Energy minimization for lattices and periodic configurations, and formal duality

Abhinav Kumar

MIT

November 14, 2011

joint work with Henry Cohn and Achill Schürmann

Abhinav Kumar (MIT)

Sphere packing problem: What is (a/the) densest sphere packing in *n* dimensions?

In low dimensions, the best densities known are achieved by lattice packings.

п	1	2	3	4	5	6	7		24
\wedge	A_1	A_2	A_3	D_4	D_5	E_6	E ₇	E_8	Leech
due to	Gauss			Korkine-		Blichfeldt			Cohn-K.
				Zolotareff					

Sphere packing problem: What is (a/the) densest sphere packing in *n* dimensions?

In low dimensions, the best densities known are achieved by lattice packings.

n	1	2	3	4	5	6	7	8	24
Λ	A_1	A_2	A_3	D_4	D_5	<i>E</i> ₆	E ₇	<i>E</i> ₈	Leech
due to	Gauss			Korkine-		Blichfeldt			Cohn-K.
				Zolotareff					

n = 1: lay intervals end to end (density 1).

n = 2: hexagonal or A_2 arrangement [Fejes-Tóth 1940]

This is the unique densest periodic packing.

- n = 1: lay intervals end to end (density 1).
- n = 2: hexagonal or A_2 arrangement [Fejes-Tóth 1940]

This is the unique densest periodic packing.

n = 3: stack layers of the solution in 2 dimensions. [Hales 1998]

Uncountably many ways of doing this, the Barlow packings.

Even in dimensions 5, 6, 7, densest lattices have (uncountably many) competitors.

n = 3: stack layers of the solution in 2 dimensions. [Hales 1998]

Uncountably many ways of doing this, the Barlow packings.

Even in dimensions 5, 6, 7, densest lattices have (uncountably many) competitors.

n = 3: stack layers of the solution in 2 dimensions. [Hales 1998]

Uncountably many ways of doing this, the Barlow packings.

Even in dimensions 5, 6, 7, densest lattices have (uncountably many) competitors.

- A_n (simplex lattice) = { $x \in \mathbb{Z}^{n+1} | \sum x_i = 0$ }, inside the zero-sum hyperplane { $x \in \mathbb{R}^{n+1} | \sum x_i = 0$ } $\cong \mathbb{R}^n$.
- D_n (checkerboard lattice) = $\{x \in \mathbb{Z}^n \mid \sum x_i \equiv 0 \pmod{2}\}$
- $E_8 = D_8 \bigcup (D_8 + (1/2, \dots, 1/2)).$
- E_7 = orthogonal complement of A_1 inside E_8 .
- E_6 = orthogonal complement of A_2 inside E_8 .

Example

In \mathbb{R}^{10} the densest known is the Best packing, 40 translates of a lattice.

But do believe the densest packings can be achieved by periodic packings (Zassenhaus conjecture). Can provably come arbitrarily close for packing density.

Example

In \mathbb{R}^{10} the densest known is the Best packing, 40 translates of a lattice.

But do believe the densest packings can be achieved by periodic packings (Zassenhaus conjecture). Can provably come arbitrarily close for packing density.

Example

In \mathbb{R}^{10} the densest known is the Best packing, 40 translates of a lattice.

But do believe the densest packings can be achieved by periodic packings (Zassenhaus conjecture). Can provably come arbitrarily close for packing density.

Example

In \mathbb{R}^{10} the densest known is the Best packing, 40 translates of a lattice.

But do believe the densest packings can be achieved by periodic packings (Zassenhaus conjecture). Can provably come arbitrarily close for packing density.

For n = 3, Barlow packings: stack layers of A_2 . Two classes of deep holes, so three translates to play with, say A, B, C.

• Face-centered cubic A₃: ... ABCABC

Hexagonal close-packed: ... ABABAB

Periodic iff string is periodic.

For n = 3, Barlow packings: stack layers of A_2 . Two classes of deep holes, so three translates to play with, say A, B, C.

• Face-centered cubic A₃: ... ABCABC

• Hexagonal close-packed: ABABAB

Periodic iff string is periodic.

For n = 3, Barlow packings: stack layers of A_2 . Two classes of deep holes, so three translates to play with, say A, B, C.

- Face-centered cubic A₃: ... ABCABC
- Hexagonal close-packed: ABABAB

Periodic iff string is periodic.

For n = 3, Barlow packings: stack layers of A_2 . Two classes of deep holes, so three translates to play with, say A, B, C.

- Face-centered cubic A₃: ... ABCABC
- Hexagonal close-packed: ABABAB

Periodic iff string is periodic.

For n = 3, Barlow packings: stack layers of A_2 . Two classes of deep holes, so three translates to play with, say A, B, C.

- Face-centered cubic A₃: ... ABCABC
- Hexagonal close-packed: ABABAB

Periodic iff string is periodic.

Strings of these 4 letters, with no consecutive letters identical, correspond to the densest packings (conjecturally).

 $D_5 = \Lambda_5^1$ corresponds to ... ABAB

- Λ²₅: corresponds to ... ABCDABCD...
- Λ_5^3 : corresponds to ... ABCABC...
- Λ₅⁴: corresponds to ... BACBDCADBACBDCAD ...

Strings of these 4 letters, with no consecutive letters identical, correspond to the densest packings (conjecturally).

$$D_5 = \Lambda_5^1$$
 corresponds to $\dots ABAB \dots$

- Λ_5^2 : corresponds to ... ABCDABCD...
- Λ_5^3 : corresponds to ... ABCABC...
- Λ₅⁴: corresponds to ... BACBDCADBACBDCAD ...

Strings of these 4 letters, with no consecutive letters identical, correspond to the densest packings (conjecturally).

$$D_5 = \Lambda_5^1$$
 corresponds to $\dots ABAB \dots$

- Λ_5^2 : corresponds to ... ABCDABCD...
- Λ_5^3 : corresponds to ... ABCABC ...
- Λ_5^4 : corresponds to ... *BACBDCADBACBDCAD*...

Strings of these 4 letters, with no consecutive letters identical, correspond to the densest packings (conjecturally).

$$D_5 = \Lambda_5^1$$
 corresponds to ... ABAB

- Λ_5^2 : corresponds to ... *ABCDABCD*...
- Λ_5^3 : corresponds to ... ABCABC ...
- Λ_5^4 : corresponds to ... BACBDCADBACBDCAD ...

Strings of these 4 letters, with no consecutive letters identical, correspond to the densest packings (conjecturally).

$$D_5 = \Lambda_5^1$$
 corresponds to ... ABAB

- Λ_5^2 : corresponds to ... *ABCDABCD*...
- Λ_5^3 : corresponds to ... *ABCABC*...
- Λ_5^4 : corresponds to ... BACBDCADBACBDCAD ...

Fiber over D₄.

Dimension 6: color the hexagonal lattice with 4 colors.

Dimension 7: color a Barlow packing with 4 colors.

Dimension 8: color D_4 with 4 colors (only one way).

Energy minimization from physics is a good way to make dense arrangements.

Example

To make an optimal spherical code of N points in S^{n-1} , define

$$\Xi_k = \sum_{i
eq j} rac{1}{|v_i - v_j|^k}$$

and minimize. Corresponds to a repulsive force.

The limit $k \to \infty$ corresponds to the spherical coding problem (the dominant term is the one for minimal distance).

Take a lattice $\Lambda \subset \mathbb{R}^n$ and N translate vectors $0 = v_1, \ldots, v_N$.

Let $\mathcal{P} = \bigcup_i (\Lambda + v_i)$ be a periodic configuration.

Let f(r) be a potential energy function, e.g. $f(r) = 1/r^{2k}$ or $f(r) = e^{-cr^2}$ (usually want a completely monotonic function of squared distance.

Define *f*-potential energy of $x \in \mathcal{P}$ to be

$$E_f(x, \mathcal{P}) = \sum_{x \neq y \in \mathcal{P}} f(|x - y|)$$

Take a lattice $\Lambda \subset \mathbb{R}^n$ and N translate vectors $0 = v_1, \ldots, v_N$.

Let $\mathcal{P} = \bigcup_i (\Lambda + v_i)$ be a periodic configuration.

Let f(r) be a potential energy function, e.g. $f(r) = 1/r^{2k}$ or $f(r) = e^{-cr^2}$ (usually want a completely monotonic function of squared distance.

Define *f*-potential energy of $x \in \mathcal{P}$ to be

$$E_f(x, \mathcal{P}) = \sum_{x \neq y \in \mathcal{P}} f(|x - y|)$$

Take a lattice $\Lambda \subset \mathbb{R}^n$ and N translate vectors $0 = v_1, \ldots, v_N$.

Let $\mathcal{P} = \bigcup_i (\Lambda + v_i)$ be a periodic configuration.

Let f(r) be a potential energy function, e.g. $f(r) = 1/r^{2k}$ or $f(r) = e^{-cr^2}$ (usually want a completely monotonic function of squared distance.

Define *f*-potential energy of $x \in \mathcal{P}$ to be

$$E_f(x,\mathcal{P}) = \sum_{x \neq y \in \mathcal{P}} f(|x-y|)$$

Take a lattice $\Lambda \subset \mathbb{R}^n$ and N translate vectors $0 = v_1, \ldots, v_N$.

Let $\mathcal{P} = \bigcup_i (\Lambda + v_i)$ be a periodic configuration.

Let f(r) be a potential energy function, e.g. $f(r) = 1/r^{2k}$ or $f(r) = e^{-cr^2}$ (usually want a completely monotonic function of squared distance.

Define *f*-potential energy of $x \in \mathcal{P}$ to be

$$E_f(x,\mathcal{P}) = \sum_{x \neq y \in \mathcal{P}} f(|x-y|)$$

[Cohn-K-Schürmann '09]: computer simulations for $f = e^{-cr^2}$ for various c, dimension $n \le 8$, $N \le 10$. Gradient descent on space of periodic configurations with fixed number of translates.

- c → ∞ is the sphere packing limit. But for large c, this has more information. Between competitors of same density, break ties by favoring lower kissing number.
- Gaussian is more general since $1/r^k$ is Mellin transform of a Gaussian.

[Cohn-K-Schürmann '09]: computer simulations for $f = e^{-cr^2}$ for various c, dimension $n \le 8$, $N \le 10$. Gradient descent on space of periodic configurations with fixed number of translates.

- c → ∞ is the sphere packing limit. But for large c, this has more information. Between competitors of same density, break ties by favoring lower kissing number.
- Gaussian is more general since $1/r^k$ is Mellin transform of a Gaussian.

[Cohn-K-Schürmann '09]: computer simulations for $f = e^{-cr^2}$ for various c, dimension $n \le 8$, $N \le 10$. Gradient descent on space of periodic configurations with fixed number of translates.

- c → ∞ is the sphere packing limit. But for large c, this has has more information. Between competitors of same density, break ties by favoring lower kissing number.
- Gaussian is more general since $1/r^k$ is Mellin transform of a Gaussian.

[Cohn-K-Schürmann '09]: computer simulations for $f = e^{-cr^2}$ for various c, dimension $n \le 8$, $N \le 10$. Gradient descent on space of periodic configurations with fixed number of translates.

- c → ∞ is the sphere packing limit. But for large c, this has more information. Between competitors of same density, break ties by favoring lower kissing number.
- Gaussian is more general since $1/r^k$ is Mellin transform of a Gaussian.

• n = 1: [Cohn-K] proved \mathbb{Z} is always optimal and unique.

- *n* = 2: We can't prove it, but expect *A*₂ to be always optimal, and experiments confirm this. Montgomery proved optimal among lattices.
- n = 3: For c >> 1 get A_3 . For $c \approx 0$ get A_3^* (duality). In between, for a range we get phase coexistence!
- n = 4. Always seem to get D_4 . No proof!

- n = 1: [Cohn-K] proved \mathbb{Z} is always optimal and unique.
- *n* = 2: We can't prove it, but expect *A*₂ to be always optimal, and experiments confirm this. Montgomery proved optimal among lattices.
- n = 3: For c >> 1 get A_3 . For $c \approx 0$ get A_3^* (duality). In between, for a range we get phase coexistence!
- n = 4. Always seem to get D_4 . No proof!

- n = 1: [Cohn-K] proved \mathbb{Z} is always optimal and unique.
- *n* = 2: We can't prove it, but expect *A*₂ to be always optimal, and experiments confirm this. Montgomery proved optimal among lattices.
- n = 3: For c >> 1 get A_3 . For $c \approx 0$ get A_3^* (duality). In between, for a range we get phase coexistence!
- n = 4. Always seem to get D_4 . No proof!

- n = 1: [Cohn-K] proved \mathbb{Z} is always optimal and unique.
- *n* = 2: We can't prove it, but expect *A*₂ to be always optimal, and experiments confirm this. Montgomery proved optimal among lattices.
- n = 3: For c >> 1 get A_3 . For $c \approx 0$ get A_3^* (duality). In between, for a range we get phase coexistence!
- n = 4. Always seem to get D_4 . No proof!

- n = 1: [Cohn-K] proved \mathbb{Z} is always optimal and unique.
- *n* = 2: We can't prove it, but expect *A*₂ to be always optimal, and experiments confirm this. Montgomery proved optimal among lattices.
- n = 3: For c >> 1 get A_3 . For $c \approx 0$ get A_3^* (duality). In between, for a range we get phase coexistence!
- n = 4. Always seem to get D_4 . No proof!

- n = 1: [Cohn-K] proved \mathbb{Z} is always optimal and unique.
- *n* = 2: We can't prove it, but expect *A*₂ to be always optimal, and experiments confirm this. Montgomery proved optimal among lattices.
- n = 3: For c >> 1 get A_3 . For $c \approx 0$ get A_3^* (duality). In between, for a range we get phase coexistence!
- n = 4. Always seem to get D_4 . No proof!

Let $D_5^+ = D_5 \bigcup (D_5 + (1/2, \dots, 1/2))$, and

$$D_5^+(\alpha) = \{(x_1, \ldots, x_4, \alpha x_5) | x \in D_5^+\}.$$

Then $D_5^+(\alpha)$ is formally dual to $D_5^+(1/\alpha)$.

Also
$$D_5^+(2) \cong \Lambda_5^2$$
, the minimizer for $c \to \infty$.

Minimizer for $c \rightarrow 0$ seems to be $D_5^+(1/2)$.

Let
$$D_5^+ = D_5 igcup (D_5 + (1/2, \dots, 1/2))$$
, and

$$D_5^+(\alpha) = \{ (x_1, \ldots, x_4, \alpha x_5) \, | \, x \in D_5^+ \}.$$

Then $D_5^+(\alpha)$ is formally dual to $D_5^+(1/\alpha)$.

Also
$$D_5^+(2) \cong \Lambda_5^2$$
, the minimizer for $c \to \infty$.

Minimizer for $c \rightarrow 0$ seems to be $D_5^+(1/2)$.

Let
$$D_5^+ = D_5 igcup (D_5 + (1/2, \dots, 1/2))$$
, and

$$D_5^+(\alpha) = \{(x_1, \ldots, x_4, \alpha x_5) | x \in D_5^+\}.$$

Then $D_5^+(\alpha)$ is formally dual to $D_5^+(1/\alpha)$.

Also
$$D_5^+(2) \cong \Lambda_5^2$$
, the minimizer for $c \to \infty$.

Minimizer for $c \rightarrow 0$ seems to be $D_5^+(1/2)$.

Let
$${D_5^+} = {D_5} igcup ({D_5} + (1/2, \dots, 1/2))$$
, and

$$D_5^+(\alpha) = \{(x_1, \ldots, x_4, \alpha x_5) \, | \, x \in D_5^+\}.$$

Then $D_5^+(\alpha)$ is formally dual to $D_5^+(1/\alpha)$.

Also
$$D_5^+(2) \cong \Lambda_5^2$$
, the minimizer for $c \to \infty$.

Minimizer for $c \to 0$ seems to be $D_5^+(1/2)$.

Get E_6 for $c \to \infty$, and E_6^* for $c \to 0$.

But in the middle we get a non-lattice, obtained by "gluing" D_3 and D_3 along their holes, and stretching.

Let \mathcal{P}_6 be $D_3 \oplus D_3$ along with its three translates by $(1/2, \ldots, 1/2)$, (1, 1, 1, -1/2, -1/2, -1/2) and (-1/2, -1/2, -1/2, 1, 1, 1).

Let $\mathcal{P}_6(\alpha)$ be obtained by scaling the first three coordinates of \mathcal{P}_6 by α and the last three by $1/\alpha$.

Note that $\mathcal{P}(\alpha)$ is formally self-dual!

Get E_6 for $c \to \infty$, and E_6^* for $c \to 0$.

But in the middle we get a non-lattice, obtained by "gluing" D_3 and D_3 along their holes, and stretching.

Let \mathcal{P}_6 be $D_3 \oplus D_3$ along with its three translates by $(1/2, \ldots, 1/2)$, (1, 1, 1, -1/2, -1/2, -1/2) and (-1/2, -1/2, -1/2, 1, 1, 1).

Let $\mathcal{P}_6(\alpha)$ be obtained by scaling the first three coordinates of \mathcal{P}_6 by α and the last three by $1/\alpha$.

Note that $\mathcal{P}(\alpha)$ is formally self-dual!

Get E_6 for $c \to \infty$, and E_6^* for $c \to 0$.

But in the middle we get a non-lattice, obtained by "gluing" D_3 and D_3 along their holes, and stretching.

Let \mathcal{P}_6 be $D_3 \oplus D_3$ along with its three translates by $(1/2, \ldots, 1/2)$, (1, 1, 1, -1/2, -1/2, -1/2) and (-1/2, -1/2, -1/2, 1, 1, 1).

Let $\mathcal{P}_6(\alpha)$ be obtained by scaling the first three coordinates of \mathcal{P}_6 by α and the last three by $1/\alpha$.

Note that $\mathcal{P}(\alpha)$ is formally self-dual!

Dimension 7: We get $D_7^+(\alpha)$ where α varies depending on c. As $c \to \infty$ we get $D_7^+(\sqrt{2}) \cong E_7$.

Dimension 8: Get E_8 always, in accordance with [Cohn-K] conjecture of universal optimality.

Dimensions 9 and above: Calculations get much harder, but probably a lot of interesting phenomena.

Example

For n = 9, seem to always get D_9^+ (no scaling!)

Dimension 7: We get $D_7^+(\alpha)$ where α varies depending on c. As $c \to \infty$ we get $D_7^+(\sqrt{2}) \cong E_7$.

Dimension 8: Get E_8 always, in accordance with [Cohn-K] conjecture of universal optimality.

Dimensions 9 and above: Calculations get much harder, but probably a lot of interesting phenomena.

Example

For n=9, seem to always get D_9^+ (no scaling!)

Dimension 7: We get $D_7^+(\alpha)$ where α varies depending on c. As $c \to \infty$ we get $D_7^+(\sqrt{2}) \cong E_7$.

Dimension 8: Get E_8 always, in accordance with [Cohn-K] conjecture of universal optimality.

Dimensions 9 and above: Calculations get much harder, but probably a lot of interesting phenomena.

Example

For n = 9, seem to always get D_9^+ (no scaling!)

For any lattice Λ , we have its dual lattice $\Lambda^* = \{ y \in \mathbb{R}^n \, | \, \langle x, y \rangle \in \mathbb{Z} \quad \forall x \in \Lambda \}.$

We know $\operatorname{vol}(\mathbb{R}^n/\Lambda^*) = 1/\operatorname{vol}(\mathbb{R}^n/\Lambda)$, $(\Lambda^*)^* = \Lambda$, etc.

Poisson summation formula: For any nice function $f : \mathbb{R}^n \to \mathbb{R}$ (e.g. Schwartz function),

$$\sum_{x \in \Lambda} f(x) = \frac{1}{\operatorname{vol}(\mathbb{R}^n/\Lambda)} \sum_{y \in \Lambda^*} \widehat{f}(y)$$

where $\widehat{f}(y) = \int_{\mathbb{R}^n} f(x) e^{2\pi i \langle x,y
angle} dx$

For any lattice Λ , we have its dual lattice $\Lambda^* = \{ y \in \mathbb{R}^n \, | \, \langle x, y \rangle \in \mathbb{Z} \quad \forall x \in \Lambda \}.$

We know $\operatorname{vol}(\mathbb{R}^n/\Lambda^*) = 1/\operatorname{vol}(\mathbb{R}^n/\Lambda)$, $(\Lambda^*)^* = \Lambda$, etc.

Poisson summation formula: For any nice function $f : \mathbb{R}^n \to \mathbb{R}$ (e.g. Schwartz function),

$$\sum_{x \in \Lambda} f(x) = \frac{1}{\operatorname{vol}(\mathbb{R}^n/\Lambda)} \sum_{y \in \Lambda^*} \widehat{f}(y)$$

where $\widehat{f}(y) = \int_{\mathbb{R}^n} f(x) e^{2\pi i \langle x, y \rangle} dx$

Formal duality

Can the same hold for periodic configurations $\mathcal P$ and $\mathcal Q?$ i.e. Can we have

$$\sum_{x \in \mathcal{P}} f(x) = \delta(\mathcal{P}) \sum_{y \in \mathcal{Q}} \widehat{f}(y)$$

A theorem of Cordoba says this cannot happen for all Schwartz functions f: it would force \mathcal{P} to be a lattice.

But we're really only interested in

$$\Sigma(f, \mathcal{P}) = \frac{1}{N} \sum_{i,j} \sum_{x \in \Lambda} f(x + v_i - v_j).$$

Say $\mathcal P$ and $\mathcal Q$ are formal duals if $\Sigma(f,\mathcal P)=\delta(\mathcal P)\Sigma(\widehat f,\mathcal Q)$.

Can the same hold for periodic configurations $\mathcal P$ and $\mathcal Q?$ i.e. Can we have

$$\sum_{x \in \mathcal{P}} f(x) = \delta(\mathcal{P}) \sum_{y \in \mathcal{Q}} \widehat{f}(y)$$

A theorem of Cordoba says this cannot happen for all Schwartz functions f: it would force \mathcal{P} to be a lattice.

But we're really only interested in

$$\Sigma(f, \mathcal{P}) = \frac{1}{N} \sum_{i,j} \sum_{x \in \Lambda} f(x + v_i - v_j).$$

Say ${\mathcal P}$ and ${\mathcal Q}$ are formal duals if $\Sigma(f,{\mathcal P})=\delta({\mathcal P})\Sigma(\widehat{f},{\mathcal Q})$.

Can the same hold for periodic configurations $\mathcal P$ and $\mathcal Q?$ i.e. Can we have

$$\sum_{x \in \mathcal{P}} f(x) = \delta(\mathcal{P}) \sum_{y \in \mathcal{Q}} \widehat{f}(y)$$

A theorem of Cordoba says this cannot happen for all Schwartz functions f: it would force \mathcal{P} to be a lattice.

But we're really only interested in

$$\Sigma(f, \mathcal{P}) = \frac{1}{N} \sum_{i,j} \sum_{x \in \Lambda} f(x + v_i - v_j).$$

Say ${\mathcal P}$ and ${\mathcal Q}$ are formal duals if $\Sigma(f,{\mathcal P})=\delta({\mathcal P})\Sigma(\widehat{f},{\mathcal Q})$

Can the same hold for periodic configurations $\mathcal P$ and $\mathcal Q?$ i.e. Can we have

$$\sum_{x \in \mathcal{P}} f(x) = \delta(\mathcal{P}) \sum_{y \in \mathcal{Q}} \widehat{f}(y)$$

A theorem of Cordoba says this cannot happen for all Schwartz functions f: it would force \mathcal{P} to be a lattice.

But we're really only interested in

$$\Sigma(f, \mathcal{P}) = \frac{1}{N} \sum_{i,j} \sum_{x \in \Lambda} f(x + v_i - v_j).$$

Say \mathcal{P} and \mathcal{Q} are formal duals if $\Sigma(f, \mathcal{P}) = \delta(\mathcal{P})\Sigma(\widehat{f}, \mathcal{Q})$.

 D_n^+ is formally self-dual when n is odd or n is a multiple of 4. If $n \equiv 2 \pmod{4}$, then D_n^+ is formally dual to an isometric copy of itself.

Corollary

 $D_n^+(\alpha)$ is formally dual to an isometric copy of $D_n^+(1/\alpha)$.

So if f is radially symmetric, the Gaussian potential energies are related.

 D_n^+ is formally self-dual when n is odd or n is a multiple of 4. If $n \equiv 2 \pmod{4}$, then D_n^+ is formally dual to an isometric copy of itself.

Corollary

 $D_n^+(\alpha)$ is formally dual to an isometric copy of $D_n^+(1/\alpha)$.

So if f is radially symmetric, the Gaussian potential energies are related.

 D_n^+ is formally self-dual when n is odd or n is a multiple of 4. If $n \equiv 2 \pmod{4}$, then D_n^+ is formally dual to an isometric copy of itself.

Corollary

 $D_n^+(\alpha)$ is formally dual to an isometric copy of $D_n^+(1/\alpha)$.

So if f is radially symmetric, the Gaussian potential energies are related.

 D_n^+ is formally self-dual when n is odd or n is a multiple of 4. If $n \equiv 2 \pmod{4}$, then D_n^+ is formally dual to an isometric copy of itself.

Corollary

 $D_n^+(\alpha)$ is formally dual to an isometric copy of $D_n^+(1/\alpha)$.

So if f is radially symmetric, the Gaussian potential energies are related.

 D_n^+ is formally self-dual when n is odd or n is a multiple of 4. If $n \equiv 2 \pmod{4}$, then D_n^+ is formally dual to an isometric copy of itself.

Corollary

 $D_n^+(\alpha)$ is formally dual to an isometric copy of $D_n^+(1/\alpha)$.

So if f is radially symmetric, the Gaussian potential energies are related.

Thank you!