Energy minimization for lattices and periodic configurations, and formal duality

Abhinav Kumar

MIT

November 14, 2011
joint work with Henry Cohn and Achill Schürmann

Sphere packings

Sphere packing problem: What is (a/the) densest sphere packing in n dimensions?

In low dimensions, the best densities known are achieved by lattice packings.

n	1	2	3	4	5	6	7	8	24
Λ	A_{1}	A_{2}	A_{3}	D_{4}	D_{5}	E_{6}	E_{7}	E_{8}	Leech
due to	Gauss			Korkine- Zolotareff	Blichfeldt	Cohn-K.			

Sphere packings

Sphere packing problem: What is (a/the) densest sphere packing in n dimensions?

In low dimensions, the best densities known are achieved by lattice packings.

n	1	2	3	4	5	6	7	8	24
Λ	A_{1}	A_{2}	A_{3}	D_{4}	D_{5}	E_{6}	E_{7}	E_{8}	Leech
due to	Gauss			Korkine- Zolotareff	Blichfeldt	Cohn-K.			

Low dimensions

$n=1$: lay intervals end to end (density 1).

$n=2$: hexagonal or A_{2} arrangement [Fejes-Tóth 1940]

This is the unique densest periodic packing.

Low dimensions

$n=1$: lay intervals end to end (density 1).
$n=2$: hexagonal or A_{2} arrangement [Fejes-Tóth 1940]

This is the unique densest periodic packing.

Barlow packings

$n=3$: stack layers of the solution in 2 dimensions. [Hales 1998]

Uncountably many ways of doing this, the Barlow packings.
Even in dimensions 5, 6, 7, densest lattices have (uncountably many) competitors.

Barlow packings

$n=3$: stack layers of the solution in 2 dimensions. [Hales 1998]

Uncountably many ways of doing this, the Barlow packings.
Even in dimensions 5, 6, 7, densest lattices have (uncountably many) competitors.

Barlow packings

$n=3$: stack layers of the solution in 2 dimensions. [Hales 1998]

Uncountably many ways of doing this, the Barlow packings.
Even in dimensions 5, 6, 7, densest lattices have (uncountably many) competitors.

Root lattices

- $A_{n}($ simplex lattice $)=\left\{x \in \mathbb{Z}^{n+1} \mid \sum x_{i}=0\right\}$, inside the zero-sum hyperplane $\left\{x \in \mathbb{R}^{n+1} \mid \sum x_{i}=0\right\} \cong \mathbb{R}^{n}$.
- $D_{n}($ checkerboard lattice $)=\left\{x \in \mathbb{Z}^{n} \mid \sum x_{i} \equiv 0(\bmod 2)\right\}$
- $E_{8}=D_{8} \bigcup\left(D_{8}+(1 / 2, \ldots, 1 / 2)\right)$.
- $E_{7}=$ orthogonal complement of A_{1} inside E_{8}.
- $E_{6}=$ orthogonal complement of A_{2} inside E_{8}.

High dimensions

In higher dimensions, we believe the densest sphere packings don't come from lattices.

Example

In \mathbb{R}^{10} the densest known is the Best packing, 40 translates of a lattice.

But do believe the densest packings can be achieved by periodic packings (Zassenhaus conjecture). Can provably come arbitrarily close for packing density.

Trivial Minkowski bound implies \exists packing with density $\geq 1 / 2^{n}$, but no explicit constructions known

High dimensions

In higher dimensions, we believe the densest sphere packings don't come from lattices.

Example

In \mathbb{R}^{10} the densest known is the Best packing, 40 translates of a lattice.

But do believe the densest packings can be achieved by periodic packings (Zassenhaus conjecture). Can provably come arbitrarily close for packing density.

Trivial Minkowski bound implies \exists packing with density $\geq 1 / 2^{n}$, but no explicit constructions known

High dimensions

In higher dimensions, we believe the densest sphere packings don't come from lattices.

Example

In \mathbb{R}^{10} the densest known is the Best packing, 40 translates of a lattice.

But do believe the densest packings can be achieved by periodic packings (Zassenhaus conjecture). Can provably come arbitrarily close for packing density.

Trivial Minkowski bound implies \exists packing with density $\geq 1 / 2^{n}$, but no explicit constructions known

High dimensions

In higher dimensions, we believe the densest sphere packings don't come from lattices.

Example

In \mathbb{R}^{10} the densest known is the Best packing, 40 translates of a lattice.

But do believe the densest packings can be achieved by periodic packings (Zassenhaus conjecture). Can provably come arbitrarily close for packing density.

Trivial Minkowski bound implies \exists packing with density $\geq 1 / 2^{n}$, but no explicit constructions known.

Periodic packings

Conway-Sloane describe densest known packings in low dimensions.
For $n=3$, Barlow packings: stack layers of A_{2}. Two classes of deep holes, so three translates to play with, say A, B, C.

Periodic iff string is periodic.
For $n=1, D_{4}$ seems to be the only one.

Periodic packings

Conway-Sloane describe densest known packings in low dimensions.
For $n=3$, Barlow packings: stack layers of A_{2}. Two classes of deep holes, so three translates to play with, say A, B, C.

- Face-centered cubic A_{3} : ... $A B C A B C \ldots$
- Hexagonal close-packed: ... $A B A B A B$

Periodic iff string is periodic.
For $n=1, D_{4}$ seems to be the only one.

Periodic packings

Conway-Sloane describe densest known packings in low dimensions.
For $n=3$, Barlow packings: stack layers of A_{2}. Two classes of deep holes, so three translates to play with, say A, B, C.

- Face-centered cubic A_{3} : ... $A B C A B C \ldots$
- Hexagonal close-packed: ... $A B A B A B \ldots$.

Periodic iff string is periodic.
For $n=1, D_{4}$ seems to be the only one.

Periodic packings

Conway-Sloane describe densest known packings in low dimensions.
For $n=3$, Barlow packings: stack layers of A_{2}. Two classes of deep holes, so three translates to play with, say A, B, C.

- Face-centered cubic A_{3} : ... $A B C A B C \ldots$
- Hexagonal close-packed: ... $A B A B A B \ldots$.

Periodic iff string is periodic.
For $n=1, D_{4}$ seems to be the only one.

Periodic packings

Conway-Sloane describe densest known packings in low dimensions.
For $n=3$, Barlow packings: stack layers of A_{2}. Two classes of deep holes, so three translates to play with, say A, B, C.

- Face-centered cubic A_{3} : ... $A B C A B C \ldots$
- Hexagonal close-packed: ... $A B A B A B \ldots$.

Periodic iff string is periodic.
For $n=4, D_{4}$ seems to be the only one.

Periodic packings, dimension 5

Three classes of deep holes in D_{4}, so four translates in all A, B, C, D (correspond to D_{4}^{*} / D_{4}).

Strings of these 4 letters, with no consecutive letters identical, correspond to the densest packings (conjecturally).
$D_{5}=\Lambda_{5}^{1}$ corresponds to $\ldots A B A B$
Other uniform packings (i.e. local configurations are isometric)

Periodic packings, dimension 5

Three classes of deep holes in D_{4}, so four translates in all A, B, C, D (correspond to D_{4}^{*} / D_{4}).

Strings of these 4 letters, with no consecutive letters identical, correspond to the densest packings (conjecturally).
$D_{5}=\Lambda_{5}^{1}$ corresponds to $\ldots A B A B \ldots$
Other uniform packings (i.e. local configurations are isometric)

Periodic packings, dimension 5

Three classes of deep holes in D_{4}, so four translates in all A, B, C, D (correspond to D_{4}^{*} / D_{4}).

Strings of these 4 letters, with no consecutive letters identical, correspond to the densest packings (conjecturally).
$D_{5}=\Lambda_{5}^{1}$ corresponds to $\ldots A B A B \ldots$
Other uniform packings (i.e. local configurations are isometric)

- Λ_{5}^{2} : corresponds to ... $A B C D A B C D \ldots$
- Λ_{5}^{3} : corresponds to ... ABCABC
- Λ_{5}^{4} : corresponds to $\ldots B A C B D C A D B A C B D C A D$

Periodic packings, dimension 5

Three classes of deep holes in D_{4}, so four translates in all A, B, C, D (correspond to D_{4}^{*} / D_{4}).

Strings of these 4 letters, with no consecutive letters identical, correspond to the densest packings (conjecturally).
$D_{5}=\Lambda_{5}^{1}$ corresponds to $\ldots A B A B \ldots$
Other uniform packings (i.e. local configurations are isometric)

- Λ_{5}^{2} : corresponds to ... $A B C D A B C D \ldots$
- Λ_{5}^{3} : corresponds to $\ldots A B C A B C \ldots$
- Λ_{5}^{4} : corresponds to ... BACBDCADBACBDCAD

Periodic packings, dimension 5

Three classes of deep holes in D_{4}, so four translates in all A, B, C, D (correspond to D_{4}^{*} / D_{4}).

Strings of these 4 letters, with no consecutive letters identical, correspond to the densest packings (conjecturally).
$D_{5}=\Lambda_{5}^{1}$ corresponds to $\ldots A B A B \ldots$
Other uniform packings (i.e. local configurations are isometric)

- Λ_{5}^{2} : corresponds to ... $A B C D A B C D \ldots$
- Λ_{5}^{3} : corresponds to $\ldots A B C A B C \ldots$
- Λ_{5}^{4} : corresponds to \ldots. $B A C B D C A D B A C B D C A D \ldots$

Dimensions 6 through 8

Fiber over D_{4}.
Dimension 6: color the hexagonal lattice with 4 colors.
Dimension 7: color a Barlow packing with 4 colors.
Dimension 8: color D_{4} with 4 colors (only one way).

Energy minimization

Energy minimization from physics is a good way to make dense arrangements.

Example

To make an optimal spherical code of N points in S^{n-1}, define

$$
E_{k}=\sum_{i \neq j} \frac{1}{\left|v_{i}-v_{j}\right|^{k}}
$$

and minimize. Corresponds to a repulsive force.

The limit $k \rightarrow \infty$ corresponds to the spherical coding problem (the dominant term is the one for minimal distance).

Energy minimization in \mathbb{R}^{n}

Take a lattice $\Lambda \subset \mathbb{R}^{n}$ and N translate vectors $0=v_{1}, \ldots, v_{N}$. Let $\mathcal{P}=\bigcup_{i}\left(\Lambda+v_{i}\right)$ be a periodic configuration.

Let $f(r)$ be a potential energy function, e.g. $f(r)=1 / r^{2 k}$ or $f(r)=e^{-c r^{2}}$ (usually want a completely monotonic function of squared distance.

Define f-potential energy of $x \in \mathcal{P}$ to be

The f-potential energy of \mathcal{P} is the average of $E_{f}(x, \mathcal{P})$ over the finitely many translates $v_{i}, i=1, \ldots, N$

Energy minimization in \mathbb{R}^{n}

Take a lattice $\Lambda \subset \mathbb{R}^{n}$ and N translate vectors $0=v_{1}, \ldots, v_{N}$.
Let $\mathcal{P}=\bigcup_{i}\left(\Lambda+v_{i}\right)$ be a periodic configuration.
Let $f(r)$ be a potential energy function, e.g. $f(r)=1 / r^{2 k}$ or $f(r)=e^{-c r^{2}}$ (usually want a completely monotonic function of squared distance.

Define f-potential energy of $x \in \mathcal{P}$ to be

The f-potential energy of \mathcal{P} is the average of $E_{f}(x, \mathcal{P})$ over the finitely many translates $v_{i}, i=1, \ldots, N$

Energy minimization in \mathbb{R}^{n}

Take a lattice $\Lambda \subset \mathbb{R}^{n}$ and N translate vectors $0=v_{1}, \ldots, v_{N}$.
Let $\mathcal{P}=\bigcup_{i}\left(\Lambda+v_{i}\right)$ be a periodic configuration.
Let $f(r)$ be a potential energy function, e.g. $f(r)=1 / r^{2 k}$ or $f(r)=e^{-c r^{2}}$ (usually want a completely monotonic function of squared distance.

Define f-potential energy of $x \in \mathcal{P}$ to be

$$
E_{f}(x, \mathcal{P})=\sum_{x \neq y \in \mathcal{P}} f(|x-y|)
$$

The f-potential energy of \mathcal{P} is the average of $E_{f}(x, \mathcal{P})$ over the finitely many translates $v_{i}, i=1, \ldots, N$.

Energy minimization in \mathbb{R}^{n}

Take a lattice $\Lambda \subset \mathbb{R}^{n}$ and N translate vectors $0=v_{1}, \ldots, v_{N}$.
Let $\mathcal{P}=\bigcup_{i}\left(\Lambda+v_{i}\right)$ be a periodic configuration.
Let $f(r)$ be a potential energy function, e.g. $f(r)=1 / r^{2 k}$ or $f(r)=e^{-c r^{2}}$ (usually want a completely monotonic function of squared distance.

Define f-potential energy of $x \in \mathcal{P}$ to be

$$
E_{f}(x, \mathcal{P})=\sum_{x \neq y \in \mathcal{P}} f(|x-y|)
$$

The f-potential energy of \mathcal{P} is the average of $E_{f}(x, \mathcal{P})$ over the finitely many translates $v_{i}, i=1, \ldots, N$.

Energy minimization in \mathbb{R}^{n}, contd.

Stipulate that the center density $\delta(\mathcal{P})$ is fixed, and ask for \mathcal{P} which minimizes the potential energy.
[Cohn-K-Schürmann '09]: computer simulations for $f=e^{-c r^{2}}$ for various c, dimension $n \leq 8, N \leq 10$. Gradient descent on space of periodic configurations with fixed number of translates

Remarks:

Energy minimization in \mathbb{R}^{n}, contd.

Stipulate that the center density $\delta(\mathcal{P})$ is fixed, and ask for \mathcal{P} which minimizes the potential energy.
[Cohn-K-Schürmann '09]: computer simulations for $f=e^{-c r^{2}}$ for various c, dimension $n \leq 8, N \leq 10$. Gradient descent on space of periodic configurations with fixed number of translates.

[^0]
Energy minimization in \mathbb{R}^{n}, contd.

Stipulate that the center density $\delta(\mathcal{P})$ is fixed, and ask for \mathcal{P} which minimizes the potential energy.
[Cohn-K-Schürmann '09]: computer simulations for $f=e^{-c r^{2}}$ for various c, dimension $n \leq 8, N \leq 10$. Gradient descent on space of periodic configurations with fixed number of translates.

Remarks:

- $c \rightarrow \infty$ is the sphere packing limit. But for large c, this has has more information. Between competitors of same density, break ties by favoring lower kissing number.
- Gaussian is more general since $1 / r^{k}$ is Mellin transform of a Gaussian

Energy minimization in \mathbb{R}^{n}, contd.

Stipulate that the center density $\delta(\mathcal{P})$ is fixed, and ask for \mathcal{P} which minimizes the potential energy.
[Cohn-K-Schürmann '09]: computer simulations for $f=e^{-c r^{2}}$ for various c, dimension $n \leq 8, N \leq 10$. Gradient descent on space of periodic configurations with fixed number of translates.

Remarks:

- $c \rightarrow \infty$ is the sphere packing limit. But for large c, this has has more information. Between competitors of same density, break ties by favoring lower kissing number.
- Gaussian is more general since $1 / r^{k}$ is Mellin transform of a Gaussian.

Some computational results

- $n=1$: [Cohn-K] proved \mathbb{Z} is always optimal and unique.
- $n=2$: We can't prove it, but expect A_{2} to be always optimal, and experiments confirm this. Montgomery proved optimal among lattices.
- $n=3$: For $c \gg 1$ get A_{3}. For $c \approx 0$ get A_{3}^{*} (duality). In between, for a range we get phase coexistence!
- $n=4$. Always seem to get D_{4}. No proof!

In higher dimensions things become very interesting!

Some computational results

- $n=1$: [Cohn-K] proved \mathbb{Z} is always optimal and unique.
- $n=2$: We can't prove it, but expect A_{2} to be always optimal, and experiments confirm this. Montgomery proved optimal among lattices.
- $n=3$: For $c \gg 1$ get A_{3}. For $c \approx 0$ get A_{3}^{*} (duality). In between,
for a range we get phase coexistence!
- $n=4$. Always seem to get D_{4}. No proof!

> In higher dimensions things become very interesting!

Some computational results

- $n=1$: [Cohn-K] proved \mathbb{Z} is always optimal and unique.
- $n=2$: We can't prove it, but expect A_{2} to be always optimal, and experiments confirm this. Montgomery proved optimal among lattices.
- $n=3$: For $c \gg 1$ get A_{3}. For $c \approx 0$ get A_{3}^{*} (duality). In between, for a range we get phase coexistence!
- $n=4$. Always seem to get D_{4}. No proof!

In higher dimensions things become very interesting!

Some computational results

- $n=1$: [Cohn-K] proved \mathbb{Z} is always optimal and unique.
- $n=2$: We can't prove it, but expect A_{2} to be always optimal, and experiments confirm this. Montgomery proved optimal among lattices.
- $n=3$: For $c \gg 1$ get A_{3}. For $c \approx 0$ get A_{3}^{*} (duality). In between, for a range we get phase coexistence!
- $n=4$. Always seem to get D_{4}. No proof!

In higher dimensions things become very interesting!

Some computational results

- $n=1$: [Cohn-K] proved \mathbb{Z} is always optimal and unique.
- $n=2$: We can't prove it, but expect A_{2} to be always optimal, and experiments confirm this. Montgomery proved optimal among lattices.
- $n=3$: For $c \gg 1$ get A_{3}. For $c \approx 0$ get A_{3}^{*} (duality). In between, for a range we get phase coexistence!
- $n=4$. Always seem to get D_{4}. No proof!

In higher dimensions things become very interesting!

Some computational results

- $n=1$: [Cohn- K$]$ proved \mathbb{Z} is always optimal and unique.
- $n=2$: We can't prove it, but expect A_{2} to be always optimal, and experiments confirm this. Montgomery proved optimal among lattices.
- $n=3$: For $c \gg 1$ get A_{3}. For $c \approx 0$ get A_{3}^{*} (duality). In between, for a range we get phase coexistence!
- $n=4$. Always seem to get D_{4}. No proof!

In higher dimensions things become very interesting!

Dimension 5

For $c \gg 1$ we get Λ_{5}^{2} (not D_{5} !), one of the periodic packings described by Conway-Sloane. Corresponds to sequence ... ABCDABCD

Let $D_{5}^{+}=D_{5} \cup\left(D_{5}+(1 / 2, \ldots, 1 / 2)\right)$, and
$D_{5}^{+}(\alpha)=\left\{\left(x_{1}, \ldots, x_{4}, \alpha x_{5}\right) \mid x \in D_{5}^{+}\right\}$
Then $D_{5}^{+}(\alpha)$ is formally dual to $D_{5}^{+}(1 / \alpha)$
Also $D_{5}^{+}(2) \cong \Lambda_{5}^{2}$, the minimizer for $c \rightarrow \infty$
Minimizer for $\mathrm{c} \rightarrow 0$ seems to be $D_{5}^{+}(1 / 2)$

Dimension 5

For $c \gg 1$ we get Λ_{5}^{2} (not D_{5} !), one of the periodic packings described by Conway-Sloane. Corresponds to sequence ... ABCDABCD

Let $D_{5}^{+}=D_{5} \bigcup\left(D_{5}+(1 / 2, \ldots, 1 / 2)\right)$, and
$D_{5}^{+}(\alpha)=\left\{\left(x_{1}, \ldots, x_{4}, \alpha x_{5}\right) \mid x \in D_{5}^{+}\right\}$
Then $D_{5}^{+}(\alpha)$ is formally dual to $D_{5}^{+}(1 / \alpha)$
Also $D_{5}^{+}(2) \cong \Lambda_{5}^{2}$, the minimizer for $c \rightarrow \infty$
Minimizer for $c \rightarrow 0$ seems to be $D_{5}^{+}(1 / 2)$

Dimension 5

For $c \gg 1$ we get Λ_{5}^{2} (not D_{5} !), one of the periodic packings described by Conway-Sloane. Corresponds to sequence ... ABCDABCD

Let $D_{5}^{+}=D_{5} \bigcup\left(D_{5}+(1 / 2, \ldots, 1 / 2)\right)$, and
$D_{5}^{+}(\alpha)=\left\{\left(x_{1}, \ldots, x_{4}, \alpha x_{5}\right) \mid x \in D_{5}^{+}\right\}$.
Then $D_{5}^{+}(\alpha)$ is formally dual to $D_{5}^{+}(1 / \alpha)$.
Also $D_{5}^{+}(2) \cong \Lambda_{5}^{2}$, the minimizer for $c \rightarrow \infty$
Minimizer for $c \rightarrow 0$ seems to be $D_{5}^{+}(1 / 2)$

Dimension 5

For $c \gg 1$ we get Λ_{5}^{2} (not D_{5} !), one of the periodic packings described by Conway-Sloane. Corresponds to sequence ... ABCDABCD

Let $D_{5}^{+}=D_{5} \bigcup\left(D_{5}+(1 / 2, \ldots, 1 / 2)\right)$, and
$D_{5}^{+}(\alpha)=\left\{\left(x_{1}, \ldots, x_{4}, \alpha x_{5}\right) \mid x \in D_{5}^{+}\right\}$.
Then $D_{5}^{+}(\alpha)$ is formally dual to $D_{5}^{+}(1 / \alpha)$.
Also $D_{5}^{+}(2) \cong \Lambda_{5}^{2}$, the minimizer for $c \rightarrow \infty$.
Minimizer for $c \rightarrow 0$ seems to be $D_{5}^{+}(1 / 2)$.

Dimension 6

Get E_{6} for $c \rightarrow \infty$, and E_{6}^{*} for $c \rightarrow 0$.
But in the middle we get a non-lattice, obtained by "gluing" D_{3} and D_{3} along their holes, and stretching.

Let \mathcal{P}_{6} be $D_{3} \oplus D_{3}$ along with its three translates by $(1 / 2, \ldots, 1 / 2)$,
$(1,1,1,-1 / 2,-1 / 2,-1 / 2)$ and $(-1 / 2,-1 / 2,-1 / 2,1,1,1)$.
Let $\mathcal{P}_{6}(\alpha)$ be obtained by scaling the first three coordinates of \mathcal{P}_{6} by α and the last three by $1 / \alpha$.

Note that $\mathcal{P}(\alpha)$ is formally self-dual!

Dimension 6

Get E_{6} for $c \rightarrow \infty$, and E_{6}^{*} for $c \rightarrow 0$.
But in the middle we get a non-lattice, obtained by "gluing" D_{3} and D_{3} along their holes, and stretching.

Let \mathcal{P}_{6} be $D_{3} \oplus D_{3}$ along with its three translates by $(1 / 2, \ldots, 1 / 2)$, $(1,1,1,-1 / 2,-1 / 2,-1 / 2)$ and $(-1 / 2,-1 / 2,-1 / 2,1,1,1)$.

Let $\mathcal{P}_{6}(\alpha)$ be obtained by scaling the first three coordinates of \mathcal{P}_{6} by α
and the last three by $1 / \alpha$
Note that $\mathcal{P}(a)$ is formally self-dual!

Dimension 6

Get E_{6} for $c \rightarrow \infty$, and E_{6}^{*} for $c \rightarrow 0$.
But in the middle we get a non-lattice, obtained by "gluing" D_{3} and D_{3} along their holes, and stretching.

Let \mathcal{P}_{6} be $D_{3} \oplus D_{3}$ along with its three translates by $(1 / 2, \ldots, 1 / 2)$, $(1,1,1,-1 / 2,-1 / 2,-1 / 2)$ and $(-1 / 2,-1 / 2,-1 / 2,1,1,1)$.

Let $\mathcal{P}_{6}(\alpha)$ be obtained by scaling the first three coordinates of \mathcal{P}_{6} by α and the last three by $1 / \alpha$.

Note that $\mathcal{P}(\alpha)$ is formally self-dual!

Dimensions 7 and 8

Dimension 7: We get $D_{7}^{+}(\alpha)$ where α varies depending on c. As $c \rightarrow \infty$ we get $D_{7}^{+}(\sqrt{2}) \cong E_{7}$.

Dimension 8: Get E_{8} always, in accordance with [Cohn-K] conjecture of universal optimality.

Dimensions 9 and above: Calculations get much harder, but probably a lot of interesting phenomena.

Dimensions 7 and 8

Dimension 7: We get $D_{7}^{+}(\alpha)$ where α varies depending on c. As $c \rightarrow \infty$ we get $D_{7}^{+}(\sqrt{2}) \cong E_{7}$.

Dimension 8: Get E_{8} always, in accordance with [Cohn-K] conjecture of universal optimality.

Dimensions 9 and above: Calculations get much harder, but probably a lot of interesting phenomena.

Dimensions 7 and 8

Dimension 7: We get $D_{7}^{+}(\alpha)$ where α varies depending on c. As $c \rightarrow \infty$ we get $D_{7}^{+}(\sqrt{2}) \cong E_{7}$.

Dimension 8: Get E_{8} always, in accordance with [Cohn-K] conjecture of universal optimality.

Dimensions 9 and above: Calculations get much harder, but probably a lot of interesting phenomena.

Example

For $n=9$, seem to always get D_{9}^{+}(no scaling!)

Duality

For any lattice Λ, we have its dual lattice $\Lambda^{*}=\left\{y \in \mathbb{R}^{n} \mid\langle x, y\rangle \in \mathbb{Z} \quad \forall x \in \Lambda\right\}$.

We know $\operatorname{vol}\left(\mathbb{R}^{n} / \Lambda^{*}\right)=1 / \operatorname{vol}\left(\mathbb{R}^{n} / \Lambda\right),\left(\Lambda^{*}\right)^{*}=\Lambda$, etc.
Poisson summation formula: For any nice function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ (e.g. Schwartz function),

Duality

For any lattice Λ, we have its dual lattice $\Lambda^{*}=\left\{y \in \mathbb{R}^{n} \mid\langle x, y\rangle \in \mathbb{Z} \quad \forall x \in \Lambda\right\}$.

We know $\operatorname{vol}\left(\mathbb{R}^{n} / \Lambda^{*}\right)=1 / \operatorname{vol}\left(\mathbb{R}^{n} / \Lambda\right)$, $\left(\Lambda^{*}\right)^{*}=\Lambda$, etc.
Poisson summation formula: For any nice function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ (e.g. Schwartz function),

$$
\sum_{x \in \Lambda} f(x)=\frac{1}{\operatorname{vol}\left(\mathbb{R}^{n} / \Lambda\right)} \sum_{y \in \Lambda^{*}} \widehat{f}(y)
$$

where $\widehat{f}(y)=\int_{\mathbb{R}^{n}} f(x) e^{2 \pi i\langle x, y\rangle} d x$

Formal duality

Can the same hold for periodic configurations \mathcal{P} and \mathcal{Q} ? i.e. Can we have

$$
\sum_{x \in \mathcal{P}} f(x)=\delta(\mathcal{P}) \sum_{y \in \mathcal{Q}} \widehat{f}(y)
$$

A theorem of Cordoba says this cannot happen for all Schwartz functions f : it would force \mathcal{P} to be a lattice.

But we're really only interested in

Formal duality

Can the same hold for periodic configurations \mathcal{P} and \mathcal{Q} ? i.e. Can we have

$$
\sum_{x \in \mathcal{P}} f(x)=\delta(\mathcal{P}) \sum_{y \in \mathcal{Q}} \widehat{f}(y)
$$

A theorem of Cordoba says this cannot happen for all Schwartz functions f : it would force \mathcal{P} to be a lattice.

But we're really only interested in

Say \mathcal{P} and \mathcal{Q} are formal duals if $\Sigma(f, \mathcal{P})=\delta(\mathcal{P}) \Sigma(\widehat{f}, \mathcal{Q})$.

Formal duality

Can the same hold for periodic configurations \mathcal{P} and \mathcal{Q} ? i.e. Can we have

$$
\sum_{x \in \mathcal{P}} f(x)=\delta(\mathcal{P}) \sum_{y \in \mathcal{Q}} \widehat{f}(y)
$$

A theorem of Cordoba says this cannot happen for all Schwartz functions f : it would force \mathcal{P} to be a lattice.

But we're really only interested in

$$
\Sigma(f, \mathcal{P})=\frac{1}{N} \sum_{i, j} \sum_{x \in \Lambda} f\left(x+v_{i}-v_{j}\right) .
$$

Say \mathcal{P} and \mathcal{Q} are formal duals if $\Sigma(f, \mathcal{P})=\delta(\mathcal{P}) \Sigma(\widehat{f}, \mathcal{Q})$.

Formal duality

Can the same hold for periodic configurations \mathcal{P} and \mathcal{Q} ? i.e. Can we have

$$
\sum_{x \in \mathcal{P}} f(x)=\delta(\mathcal{P}) \sum_{y \in \mathcal{Q}} \widehat{f}(y)
$$

A theorem of Cordoba says this cannot happen for all Schwartz functions f : it would force \mathcal{P} to be a lattice.

But we're really only interested in

$$
\Sigma(f, \mathcal{P})=\frac{1}{N} \sum_{i, j} \sum_{x \in \Lambda} f\left(x+v_{i}-v_{j}\right) .
$$

Say \mathcal{P} and \mathcal{Q} are formal duals if $\Sigma(f, \mathcal{P})=\delta(\mathcal{P}) \Sigma(\widehat{f}, \mathcal{Q})$.

Formal duality, contd.

Theorem (Cohn-K-Schürmann)

D_{n}^{+}is formally self-dual when n is odd or n is a multiple of 4 . If $n \equiv 2$ $(\bmod 4)$, then D_{n}^{+}is formally dual to an isometric copy of itself.

So if f is radially symmetric, the Gaussian potential energies are related Now we're trying to get a classification, to show D_{n}^{+}is "essentially" the only example

Formal duality, contd.

Theorem (Cohn-K-Schürmann)

D_{n}^{+}is formally self-dual when n is odd or n is a multiple of 4 . If $n \equiv 2$ $(\bmod 4)$, then D_{n}^{+}is formally dual to an isometric copy of itself.

So if f is radially symmetric, the Gaussian potential energies are related Now we're trying to get a classification, to show D_{n}^{+}is "essentially" the only example

Formal duality, contd.

Theorem (Cohn-K-Schürmann)

D_{n}^{+}is formally self-dual when n is odd or n is a multiple of 4 . If $n \equiv 2$ $(\bmod 4)$, then D_{n}^{+}is formally dual to an isometric copy of itself.

Corollary

$D_{n}^{+}(\alpha)$ is formally dual to an isometric copy of $D_{n}^{+}(1 / \alpha)$.

So if f is radially symmetric, the Gaussian potential energies are related Now we're trying to get a classification, to show D_{n}^{+}is "essentially" the only example

Formal duality, contd.

Theorem (Cohn-K-Schürmann)

D_{n}^{+}is formally self-dual when n is odd or n is a multiple of 4 . If $n \equiv 2$ $(\bmod 4)$, then D_{n}^{+}is formally dual to an isometric copy of itself.

Corollary

$D_{n}^{+}(\alpha)$ is formally dual to an isometric copy of $D_{n}^{+}(1 / \alpha)$.

So if f is radially symmetric, the Gaussian potential energies are related Now we're trying to get a classification, to show D_{n}^{+}is "essentially" the only example

Formal duality, contd.

Theorem (Cohn-K-Schürmann)

D_{n}^{+}is formally self-dual when n is odd or n is a multiple of 4 . If $n \equiv 2$ $(\bmod 4)$, then D_{n}^{+}is formally dual to an isometric copy of itself.

Corollary

$D_{n}^{+}(\alpha)$ is formally dual to an isometric copy of $D_{n}^{+}(1 / \alpha)$.

So if f is radially symmetric, the Gaussian potential energies are related. Now we're trying to get a classification, to show D_{n}^{+}is "essentially" the only example.

Thank you!

[^0]: Remarks

