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Sphere packings

Sphere packing problem: What is (a/the) densest sphere packing in n

dimensions?

In low dimensions, the best densities known are achieved by lattice
packings.

n 1 2 3 4 5 6 7 8 24

Λ A1 A2 A3 D4 D5 E6 E7 E8 Leech

due to Gauss Korkine- Blichfeldt Cohn-K.
Zolotareff
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Low dimensions

n = 1: lay intervals end to end (density 1).

n = 2: hexagonal or A2 arrangement [Fejes-Tóth 1940]
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This is the unique densest periodic packing.
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Barlow packings

n = 3 : stack layers of the solution in 2 dimensions. [Hales 1998]
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Uncountably many ways of doing this, the Barlow packings.

Even in dimensions 5, 6, 7, densest lattices have (uncountably many)
competitors.
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Root lattices

An (simplex lattice) = {x ∈ Z
n+1 |

∑
xi = 0},

inside the zero-sum hyperplane {x ∈ R
n+1 | ∑ xi = 0} ∼= R

n.

Dn (checkerboard lattice) = {x ∈ Z
n |

∑
xi ≡ 0 (mod 2)}

E8 = D8
⋃
(D8 + (1/2, . . . , 1/2)).

E7 = orthogonal complement of A1 inside E8.

E6 = orthogonal complement of A2 inside E8.
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High dimensions

In higher dimensions, we believe the densest sphere packings don’t come
from lattices.

Example

In R
10 the densest known is the Best packing, 40 translates of a lattice.

But do believe the densest packings can be achieved by periodic packings
(Zassenhaus conjecture). Can provably come arbitrarily close for packing
density.

Trivial Minkowski bound implies ∃ packing with density ≥ 1/2n, but no
explicit constructions known.
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Periodic packings

Conway-Sloane describe densest known packings in low dimensions.

For n = 3, Barlow packings: stack layers of A2. Two classes of deep holes,
so three translates to play with, say A,B ,C .

Face-centered cubic A3: . . .ABCABC . . . .

Hexagonal close-packed: . . .ABABAB . . . .

Periodic iff string is periodic.

For n = 4, D4 seems to be the only one.
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Periodic packings, dimension 5

Three classes of deep holes in D4, so four translates in all A,B ,C ,D
(correspond to D∗

4/D4).

Strings of these 4 letters, with no consecutive letters identical, correspond
to the densest packings (conjecturally).

D5 = Λ1
5 corresponds to . . .ABAB . . . .

Other uniform packings (i.e. local configurations are isometric)

Λ2
5: corresponds to . . .ABCDABCD . . .

Λ3
5: corresponds to . . .ABCABC . . .

Λ4
5: corresponds to . . .BACBDCADBACBDCAD . . .
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Dimensions 6 through 8

Fiber over D4.

Dimension 6: color the hexagonal lattice with 4 colors.

Dimension 7: color a Barlow packing with 4 colors.

Dimension 8: color D4 with 4 colors (only one way).

Abhinav Kumar (MIT) Potential November 14, 2011 9 / 20



Energy minimization

Energy minimization from physics is a good way to make dense
arrangements.

Example

To make an optimal spherical code of N points in Sn−1, define

Ek =
∑

i 6=j

1

|vi − vj |k

and minimize. Corresponds to a repulsive force.

The limit k → ∞ corresponds to the spherical coding problem (the
dominant term is the one for minimal distance).
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Energy minimization in R
n

Take a lattice Λ ⊂ R
n and N translate vectors 0 = v1, . . . , vN .

Let P =
⋃

i (Λ + vi ) be a periodic configuration.

Let f (r) be a potential energy function, e.g. f (r) = 1/r2k or f (r) = e−cr2

(usually want a completely monotonic function of squared distance.

Define f -potential energy of x ∈ P to be

Ef (x ,P) =
∑

x 6=y∈P

f (|x − y |)

The f -potential energy of P is the average of Ef (x ,P) over the finitely
many translates vi , i = 1, . . . ,N.
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Energy minimization in R
n, contd.

Stipulate that the center density δ(P) is fixed, and ask for P which
minimizes the potential energy.

[Cohn-K-Schürmann ’09]: computer simulations for f = e−cr2 for various
c , dimension n ≤ 8, N ≤ 10. Gradient descent on space of periodic
configurations with fixed number of translates.

Remarks:

c → ∞ is the sphere packing limit. But for large c , this has has more
information. Between competitors of same density, break ties by
favoring lower kissing number.

Gaussian is more general since 1/rk is Mellin transform of a Gaussian.
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Some computational results

n = 1: [Cohn-K] proved Z is always optimal and unique.

n = 2: We can’t prove it, but expect A2 to be always optimal, and
experiments confirm this. Montgomery proved optimal among
lattices.

n = 3: For c >> 1 get A3. For c ≈ 0 get A∗
3 (duality). In between,

for a range we get phase coexistence!

n = 4. Always seem to get D4. No proof!

In higher dimensions things become very interesting!
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Dimension 5

For c >> 1 we get Λ2
5 (not D5!), one of the periodic packings described by

Conway-Sloane. Corresponds to sequence . . .ABCDABCD . . . .

Let D+
5 = D5

⋃
(D5 + (1/2, . . . , 1/2)), and

D+
5 (α) = {(x1, . . . , x4, αx5) | x ∈ D+

5 }.

Then D+
5 (α) is formally dual to D+

5 (1/α).

Also D+
5 (2) ∼= Λ2

5 , the minimizer for c → ∞.

Minimizer for c → 0 seems to be D+
5 (1/2).
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Dimension 6

Get E6 for c → ∞, and E ∗
6 for c → 0.

But in the middle we get a non-lattice, obtained by “gluing” D3 and D3

along their holes, and stretching.

Let P6 be D3 ⊕ D3 along with its three translates by (1/2, . . . , 1/2),
(1, 1, 1,−1/2,−1/2,−1/2) and (−1/2,−1/2,−1/2, 1, 1, 1).

Let P6(α) be obtained by scaling the first three coordinates of P6 by α
and the last three by 1/α.

Note that P(α) is formally self-dual!
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Dimensions 7 and 8

Dimension 7: We get D+
7 (α) where α varies depending on c . As c → ∞

we get D+
7 (

√
2) ∼= E7.

Dimension 8: Get E8 always, in accordance with [Cohn-K] conjecture of
universal optimality.

Dimensions 9 and above: Calculations get much harder, but probably a lot
of interesting phenomena.

Example

For n = 9, seem to always get D+
9 (no scaling!)
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Duality

For any lattice Λ, we have its dual lattice
Λ∗ = {y ∈ R

n | 〈x , y〉 ∈ Z ∀ x ∈ Λ}.

We know vol(Rn/Λ∗) = 1/vol(Rn/Λ), (Λ∗)∗ = Λ, etc.

Poisson summation formula: For any nice function f : Rn → R (e.g.
Schwartz function),

∑

x∈Λ

f (x) =
1

vol(Rn/Λ)

∑

y∈Λ∗

f̂ (y)

where f̂ (y) =
∫
Rn f (x)e

2πi〈x ,y〉dx
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Formal duality

Can the same hold for periodic configurations P and Q? i.e. Can we have

∑

x∈P

f (x) = δ(P)
∑

y∈Q

f̂ (y)

A theorem of Cordoba says this cannot happen for all Schwartz functions
f : it would force P to be a lattice.

But we’re really only interested in

Σ(f ,P) =
1

N

∑

i ,j

∑

x∈Λ

f (x + vi − vj).

Say P and Q are formal duals if Σ(f ,P) = δ(P)Σ(f̂ ,Q).
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Formal duality, contd.

Theorem (Cohn-K-Schürmann)

D+
n is formally self-dual when n is odd or n is a multiple of 4. If n ≡ 2

(mod 4), then D+
n is formally dual to an isometric copy of itself.

Corollary

D+
n (α) is formally dual to an isometric copy of D+

n (1/α).

So if f is radially symmetric, the Gaussian potential energies are related.

Now we’re trying to get a classification, to show D+
n is “essentially” the

only example.
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Thank you!

Abhinav Kumar (MIT) Potential November 14, 2011 20 / 20


