptyset \neq \{\ell \in L \mid Q(\ell) = a\}$ form spherical 11-designs.
- ► The density of the associated sphere packing realises a local maximum of the density function on the space of all 24m-dimensional lattices.
- ▶ If m = 1, then $L = \Lambda_{24}$ is unique, Λ_{24} is the Leech lattice.
- The 196560 minimal vectors of the Leech lattice form the unique tight spherical 11-design and realise the maximal kissing number in dimension 24.
- $ightharpoonup \Lambda_{24}$ is the densest 24-dimensional lattice (Cohn, Kumar).
- For m=2,3 these lattices are the densest known lattices and realise the maximal known kissing number.

Turyn's construction

- Let (L,Q) be an even unimodular lattice of dimension n.
- ▶ Choose sublattices $M, N \le L$ such that M + N = L, $M \cap N = 2L$, and $(M, \frac{1}{2}Q)$, $(N, \frac{1}{2}Q)$ even unimodular.
- ▶ Such a pair (M, N) is called a polarisation of L.
- For $k \in \mathbb{N}$ let $\mathcal{L}(M, N) := \{(m+a, m+b, m+c) \in \perp^3 L \mid m \in M, a, b, c \in N, a+b+c \in 2L\}.$
- ▶ Define $\tilde{Q}: \mathcal{L}(M,N) \to \mathbb{Z}$,

$$\tilde{Q}(y_1, y_2, y_3) := \frac{1}{2}(Q(y_1) + Q(y_2) + Q(y_3)).$$

• $(\mathcal{L}(M,N),\tilde{Q})$ is an even unimodular lattice of dimension 3n.

Turyn's construction for lattices

(m+a,m+b,m+c) in
$$\begin{array}{c} L \perp L \perp L \\ & \text{m in M} \\ & \text{L(M,N)} \\ & \text{a,b,c in N} \\ & \text{a+b+c in 2L} \end{array}$$

$$d:=\min(L,Q)=\min(M,\tfrac12Q)=\min(N,\tfrac12Q)$$

Then $\lceil \frac{3d}{2} \rceil \leq \min(\mathcal{L}(M, N)) \leq 2d$.

Proof:

$$(a,0,0) \ \ a=2\ell \in 2L \text{ with } \tfrac12 Q(2\ell)=2Q(\ell) \geq 2d.$$

$$(a, b, 0)$$
 $a, b \in N$ with $\frac{1}{2}Q(a) + \frac{1}{2}Q(b) \ge 2d$.

$$(a, b, c)$$
 then $\frac{1}{2}(Q(a) + Q(b) + Q(c)) \ge \frac{3}{2}d$.

Theorem (Lepowsky, Meurman; Elkies, Gross)

Let $(L,Q)\cong E_8$ be the unique even unimodular lattice of dimension 8. Then for any polarisation (M,N) of E_8 the lattice $\mathcal{L}(M,N)$ has minimum >2.

Turyn's construction for lattices

$$d:=\min(L,Q)=\min(M,\tfrac12Q)=\min(N,\tfrac12Q)$$
 Then $\lceil \tfrac{3d}{2} \rceil \leq \min(\mathcal{L}(M,N)) \leq 2d.$

Theorem (Lepowsky, Meurman; Elkies, Gross)

Let $(L,Q)\cong E_8$ be the unique even unimodular lattice of dimension 8. Then for any polarisation (M,N) of E_8 the lattice $\mathcal{L}(M,N)$ has minimum ≥ 2 .

72-dimensional lattices from Leech (Griess)

If
$$(L,Q)\cong (M,\frac{1}{2}Q)\cong (N,\frac{1}{2}Q)\cong \Lambda_{24}$$
 then $3\leq \min(\mathcal{L}(M,N))\leq 4$.

The vectors v with Q(v) = 3

Assume that $(L,Q)\cong (M,\frac{1}{2}Q)\cong (N,\frac{1}{2}Q)\cong \Lambda_{24}$

- ▶ All 4095 non-zero classes of M/2L are represented by vectors m with Q(m)=4.
- ▶ For $m \in M$ let $N_m := \{a \in N \mid (a, m) \in 2\mathbb{Z}\}$ and $N^{(m)} := \langle N_m, m \rangle$.
- ▶ $(N^{(m)}, \frac{1}{2}Q)$ is even unimodular lattice with root system $24A_1$.
- ▶ $y := (y_1, y_2, y_3) = (m + a, m + b, m + c) \in \mathcal{L}(M, N)$ with $\tilde{Q}(y) = 3$ then $y_i \in N^{(m)}$ are roots and $m + y_1 + y_2 + y_3 \in 2L$.

Enumerate short vectors in $\mathcal{L}(M, N)$

For all 4095 nonzero classes $m+2L\in M/2L$ and all 24^2 pairs (y_1,y_2) of roots in $N^{(m)}$ check if $\langle 2L,m+y_1+y_2\rangle$ has minimum ≥ 3 . Closer analysis reduces number of pairs (y_1,y_2) to $8\cdot 16$.

$$4095 \cdot 8 \cdot 16 = 524,160$$

May restrict to representatives of the S-orbits on $M/2L \cong L/N$, where $S := \operatorname{Stab}_{\operatorname{Aut}(L)}(M,N)$.

E.g. 6 orbits for the extremal lattice so need to compute the minimum of $6 \cdot 8 \cdot 16 = 768$ lattices of dimension 24.

Stehlé, Watkins proof of extremality

Theorem (Stehlé, Watkins (2010))

Let L be an even unimodular lattice of dimension 72 with $\min(L) \geq 3$. Then L is extremal, if and only if it contains at least 6,218,175,600 vectors v with Q(v)=4.

Proof: L is an even unimodular lattice of minimum ≥ 3 , so its theta series is

$$\theta_L = 1 + a_3 q^3 + a_4 q^4 + \dots = f^{(9)} + a_3 \Delta^3.$$

$$f^{(9)} = 1 + 6,218,175,600q^4 + \dots$$

$$\Delta^3 = q^3 -72q^4 + \dots$$

So $a_4 = 6,218,175,600 - 72a_3 \ge 6,218,175,600$ if and only if $a_3 = 0$.

Remark

A similar proof works in all jump dimensions 24k (extremal minimum = k+1) for lattices of minimum $\geq k$.

For dimensions 24k+8 and lattices of minimum $\geq k$ one needs to count vectors v with Q(v)=k+2.

The history of Turyn's construction.

- 1967 Turyn: Constructed the Golay code \mathfrak{G}_{24} from the Hamming code h_8
- 78,82,84 Tits; Lepowsky, Meurman; Quebbemann: Construction of the Leech lattice Λ_{24} from E_8
 - 1996 Gross, Elkies: Λ_{24} from Hermitian structure of E_8
 - 1996 N.: Tried similar construction of extremal 72-dimensional lattices (Bordeaux).
 - 1998 Bachoc, N.: 2 extremal 80-dimensional lattices using Quebbemann's generalization and the Hermitian structure of E_8
 - 2010 Griess: Reminds Lepowsky, Meurman construction of Leech. proposes to construct 72-dimensional lattices from Λ_{24}
 - 2010 N.: Used one of the nine $\mathbb{Z}[\alpha=\frac{1+\sqrt{-7}}{2}]$ structures of Λ_{24} to find extremal 72-dimensional lattice $\Gamma_{72}=\mathcal{L}(\alpha\Lambda_{24},\overline{\alpha}\Lambda_{24})$
 - 2011 Parker, N.: Check all other polarisations of Λ_{24} to show that Γ_{72} is the unique extremal lattice of the form $\mathcal{L}(M,N)$ Chance: $1:10^{16}$ to find extremely good polarisation.

How to find polarisations

Hermitian polarisations

- lacktriangledown $lpha, eta \in \operatorname{End}(L)$ such that $(\alpha x, y) = (x, \beta y)$ and $\alpha \beta = 2$.
- $M := \alpha L, N := \beta L.$
- $\qquad \qquad \alpha^2 \alpha + 2 = 0 \ (\mathbb{Z}[\alpha] = \text{integers in } \mathbb{Q}[\sqrt{-7}]).$
- $(\alpha x, y) = (x, \beta y)$ where $\beta = 1 \alpha = \overline{\alpha}$.
- ▶ Then $M:=\alpha L$, $N:=\beta L$ defines a polarisation of L such that $(L,Q)\cong (M,\frac{1}{2}Q)\cong (N,\frac{1}{2}Q).$

Hermitian structures of the Leech lattice

Theorem (M. Hentschel, 2009)

There are exactly nine $\mathbb{Z}[\alpha]$ -structures of the Leech lattice.

	group S	order	# S orbits on $M/2L$
1	$SL_2(25)$	$2^43 \cdot 5^213$	6
2	$2.A_6 \times D_8$	2^73^25	12
3	$SL_2(13).2$	$2^43 \cdot 7 \cdot 13$	9
4	$(\mathrm{SL}_2(5) \times A_5).2$	$2^6 3^2 5^2$	8
5	$(\mathrm{SL}_2(5) \times A_5).2$	$2^6 3^2 5^2$	8
6	soluble	2^93^3	11
7	$\pm \operatorname{PSL}_2(7) \times (C_7:C_3)$	$2^4 3^2 7^2$	9
8	$PSL_2(7) \times 2.A_7$	$2^73^35 \cdot 7^2$	3
9	$2.J_2.2$	$2^93^35^27$	2

Hermitian polarisations yield tensor products

Remark

 $\mathcal{L}(\alpha L, \beta L) = L \otimes_{\mathbb{Z}[\alpha]} P_b$ where

$$P_b = \langle (\beta, \beta, 0), (0, \beta, \beta), (\alpha, \alpha, \alpha) \rangle \leq \mathbb{Z}[\alpha]^3$$

with the half the standard Hermitian form

$$h: P_b \times P_b \to \mathbb{Z}[\alpha], h((a_1, a_2, a_3), (b_1, b_2, b_3)) = \frac{1}{2} \sum_{i=1}^{3} a_i \overline{b_i}.$$

 P_b is Hermitian unimodular and $\operatorname{Aut}_{\mathbb{Z}[\alpha]}(P_b) \cong \pm \operatorname{PSL}_2(7)$. So $\operatorname{Aut}(\mathcal{L}(\alpha L, \beta L)) \geq \operatorname{Aut}_{\mathbb{Z}[\alpha]}(L) \times \operatorname{PSL}_2(7)$.

In particular $\operatorname{Aut}(\Gamma) \geq \operatorname{SL}_2(25) \times \operatorname{PSL}_2(7)$.

Hermitian structures of the Leech lattice

	group	$\#\{v \in \mathcal{L}(\alpha L, \beta L) \mid Q(v) = 3\}$
1	$SL_2(25)$	0
2	$2.A_6 \times D_8$	$2 \cdot 20,160$
3	$SL_2(13).2$	$2 \cdot 52,416$
4	$(\mathrm{SL}_2(5) \times A_5).2$	$2 \cdot 100,800$
5	$(\mathrm{SL}_2(5) \times A_5).2$	$2 \cdot 100,800$
6	$2^{9}3^{3}$	$2 \cdot 177,408$
7	$\pm \operatorname{PSL}_2(7) \times (C_7:C_3)$	$2 \cdot 306, 432$
8	$PSL_2(7) \times 2.A_7$	$2 \cdot 504,000$
9	$2.J_2.2$	$2 \cdot 1,209,600$

The extremal 72-dimensional lattice Γ

Main result

- ightharpoonup Γ is an extremal even unimodular lattice of dimension 72.
- $\operatorname{Aut}(\Gamma)$ contains $\mathcal{U} := (\operatorname{PSL}_2(7) \times \operatorname{SL}_2(25)) : 2$.
- ▶ \mathcal{U} is an absolutely irreducible subgroup of $GL_{72}(\mathbb{Q})$.
- ▶ All \mathcal{U} -invariant lattices are similar to Γ .
- ▶ $Aut(\Gamma)$ is a maximal finite subgroup of $GL_{72}(\mathbb{Q})$.
- Γ is an ideal lattice in the 91st cyclotomic number field.
- Γ realises the densest known sphere packing
- and maximal known kissing number in dimension 72.
- Structure of Γ can be used for decoding (Annika Meyer)
- ▶ Γ is a $\mathbb{Z}[\frac{1+\sqrt{5}}{2}]$ -lattice. This gives (n^2+5n+5) -modular lattices of minimum 8+4n $(n\in\mathbb{N}_0)$.

Γ as $\mathbb{Z}[\frac{1+\sqrt{5}}{2}]$ lattice

Observation

The Hermitian Leech lattice L with $\operatorname{Aut}(L)\cong SL_2(25)$ and hence also Γ has a structure over $R:=\mathbb{Z}[\frac{1+\sqrt{5}}{2}]$, so $(\Gamma,Q)=(\Gamma,\operatorname{Tr}(q))$ with $q:\Gamma\to R[\frac{1}{5}]$ quadratic form. For any totally positive $a\in R$ we obtain N(a)-modular lattice $(\Gamma,\operatorname{Tr}(aq))$. Let $\wp:=\frac{5+\sqrt{5}}{2}$. Then $(\Gamma,\wp q)$ is unimodular R-lattice and its theta series is a Hilbert modular form of weight 36 for the full

$$\theta(\Gamma, \wp q) \in \mathbb{C}[A, B, C]$$

Theorem

modular group.

Let (Λ,q) be a 36-dimensional R-lattice, such that $(\Lambda,\operatorname{Tr}(q))$ is an even unimodular lattice of minimum 4 and $\wp:=(5+\sqrt{5})/2$. For $n\in\mathbb{Z}_{\geq 0}$ put $L_n:=(\Lambda,\operatorname{Tr}(\wp+n)q)$. Then L_n is an even (n^2+5n+5) -modular lattice of minimum 8+4n.

How to obtain all polarisations

A rough estimate shows that there are about 10^{10} orbits of $\operatorname{Aut}(\Lambda_{24})$ on the set of polarisations (M,N) such that $(M,\frac{1}{2}Q)\cong (N,\frac{1}{2}Q)\cong \Lambda_{24}$.

Theorem (Richard Parker, N.)

There is a unique orbit of $\operatorname{Aut}(\Lambda_{24}) \cong 2.Co_1$ for which $\mathcal{L}(M,N)$ is extremal.

Computation: Compute representatives for the 16 $\operatorname{Aut}(\Lambda_{24})$ -orbits on $\overline{\{N \mid (N,\frac{1}{2}Q)\cong \Lambda_{24}\}}$, and find all good complements M such that $\mathcal{L}(M,N)$ is extremal.

N defines a set of bad vectors $B(N) \subset \Lambda_{24}/2\Lambda_{24}$, so that $\mathcal{L}(M,N)$ extremal iff $M \cap B(N) = \emptyset$.

The total computation took about 2 CPU years.

Bad vectors

 $\mathcal{L}(M,N)=\{(a+m,b+m,c+m)\mid a,b,c\in N,m\in M,a+c+b\in 2L\}$ Start with one of the 16 orbit representatives N. Then any nonzero class $0\neq f+N\in\Lambda_{24}/N$ contains exactly 24 pairs $\{\pm v_1,\ldots,\pm v_{24}\}$ of minimal vectors in $\Lambda_{24}.$ The set

$$B(N,f) := \{(v_i + v_j + v_k) + 2\Lambda_{24} \mid 1 \le i, j, k \le 24\} \subset \Lambda_{24}/2\Lambda_{24}$$

is called the set of bad vectors for N and f. Their union

$$B(N) := \bigcup_{0 \neq f + N \in \Lambda_{24}/N} B(N, f)$$

is called the set of bad vectors for N.

Remark

The lattice $\mathcal{L}(M,N)$ is extremal if and only if $M/2L \cap B(N) = \emptyset$.

Orbits on the rescaled Leech sublattices

	stabilizer	order	orbit length
1	$PSL_{2}(25):2$	$2^43 \cdot 5^213$	$2.7 \cdot 10^{14}$
2	$A_7 \times PSL_2(7)$	$2^6 3^3 5 \cdot 7^2$	$9.8 \cdot 10^{12}$
3	$S_3 \times PSL_2(13)$	$2^3 3^2 7 \cdot 13$	$6.3 \cdot 10^{14}$
4	$3.A_6 \times A_5$	$2^6 3^4 5^2$	$3.2 \cdot 10^{13}$
5	$PSL_2(7) \times PSL_2(7)$	$2^6 3^2 7^2$	$1.5 \cdot 10^{14}$
6	$A_5 imes$ soluble	$2^{15}3^{3}5$	$9.4 \cdot 10^{11}$
7	$G_2(4) \times A_4$	$2^{15}3^45^27 \cdot 13$	$6.9 \cdot 10^{8}$
8	$PSL_2(23)$	$2^33 \cdot 11 \cdot 23$	$6.9 \cdot 10^{14}$
9	soluble	$2^{11}3$	$6.8 \cdot 10^{14}$
10	soluble	$2^{12}3^2$	$1.1 \cdot 10^{14}$
11	soluble	$2^{8}3 \cdot 7$	$7.7 \cdot 10^{14}$
12	soluble	$2^{11}3^2$	$2.3 \cdot 10^{14}$
13	$3.A_7.2$	$2^4 3^3 5 \cdot 7$	$2.7 \cdot 10^{14}$
14	soluble	$2^{9}3 \cdot 5$	$5.4 \cdot 10^{14}$
15	soluble	$2^{8}3 \cdot 7$	$7.7 \cdot 10^{14}$
16	soluble	$2^{14}3^3$	$9.3 \cdot 10^{12}$

Doubly-even self-dual codes

Definition

- ▶ A linear binary code C of length n is a subspace $C \leq \mathbb{F}_2^n$.
- ightharpoonup The dual code of C is

$$C^{\perp}:=\{x\in\mathbb{F}_2^n\mid (x,c):=\sum_{i=1}^n x_ic_i=0 \text{ for all } c\in C\}$$

- ▶ C is called self-dual if $C = C^{\perp}$.
- ▶ The Hamming weight of a codeword $c \in C$ is $wt(c) := |\{i \mid c_i \neq 0\}|.$
- ▶ C is called doubly-even if $wt(c) \in 4\mathbb{Z}$ for all $c \in C$.
- ▶ The minimum distance $d(C) := \min\{\text{wt}(c) \mid 0 \neq c \in C\}$.
- ► The weight enumerator of C is $p_C := \sum_{c \in C} x^{n-\operatorname{wt}(c)} y^{\operatorname{wt}(c)} \in \mathbb{C}[x,y]_n$.

The minimum distance measures the error correcting quality of a self-dual code.

Self-dual codes

Remark

- ► The all-one vector 1 lies in the dual of every even code since $\operatorname{wt}(c) \equiv_2 (c,c) \equiv_2 (c,1)$.
- ▶ If C is self-dual then $n = 2\dim(C)$ is even and

$$\mathbf{1} \in C^{\perp} = C \subset \mathbf{1}^{\perp} = \{c \in \mathbb{F}_2^n \mid \operatorname{wt}(c) \text{ even } \}.$$

- ▶ Self-dual doubly-even codes correspond to totally isotropic subspaces in the quadratic space $\mathbf{1}^{\perp}/\langle \mathbf{1} \rangle$.
- ▶ Annika Meyer, N. $C = C^{\perp}$ doubly-even \Rightarrow Aut $(C) := \operatorname{Stab}_{S_n}(C) \leq A_n$.

the unique doubly-even self-dual code of length 8 $p_{h_8}(x,y)=x^8+14x^4y^4+y^8$ and $\operatorname{Aut}(h_8)=2^3:\operatorname{GL}_3(2).$

Extremal codes

The binary Golay code \mathcal{G}_{24} is the unique doubly-even self-dual code of length 24 with minimum distance ≥ 8 . $\mathrm{Aut}(\mathcal{G}_{24}) = M_{24}$

$$p_{\mathfrak{Z}_{24}} = x^{24} + 759x^{16}y^8 + 2576x^{12}y^{12} + 759x^8y^{16} + y^{24}$$

Theorem (Gleason)

Let $C=C^{\perp} \leq \mathbb{F}_2^n$ be doubly even. Then

- $ightharpoonup n \in 8\mathbb{Z}$
- ▶ $p_C \in \mathbb{C}[p_{h_8}, p_{\mathfrak{G}_{24}}] = \text{Inv}(G_{192})$
- $d(C) \le 4 + 4\lfloor \frac{n}{24} \rfloor$

Doubly-even self-dual codes achieving this bound are called extremal.

length	8	16	24	32	48	72	80	≥ 3952
d(C)	4	4	8	8	12	16	16	
extremal codes	h_8	$h_8 \perp h_8, d_{16}^+$	g_{24}	5	QR_{48}	?	≥ 4	0

Extremal polynomials

$$\begin{split} \mathbb{C}[p_{h_8},p_{\mathbb{G}_{24}}] &= \mathbb{C}[\underbrace{x^8 + 14x^4y^4 + y^8}_{f},\underbrace{x^4y^4(x^4 - y^4)^4}_{g}] = \operatorname{Inv}(G_{192}) \\ \text{Basis of } \mathbb{C}[f(1,y),g(1,y)]_{8k} \\ f^k &= \qquad 1 + \quad 14ky^4 + \quad *y^8 + \quad \dots \\ f^{k-3}g &= \qquad \qquad y^4 + \quad *y^8 + \quad \dots \\ f^{k-6}g^2 &= \qquad \qquad y^8 + \quad \dots \\ \vdots & & & \vdots \\ f^{k-3m_k}g^{m_k} &= \qquad \dots \qquad \qquad y^{4m_k} + \quad \dots \end{split}$$

where $m_k = \lfloor \frac{n}{24} \rfloor = \lfloor \frac{k}{3} \rfloor$.

Definition

This space contains a unique polynomial

$$p^{(k)} := 1 + 0y^4 + 0y^8 + \ldots + 0y^{4m_k} + a_k y^{4m_k+4} + b_k y^{4m_k+8} + \ldots$$

 $p^{(k)}$ is called the extremal polynomial of degree 8k.

$$p^{(1)} = p_{h_8}, \ p^{(2)} = p_{h_8}^2, \ p^{(3)} = p_{g_{24}}, \ p^{(6)} = p_{QR48}$$

$$p^{(9)} = 1 + 249849y^{16} + 18106704y^{20} + 462962955y_{1}^{24} + \dots$$

Turyn's construction of the Golay code

Construction of Golay code

Choose two copies C and D of h_8 such that

$$C \cap D = \langle \mathbf{1} \rangle, \ C + D = \mathbf{1}^{\perp} \le \mathbb{F}_2^8$$

$$\mathfrak{G}_{24} := \{ (c+d_1, c+d_2, c+d_3) \mid c \in C, d_i \in D, d_1+d_2+d_3 \in \langle \mathbf{1} \rangle \}$$

- (a) $g_{24} = g_{24}^{\perp}$.
- (b) \mathcal{G}_{24} is doubly-even.
- (c) $d(\mathcal{G}_{24}) = 8$.

Proof: (a) unique expression if c represents classes in $h_8/\langle \mathbf{1} \rangle$, so

$$|\mathcal{G}_{24}| = 2^3 \cdot 2^4 \cdot 2^4 \cdot 2 = 2^{12}$$

Suffices
$$\mathcal{G}_{24}\subseteq\mathcal{G}_{24}^{\perp}$$
: $((c+d_1,c+d_2,c+d_3),(c'+d_1',c'+d_2',c'+d_3'))=$

$$3(c,c') + (c,d_1' + d_2' + d_3') + (d_1 + d_2 + d_3,c') + (d_1,d_1') + (d_2,d_2') + (d_3,d_3') = 0$$

(b) Follows since C and D are doubly-even, so generators have weight divisible by 4.

Turyn's construction of the Golay code

Construction of Golay code.

Choose two copies C and D of h_8 such that

$$C \cap D = \langle \mathbf{1} \rangle, \ C + D = \mathbf{1}^{\perp} \le \mathbb{F}_2^8$$

$$\mathcal{G}_{24} := \{(c+d_1, c+d_2, c+d_3) \mid c \in C, d_i \in D, d_1+d_2+d_3 \in \langle \mathbf{1} \rangle \}$$
 (c) $d(\mathcal{G}_{24}) = 8$.

Proof: (c)

$$\operatorname{wt}(c+d_1,c+d_2,c+d_3) = \operatorname{wt}(c+d_1) + \operatorname{wt}(c+d_2) + \operatorname{wt}(c+d_3).$$

- ▶ 1 non-zero component: (d, 0, 0) with $d \in \langle \mathbf{1} \rangle$, weight 8.
- ▶ 2 non-zero components: $(d_1, d_2, 0)$ with $d_1, d_2 \in D \cong h_8$, weight $\geq d(h_8) + d(h_8) = 4 + 4 = 8$.
- ▶ 3 non-zero components: All have even weight, so weight $\geq 2 + 2 + 2 = 6$. By (b) the weight is a multiple of 4, so ≥ 8 .

Turyn applied to Golay will not yield an extremal code of length 72. Such an extremal code has no automorphism of order 2 which has fixed points.

Automorphisms of extremal codes

Theorem (Bouyuklieva; O'Brien, Willems; N. Feulner)

Let $C \leq \mathbb{F}_2^{72}$ be an extremal doubly even code,

$$G := \operatorname{Aut}(C) := \{ \sigma \in S_{72} \mid \sigma(C) = C \}$$

- ▶ Let p be a prime dividing |G|, $\sigma \in G$ of order p.
- $ightharpoonup p \leq 7.$
- If p=2 or p=3 then σ has no fixed points.
- ▶ If p = 5 or p = 7 then σ has 2 fixed points.
- G has no element of odd order > 7.
- G is solvable.
- No subgroup $C_3 \times C_3$, C_7 , D_{10} , C_{10} .
- ▶ No subgroup $C_4 \times C_2$, C_8 , Q_8 .
- ▶ Summarize: |G| = 5 or |G| divides 24.

Existence of an extremal code of length 72 is still open.