The unreasonable effectiveness of tensor product.

Renaud Coulangeon, Université Bordeaux 1
based on a joint work with Gabriele Nebe

Banff, November 14, 2011

Introduction

Let L and M be two Euclidean lattices

Introduction

Let L and M be two Euclidean lattices
i.e. free \mathbb{Z}-modules of finite rank equipped with a positive definite bilinear form (inner product) denoted $x \cdot y$

Introduction

Let L and M be two Euclidean lattices
i.e. free \mathbb{Z}-modules of finite rank equipped with a positive definite bilinear form (inner product) denoted $x \cdot y$

- $\min L=\min _{0 \neq x \in L} x \cdot x$

Introduction

Let L and M be two Euclidean lattices
i.e. free \mathbb{Z}-modules of finite rank equipped with a positive definite bilinear form (inner product) denoted $x \cdot y$

- $\min L=\min _{0 \neq x \in L} x \cdot x$
- $\operatorname{det} L=\operatorname{det} \operatorname{Gram} \mathcal{B}$ for any \mathbb{Z}-basis \mathcal{B} of M.

Introduction

Let L and M be two Euclidean lattices
i.e. free \mathbb{Z}-modules of finite rank equipped with a positive definite bilinear form (inner product) denoted $x \cdot y$

- $\min L=\min _{0 \neq x \in L} x \cdot x$
- $\operatorname{det} L=\operatorname{det} \operatorname{Gram} \mathcal{B}$ for any \mathbb{Z}-basis \mathcal{B} of M.

On $L \otimes M$ consider the inner product

$$
(x \otimes y) \cdot(z \otimes t)=(x \cdot z)(y \cdot t)
$$

Introduction

Let L and M be two Euclidean lattices
i.e. free \mathbb{Z}-modules of finite rank equipped with a positive definite bilinear form (inner product) denoted $x \cdot y$

- $\min L=\min _{0 \neq x \in L} x \cdot x$
- $\operatorname{det} L=\operatorname{det} \operatorname{Gram} \mathcal{B}$ for any \mathbb{Z}-basis \mathcal{B} of M.

On $L \otimes M$ consider the inner product

$$
(x \otimes y) \cdot(z \otimes t)=(x \cdot z)(y \cdot t)
$$

- $\operatorname{det}(L \otimes M)=\operatorname{det} L^{\operatorname{dim} M} \operatorname{det} M^{\operatorname{dim} L}$.

Introduction

Let L and M be two Euclidean lattices
i.e. free \mathbb{Z}-modules of finite rank equipped with a positive definite bilinear form (inner product) denoted $x \cdot y$

- $\min L=\min _{0 \neq x \in L} x \cdot x$
- $\operatorname{det} L=\operatorname{det} \operatorname{Gram} \mathcal{B}$ for any \mathbb{Z}-basis \mathcal{B} of M.

On $L \otimes M$ consider the inner product

$$
(x \otimes y) \cdot(z \otimes t)=(x \cdot z)(y \cdot t)
$$

- $\operatorname{det}(L \otimes M)=\operatorname{det} L^{\operatorname{dim} M} \operatorname{det} M^{\operatorname{dim} L}$.
- $\min (L \otimes M)=\min L \cdot \min M$?

Introduction

Let L and M be two Euclidean lattices
i.e. free \mathbb{Z}-modules of finite rank equipped with a positive definite bilinear form (inner product) denoted $x \cdot y$

- $\min L=\min _{0 \neq x \in L} x \cdot x$
- $\operatorname{det} L=\operatorname{det} \operatorname{Gram} \mathcal{B}$ for any \mathbb{Z}-basis \mathcal{B} of M.

On $L \otimes M$ consider the inner product

$$
(x \otimes y) \cdot(z \otimes t)=(x \cdot z)(y \cdot t)
$$

- $\operatorname{det}(L \otimes M)=\operatorname{det} L^{\operatorname{dim} M} \operatorname{det} M^{\operatorname{dim} L}$.
- $\min (L \otimes M)=\min L \cdot \min M$? NO in general (one has to consider non-split vectors $\sum_{i=1}^{t} x_{i} \otimes y_{i}$ for $t>1$).

Nevertheless, it is hard to find counter examples :

Nevertheless, it is hard to find counter examples :

- $\min (L \otimes M)=\min L \cdot \min M$ if $\operatorname{dim} L$ or $\operatorname{dim} M$ is less than 43, and the minimal vectors of $\min (L \otimes M)$ are split (Kitaoka).

Nevertheless, it is hard to find counter examples :

- $\min (L \otimes M)=\min L \cdot \min M$ if $\operatorname{dim} L$ or $\operatorname{dim} M$ is less than 43, and the minimal vectors of $\min (L \otimes M)$ are split (Kitaoka).
- The first dimension where a counter-example is known to exist is 292 (non explicit !), unpublished result of Steinberg (see Milnor and Husemoller book Symmetric bilinear forms p.47).

Nevertheless, it is hard to find counter examples :

- $\min (L \otimes M)=\min L \cdot \min M$ if $\operatorname{dim} L$ or $\operatorname{dim} M$ is less than 43, and the minimal vectors of $\min (L \otimes M)$ are split (Kitaoka).
- The first dimension where a counter-example is known to exist is 292 (non explicit !), unpublished result of Steinberg (see Milnor and Husemoller book Symmetric bilinear forms p.47).
Remark : If one considers the similar problem for the tensor product of (Hermitian) lattices over the ring of integers of an imaginary quadratic field, explicit examples with

$$
\min \left(L \otimes_{O_{K}} M\right)<\min L \min M
$$

are relatively easy to construct in small dimension.

Theorem (Korkine-Zolotareff, 1877)
Lattices achieving a local maximum of density are perfect.

Theorem (Korkine-Zolotareff, 1877)
Lattices achieving a local maximum of density are perfect.
In terms of positive definite quadratic forms :

Theorem (Korkine-Zolotareff, 1877)
Lattices achieving a local maximum of density are perfect. In terms of positive definite quadratic forms :

$$
L=P \mathbb{Z}^{n} \quad \leadsto A=P^{\prime} P \in S_{n}(\mathbb{R})_{>0}
$$

Theorem (Korkine-Zolotareff, 1877)
Lattices achieving a local maximum of density are perfect. In terms of positive definite quadratic forms :

$$
L=P \mathbb{Z}^{n} \quad \leadsto \quad A=P^{\prime} P \in \mathrm{~S}_{\mathrm{n}}(\mathbb{R})_{>0}
$$

$$
\min L=\min A=\min _{0 \neq X \in \mathbb{Z}^{n}} A[X]
$$

Theorem (Korkine-Zolotareff, 1877)
Lattices achieving a local maximum of density are perfect. In terms of positive definite quadratic forms :

$$
L=P \mathbb{Z}^{n} \quad \leadsto A=P^{\prime} P \in S_{n}(\mathbb{R})_{>0}
$$

$$
\min L=\min A=\min _{0 \neq X \in \mathbb{Z}^{n}} A[X]
$$

attained on a finite set $S(A)$ of integral vectors

Theorem (Korkine-Zolotareff, 1877)
Lattices achieving a local maximum of density are perfect. In terms of positive definite quadratic forms :

$$
L=P \mathbb{Z}^{n} \quad \leadsto A=P^{\prime} P \in S_{n}(\mathbb{R})_{>0}
$$

$$
\min L=\min A=\min _{0 \neq X \in \mathbb{Z}^{n}} A[X]
$$

attained on a finite set $S(A)$ of integral vectors

Definition

A (resp. L) is perfect if

$$
\operatorname{Span}\left\{X X^{\prime}, X \in S(A)\right\}=\mathrm{S}_{\mathrm{n}}(\mathbb{R}) .
$$

Proposition

If $\operatorname{dim} L$ or $\operatorname{dim} M$ is less than 43 , then $L \otimes M$ is not locally densest.

Proposition

If $\operatorname{dim} L$ or $\operatorname{dim} M$ is less than 43 , then $L \otimes M$ is not locally densest.
Proof : set $\ell=\operatorname{dim} L, m=\operatorname{dim} M$. Kitaoka's result implies that the minimal vectors of $L \otimes M$ are split. Consequently, setting $r_{L \otimes M}=\operatorname{dim} \operatorname{Span}\left\{(X \otimes Y)(X \otimes Y)^{\prime}, X \otimes Y \in S(L \otimes M)\right\}$ one has

$$
r_{L \otimes M} \leq \frac{\ell(\ell+1)}{2} \frac{m(m+1)}{2}<\frac{\ell m(\ell m+1)}{2} .
$$

Proposition

If $\operatorname{dim} L$ or $\operatorname{dim} M$ is less than 43 , then $L \otimes M$ is not locally densest.
Proof : set $\ell=\operatorname{dim} L, m=\operatorname{dim} M$. Kitaoka's result implies that the minimal vectors of $L \otimes M$ are split. Consequently, setting $r_{L \otimes M}=\operatorname{dim} \operatorname{Span}\left\{(X \otimes Y)(X \otimes Y)^{\prime}, X \otimes Y \in S(L \otimes M)\right\}$ one has

$$
r_{L \otimes M} \leq \frac{\ell(\ell+1)}{2} \frac{m(m+1)}{2}<\frac{\ell m(\ell m+1)}{2} .
$$

In particular, there is no hope to obtain extremal modular lattices in this way.

Tensor product of Hermitian lattices

K / \mathbb{Q} an imaginary quadratic field, with ring of integers O_{K}.
$\mathcal{D}_{K / \mathbb{Q}}\left(\right.$ resp. $\left.D_{K}\right)$ its different (resp. discriminant).
$V \simeq K^{m}$ endowed with a positive definite Hermitian form h.
L a Hermitian lattice i.e.

$$
L=\mathfrak{a}_{1} e_{1} \oplus \cdots \oplus \mathfrak{a}_{m} e_{m},
$$

where $\left\{e_{1}, \ldots, e_{m}\right\}$ is a K-basis of $V \simeq K^{m}$ and the $\mathfrak{a}_{i} s$ are fractional ideals in K.

The discriminant of a pseudo-basis $\left\{e_{1}, \ldots, e_{m}\right\}$ is $\operatorname{det}\left(h\left(e_{i}, e_{j}\right)\right)$.
For any $1 \leq r \leq m=$ rank $_{O_{K}} L$ we define $d_{r}(L)$ as the minimal discriminant of a free O_{K}-sublattice of rank r of L. In particular, one has $d_{1}(L)=\min (L):=\min \{h(v, v) \mid 0 \neq v \in L\}$.

The (Hermitian) dual of a Hermitian lattice L is defined as

$$
L^{\#}=\left\{y \in V \mid h(y, L) \subset O_{K}\right\}
$$

By restriction of scalars, an O_{K}-lattice of rank m can be viewed as a \mathbb{Z}-lattice of rank $2 m$, with inner product defined by

$$
x \cdot y=\operatorname{Tr}_{K / \mathbb{Q}} h(x, y)
$$

The dual L^{*} of L with respect to that inner product is linked to $L^{\#}$ by

$$
L^{*}=\mathcal{D}_{K / \mathbb{Q}}^{-1} L^{\#} .
$$

The minimum of L, viewed as an ordinary \mathbb{Z}-lattice, is twice its "Hermitian" minimum $d_{1}(L)$.

Contrarily to the tensor product over \mathbb{Z}, and rather surprisingly, the tensor product over imaginary quadratic fields has proved to be successful in constructing extremal lattices (see Bachoc-Nebe 1998).

Contrarily to the tensor product over \mathbb{Z}, and rather surprisingly, the tensor product over imaginary quadratic fields has proved to be successful in constructing extremal lattices (see Bachoc-Nebe 1998).

Nevertheless, this happens only exceptionally :

Contrarily to the tensor product over \mathbb{Z}, and rather surprisingly, the tensor product over imaginary quadratic fields has proved to be successful in constructing extremal lattices (see Bachoc-Nebe 1998).

Nevertheless, this happens only exceptionally : in general, the tensor product of Hermitian lattices fails to produce "dense" lattices (as does the tensor product of lattices over \mathbb{Z}).

Contrarily to the tensor product over \mathbb{Z}, and rather surprisingly, the tensor product over imaginary quadratic fields has proved to be successful in constructing extremal lattices (see Bachoc-Nebe 1998).

Nevertheless, this happens only exceptionally : in general, the tensor product of Hermitian lattices fails to produce "dense" lattices (as does the tensor product of lattices over \mathbb{Z}).

Any vector in a tensor product $L \otimes_{O_{K}} M$ may be expressed as a sum

$$
\sum_{i=1}^{r} l_{i} \otimes m_{i}
$$

of split vectors. The minimal number of summands in such an expression is called the rank of z.

Contrarily to the tensor product over \mathbb{Z}, and rather surprisingly, the tensor product over imaginary quadratic fields has proved to be successful in constructing extremal lattices (see Bachoc-Nebe 1998).

Nevertheless, this happens only exceptionally : in general, the tensor product of Hermitian lattices fails to produce "dense" lattices (as does the tensor product of lattices over \mathbb{Z}).

Any vector in a tensor product $L \otimes_{O_{K}} M$ may be expressed as a sum

$$
\sum_{i=1}^{r} l_{i} \otimes m_{i}
$$

of split vectors. The minimal number of summands in such an expression is called the rank of z.
The following proposition allows for an estimation of the minimal Hermitian norm of a tensor product $L \otimes_{O_{K}} M$:

Proposition

Let L and M be Hermitian lattices. Then for any vector $z \in L \otimes_{O_{K}} M$ of rank r one has

$$
\begin{equation*}
h(z, z) \geq r d_{r}(L)^{1 / r} d_{r}(M)^{1 / r} . \tag{1}
\end{equation*}
$$

Proposition

Let L and M be Hermitian lattices. Then for any vector $z \in L \otimes_{O_{K}} M$ of rank r one has

$$
\begin{equation*}
h(z, z) \geq r d_{r}(L)^{1 / r} d_{r}(M)^{1 / r} . \tag{1}
\end{equation*}
$$

Moreover, a vector z of rank r in $L \otimes_{O_{K}} M$ for which equality holds in (1) exists if and only if M and L contain minimal r-sections M_{r} and L_{r} such that $M_{r} \simeq L_{r}^{\#}$.

Proposition

Let L and M be Hermitian lattices. Then for any vector $z \in L \otimes_{O_{K}} M$ of rank r one has

$$
\begin{equation*}
h(z, z) \geq r d_{r}(L)^{1 / r} d_{r}(M)^{1 / r} . \tag{1}
\end{equation*}
$$

Moreover, a vector z of rank r in $L \otimes_{O_{K}} M$ for which equality holds in (1) exists if and only if M and L contain minimal r-sections M_{r} and L_{r} such that $M_{r} \simeq L_{r}^{\#}$.
Proof : Arithmetic-geometric mean inequality.

An extremal unimodular lattice in dimension 72

From now on, $K=\mathbb{Q}[\sqrt{-7}]=\mathbb{Q}[\alpha]$, where $\alpha^{2}-\alpha+2=0$ so that $O_{K}=\mathbb{Z}[\alpha]$.

An extremal unimodular lattice in dimension 72

From now on, $K=\mathbb{Q}[\sqrt{-7}]=\mathbb{Q}[\alpha]$, where $\alpha^{2}-\alpha+2=0$ so that $O_{K}=\mathbb{Z}[\alpha]$.

The Barnes lattice P_{b} is a Hermitian lattice of rank 3 over $\mathbb{Z}[\alpha]$, with Hermitian Gram matrix

$$
\left(\begin{array}{ccc}
2 & \alpha & -1 \\
\beta & 2 & \alpha \\
-1 & \beta & 2
\end{array}\right)
$$

An extremal unimodular lattice in dimension 72

From now on, $K=\mathbb{Q}[\sqrt{-7}]=\mathbb{Q}[\alpha]$, where $\alpha^{2}-\alpha+2=0$ so that $O_{K}=\mathbb{Z}[\alpha]$.

The Barnes lattice P_{b} is a Hermitian lattice of rank 3 over $\mathbb{Z}[\alpha]$, with Hermitian Gram matrix

$$
\left(\begin{array}{ccc}
2 & \alpha & -1 \\
\beta & 2 & \alpha \\
-1 & \beta & 2
\end{array}\right)
$$

Then P_{b} is Hermitian unimodular, $P_{b}=P_{b}^{\#}$ and has Hermitian minimum $\min \left(P_{b}\right)=2$

An extremal unimodular lattice in dimension 72

 From now on, $K=\mathbb{Q}[\sqrt{-7}]=\mathbb{Q}[\alpha]$, where $\alpha^{2}-\alpha+2=0$ so that $O_{K}=\mathbb{Z}[\alpha]$.The Barnes lattice P_{b} is a Hermitian lattice of rank 3 over $\mathbb{Z}[\alpha]$, with Hermitian Gram matrix

$$
\left(\begin{array}{ccc}
2 & \alpha & -1 \\
\beta & 2 & \alpha \\
-1 & \beta & 2
\end{array}\right)
$$

Then P_{b} is Hermitian unimodular, $P_{b}=P_{b}^{\#}$ and has Hermitian minimum $\min \left(P_{b}\right)=2$
\leadsto as a \mathbb{Z}-lattice, it is 6-dimensional, modular of level 7 and minimum 4 (extremal).

An extremal unimodular lattice in dimension 72

From now on, $K=\mathbb{Q}[\sqrt{-7}]=\mathbb{Q}[\alpha]$, where $\alpha^{2}-\alpha+2=0$ so that $O_{K}=\mathbb{Z}[\alpha]$.

The Barnes lattice P_{b} is a Hermitian lattice of rank 3 over $\mathbb{Z}[\alpha]$, with Hermitian Gram matrix

$$
\left(\begin{array}{ccc}
2 & \alpha & -1 \\
\beta & 2 & \alpha \\
-1 & \beta & 2
\end{array}\right)
$$

Then P_{b} is Hermitian unimodular, $P_{b}=P_{b}^{\#}$ and has Hermitian minimum $\min \left(P_{b}\right)=2$
\leadsto as a \mathbb{Z}-lattice, it is 6-dimensional, modular of level 7 and minimum 4 (extremal).
Fact :

1. $d_{1}\left(P_{b}\right)=2$.
2. $d_{2}\left(P_{b}\right)=2$.
3. $d_{3}\left(P_{b}\right)=1$.

Michael Hentschel classified all Hermitian $\mathbb{Z}[\alpha]$-structures on the even unimodular \mathbb{Z}-lattices of dimension 24.

Michael Hentschel classified all Hermitian $\mathbb{Z}[\alpha]$-structures on the even unimodular \mathbb{Z}-lattices of dimension 24.
\leadsto exactly nine such $\mathbb{Z}[\alpha]$ structures $\left(P_{i}, h\right)(1 \leq i \leq 9)$ such that $\left(P_{i}, \operatorname{trace}_{\mathbb{Z}[\alpha] / \mathbb{Z}} \circ h\right) \cong \Lambda$ is the Leech lattice.

Michael Hentschel classified all Hermitian $\mathbb{Z}[\alpha]$-structures on the even unimodular \mathbb{Z}-lattices of dimension 24.
\leadsto exactly nine such $\mathbb{Z}[\alpha]$ structures $\left(P_{i}, h\right)(1 \leq i \leq 9)$ such that $\left(P_{i}, \operatorname{trace}_{\mathbb{Z}[\alpha] / \mathbb{Z}} \circ h\right) \cong \Lambda$ is the Leech lattice.
\leadsto nine 36-dimensional Hermitian $\mathbb{Z}[\alpha]$-lattice R_{i} defined by
$R_{i}:=P_{b} \otimes_{\mathbb{Z}[\alpha]} P_{i}$

Michael Hentschel classified all Hermitian $\mathbb{Z}[\alpha]$-structures on the even unimodular \mathbb{Z}-lattices of dimension 24.
\leadsto exactly nine such $\mathbb{Z}[\alpha]$ structures $\left(P_{i}, h\right)(1 \leq i \leq 9)$ such that $\left(P_{i}, \operatorname{trace}_{\mathbb{Z}[\alpha] / \mathbb{Z}} \circ h\right) \cong \Lambda$ is the Leech lattice.
\leadsto nine 36-dimensional Hermitian $\mathbb{Z}[\alpha]$-lattice R_{i} defined by $R_{i}:=P_{\mathrm{b}} \otimes_{\mathbb{Z}[\alpha]} P_{i}$ so that $\left(R_{i}\right.$, trace $\left._{\mathbb{Z}[\alpha] / \mathbb{Z}} \circ h\right)$ is an even unimodular lattice in dimension 72.

Michael Hentschel classified all Hermitian $\mathbb{Z}[\alpha]$-structures on the even unimodular \mathbb{Z}-lattices of dimension 24.
\sim exactly nine such $\mathbb{Z}[\alpha]$ structures $\left(P_{i}, h\right)(1 \leq i \leq 9)$ such that $\left(P_{i}, \operatorname{trace}_{\mathbb{Z}[\alpha] / \mathbb{Z}} \circ h\right) \cong \Lambda$ is the Leech lattice.
\leadsto nine 36-dimensional Hermitian $\mathbb{Z}[\alpha]$-lattice R_{i} defined by $R_{i}:=P_{\mathrm{b}} \otimes_{\mathbb{Z}[\alpha]} P_{i}$ so that $\left(R_{i}\right.$, trace $\left._{\mathbb{Z}[\alpha] / \mathbb{Z}} \circ h\right)$ is an even unimodular lattice in dimension 72.

Theorem (C., Nebe, 2011)
The (Hermitian) minimum of the lattices R_{i} is either 3 or 4. The number of vectors of norm 3 in R_{i} is equal to the representation number of P_{i} for the sublattice P_{b}. In particular $\min \left(R_{i}\right)=4$ if and only if the Hermitian Leech lattice P_{i} does not contain a sublattice isomorphic to P_{b}.

Theorem (C., Nebe, 2011)

The (Hermitian) minimum of the lattices R_{i} is either 3 or 4. The number of vectors of norm 3 in R_{i} is equal to the representation number of P_{i} for the sublattice P_{b}. In particular $\min \left(R_{i}\right)=4$ if and only if the Hermitian Leech lattice P_{i} does not contain a sublattice isomorphic to P_{b}.

Theorem (C., Nebe, 2011)

The (Hermitian) minimum of the lattices R_{i} is either 3 or 4 . The number of vectors of norm 3 in R_{i} is equal to the representation number of P_{i} for the sublattice P_{b}. In particular $\min \left(R_{i}\right)=4$ if and only if the Hermitian Leech lattice P_{i} does not contain a sublattice isomorphic to P_{b}.
Proof: One checks easily that $d_{1}\left(R_{i}\right)=2$ and $d_{2}\left(R_{i}\right)=\frac{12}{7}$. Together with the values of $d_{1}\left(P_{b}\right)$ and $d_{2}\left(P_{b}\right)$ computed before, it shows that vectors of rank 1 and 2 have Hermitian norm at least 4. As for vectors of rank 3, one checks easily that they have norm at least 3 , and the case of equality is analysed via the previous proposition.

To summarize, one has, for each of the nine Hermitian structures P_{1}, \ldots, P_{9} of the Leech lattice over $\mathbb{Z}[\alpha]$, the following alternative :

- either P_{i} contains a sublattice isometric to P_{b}, in which case $R_{i}:=P_{b} \otimes_{\mathbb{Z}[\alpha]} P_{i}$ is not extremal ($\min R_{i}=3$)
- or P_{i} does not contain any sublattice isometric to P_{b}, in which case $R_{i}:=P_{b} \otimes_{\mathbb{Z}[\alpha]} P_{i}$ is extremal $\left(\min R_{i}=4\right)$

To summarize, one has, for each of the nine Hermitian structures P_{1}, \ldots, P_{9} of the Leech lattice over $\mathbb{Z}[\alpha]$, the following alternative :

- either P_{i} contains a sublattice isometric to P_{b}, in which case $R_{i}:=P_{\mathrm{b}} \otimes_{\mathbb{Z}[\alpha]} P_{i}$ is not extremal $\left(\min R_{i}=3\right)$
- or P_{i} does not contain any sublattice isometric to P_{b}, in which case $R_{i}:=P_{b} \otimes_{\mathbb{Z}[\alpha]} P_{i}$ is extremal $\left(\min R_{i}=4\right)$
It turns out that exactly one (out of nine) of the Hermitian lattices P_{1}, \ldots, P_{9} is in the second case, giving rise to an extremal lattice.

To summarize, one has, for each of the nine Hermitian structures P_{1}, \ldots, P_{9} of the Leech lattice over $\mathbb{Z}[\alpha]$, the following alternative :

- either P_{i} contains a sublattice isometric to P_{b}, in which case $R_{i}:=P_{\mathrm{b}} \otimes_{\mathbb{Z}[\alpha]} P_{i}$ is not extremal $\left(\min R_{i}=3\right)$
- or P_{i} does not contain any sublattice isometric to P_{b}, in which case $R_{i}:=P_{b} \otimes_{\mathbb{Z}[\alpha]} P_{i}$ is extremal $\left(\min R_{i}=4\right)$
It turns out that exactly one (out of nine) of the Hermitian lattices P_{1}, \ldots, P_{9} is in the second case, giving rise to an extremal lattice. This step requires a rather heavy computation using MAGMA.

To summarize, one has, for each of the nine Hermitian structures P_{1}, \ldots, P_{9} of the Leech lattice over $\mathbb{Z}[\alpha]$, the following alternative :

- either P_{i} contains a sublattice isometric to P_{b}, in which case $R_{i}:=P_{b} \otimes_{\mathbb{Z}[\alpha]} P_{i}$ is not extremal ($\min R_{i}=3$)
- or P_{i} does not contain any sublattice isometric to P_{b}, in which case $R_{i}:=P_{b} \otimes_{\mathbb{Z}[\alpha]} P_{i}$ is extremal $\left(\min R_{i}=4\right)$
It turns out that exactly one (out of nine) of the Hermitian lattices P_{1}, \ldots, P_{9} is in the second case, giving rise to an extremal lattice. This step requires a rather heavy computation using MAGMA.

Question : can one find a more direct argument to prove that one of the P_{i}, say P_{1}, does not contain any sublattice isometric to P_{b} while the eight others do ?

Slopes of lattices, tensor product of semi-stable lattices.

$L \subset \in \mathbb{R}^{n}$ a lattice. We may assume, up to scaling, that $\operatorname{det} L=1$.
The profile of L is defined as follows (Grayson '84, Stuhler '76):

Slopes of lattices, tensor product of semi-stable lattices.

$L \subset \in \mathbb{R}^{n}$ a lattice. We may assume, up to scaling, that $\operatorname{det} L=1$.
The profile of L is defined as follows (Grayson '84, Stuhler '76):

Slopes of lattices, tensor product of semi-stable lattices.

$L \subset \in \mathbb{R}^{n}$ a lattice. We may assume, up to scaling, that $\operatorname{det} L=1$.
The profile of L is defined as follows (Grayson '84, Stuhler '76):

for every primitive sublattice M of L, plot ($\operatorname{dim} M, \log \operatorname{det} M)$
add the vertical lines $(0, \infty)$ and (n, ∞) and take the convex hull of the resulting set of points.

Slopes of lattices, tensor product of semi-stable lattices.

$L \subset \in \mathbb{R}^{n}$ a lattice. We may assume, up to scaling, that $\operatorname{det} L=1$.
The profile of L is defined as follows (Grayson '84, Stuhler '76):

for every primitive sublattice M of L, plot ($\operatorname{dim} M, \log \operatorname{det} M)$
add the vertical lines $(0, \infty)$ and (n, ∞) and take the convex hull of the resulting set of points.

The profile of L is the polygonal boundary of this convex hull.

Slopes of lattices, tensor product of semi-stable lattices.

$L \subset \in \mathbb{R}^{n}$ a lattice. We may assume, up to scaling, that $\operatorname{det} L=1$.
The profile of L is defined as follows (Grayson '84, Stuhler '76):

for every primitive sublattice M of L, plot ($\operatorname{dim} M, \log \operatorname{det} M$)
add the vertical lines $(0, \infty)$ and (n, ∞) and take the convex hull of the resulting set of points.

The profile of L is the polygonal boundary of this convex hull.
minimal slope $=\min _{M \subset L} \frac{\log \operatorname{det} M}{\operatorname{dim} M}$

Slopes of lattices, tensor product of semi-stable lattices.

$L \subset \in \mathbb{R}^{n}$ a lattice. We may assume, up to scaling, that $\operatorname{det} L=1$.
The profile of L is defined as follows (Grayson '84, Stuhler '76):

for every primitive sublattice M of L, plot ($\operatorname{dim} M, \log \operatorname{det} M$)
add the vertical lines $(0, \infty)$ and (n, ∞) and take the convex hull of the resulting set of points.

The profile of L is the polygonal boundary of this convex hull.
minimal slope $=\min _{M \subset L} \frac{\log \operatorname{det} M}{\operatorname{dim} M}=\log \min _{k}\left(d_{k} L\right)^{1 / k}$

Slopes of lattices, tensor product of semi-stable lattices.

$L \subset \in \mathbb{R}^{n}$ a lattice. We may assume, up to scaling, that $\operatorname{det} L=1$.
The profile of L is defined as follows (Grayson '84, Stuhler '76):

for every primitive sublattice M of L, plot ($\operatorname{dim} M, \log \operatorname{det} M$)
add the vertical lines $(0, \infty)$ and (n, ∞) and take the convex hull of the resulting set of points.

The profile of L is the polygonal boundary of this convex hull.
minimal slope $=\min _{M \subset L} \frac{\log \operatorname{det} M}{\operatorname{dim} M}=\log \min _{k}\left(d_{k} L\right)^{1 / k}$
($d_{k} L=$ minimal determinant of k-dimensional sublattices of L)

From now on, we set

$$
\mu(L)=\min _{k}\left(d_{k} L\right)^{1 / k}
$$

From now on, we set

$$
\mu(L)=\min _{k}\left(d_{k} L\right)^{1 / k}
$$ and we denote by $\kappa(L)$ the set of k such that $\mu(L)=\left(d_{k} L\right)^{1 / k}$.

From now on, we set

$$
\mu(L)=\min _{k}\left(d_{k} L\right)^{1 / k}
$$

and we denote by $\kappa(L)$ the set of k such that $\mu(L)=\left(d_{k} L\right)^{1 / k}$. Examples:

From now on, we set

$$
\mu(L)=\min _{k}\left(d_{k} L\right)^{1 / k}
$$

and we denote by $\kappa(L)$ the set of k such that $\mu(L)=\left(d_{k} L\right)^{1 / k}$. Examples:

- If L is unimodular, $\mu(L)=\operatorname{det} L$.

From now on, we set

$$
\mu(L)=\min _{k}\left(d_{k} L\right)^{1 / k}
$$

and we denote by $\kappa(L)$ the set of k such that $\mu(L)=\left(d_{k} L\right)^{1 / k}$.
Let $S_{k}(L)$ be the set of minimal sublattices of dimension k of L.

From now on, we set

$$
\mu(L)=\min _{k}\left(d_{k} L\right)^{1 / k}
$$

and we denote by $\kappa(L)$ the set of k such that $\mu(L)=\left(d_{k} L\right)^{1 / k}$.
Let $S_{k}(L)$ be the set of minimal sublattices of dimension k of L.

Proposition (Grayson)

There exists a unique sublattice M_{0} of L such that

1. $\left(\operatorname{det} M_{0}\right)^{1 / \operatorname{det} M_{0}}=\mu(L)$
2. $M_{0} \supset S_{k}(L)$ for any $k \in \kappa(L)$.

From now on, we set

$$
\mu(L)=\min _{k}\left(d_{k} L\right)^{1 / k}
$$

and we denote by $\kappa(L)$ the set of k such that $\mu(L)=\left(d_{k} L\right)^{1 / k}$.
Let $S_{k}(L)$ be the set of minimal sublattices of dimension k of L.

Proposition (Grayson)

There exists a unique sublattice M_{0} of L such that

1. $\left(\operatorname{det} M_{0}\right)^{1 / \operatorname{det} M_{0}}=\mu(L)$
2. $M_{0} \supset S_{k}(L)$ for any $k \in \kappa(L)$.

When $\mu(L)=\operatorname{det} L$ (i.e. $M_{0}=L$), we say that L is semi-stable.

Conjecture (Bost)

For any lattices L and M, one has

$$
\mu(L \otimes M)=\mu(L) \mu(M)
$$

(equivalently the tensor product of semi-stable lattices is semi-stable)

Conjecture (Bost)

For any lattices L and M, one has

$$
\mu(L \otimes M)=\mu(L) \mu(M)
$$

(equivalently the tensor product of semi-stable lattices is semi-stable)

- True if $\operatorname{dim} M+\operatorname{dim} L<5$ (De Shalit, Parzanchevski, preprint 2006).

Conjecture (Bost)

For any lattices L and M, one has

$$
\mu(L \otimes M)=\mu(L) \mu(M)
$$

(equivalently the tensor product of semi-stable lattices is semi-stable)

- True if $\operatorname{dim} M+\operatorname{dim} L<5$ (De Shalit, Parzanchevski, preprint 2006).
- True if Aut M or Aut L acts irreducibly (Gaudron-Rémond, preprint 2011).

Conjecture (Bost)

For any lattices L and M, one has

$$
\mu(L \otimes M)=\mu(L) \mu(M)
$$

(equivalently the tensor product of semi-stable lattices is semi-stable)

- True if $\operatorname{dim} M+\operatorname{dim} L<5$ (De Shalit, Parzanchevski, preprint 2006).
- True if Aut M or Aut L acts irreducibly (Gaudron-Rémond, preprint 2011).
- For further information on this conjecture, see Yves André On nef and semistable hermitian lattices, and their behaviour under tensor product http://arxiv.org/abs/1008.1553

