Weyl's inequality and systems of forms

Rainer Dietmann

Royal Holloway, University of London

Banff workshop on "Diophantine Methods, Lattices, and Arithmetic Theory of Quadratic Forms", 17 November 2011

Starting point:

Theorem (Meyer 1884)

Let $Q \in \mathbb{Q}[X_1, ..., X_s]$ be an indefinite quadratic form where $s \ge 5$. Then Q has a non-trivial rational zero.

More generally, for rational quadratic forms the *Local-Global principle* holds true (Minkowski 1905): Non-trivial rational zeros exist if and only if non-trivial real and *p*-adic zeros exist.

- The condition $s \ge 5$ in Meyer's result makes sure that for all primes p there are non-trivial p-adic zeros.
- The condition 'Q indefinite' makes sure that there is a non-trivial real zero.
- The 5 in the theorem is best possible.

What about systems of forms, higher degree forms?

Theorem

(Colliot-Thélène, Sansuc, Swinnerton-Dyer 1987) Let $Q_1, Q_2 \in \mathbb{Q}[X_1, \ldots, X_s]$ be quadratic forms where $s \ge 9$. Suppose that each form in their rational pencil has rank at least 5, and that each form in their real pencil is indefinite. Then the system $Q_1(\mathbf{x}) = Q_2(\mathbf{x}) = 0$ has a non-trivial rational zero \mathbf{x} .

• The *pencil* of a system of forms F_1, \ldots, F_r is the set of all forms

$$a_1F_1 + \ldots + a_rF_r$$

where $\mathbf{a} \neq \mathbf{0}$.

- $s \ge 9$ is needed to make sure non-trivial *p*-adic solutions exist
- 'indefinite' part of pencil condition needed to make sure non-trivial real solutions exist
- 9 is best possible

The condition rank \geq 5 for all forms in the rational pencil is necessary as seen by the following example (W.M. Schmidt 1982): Let

$$Q_1(X_1,\ldots,X_s) = X_1^2 + X_2^2 + X_3^2 - 7X_4^2$$

and

$$Q_2(X_1,\ldots,X_s) = X_1^2 + X_2^2 + X_3^2 + X_4^2 - X_5^2 - \ldots - X_s^2,$$

where *s* may be arbitrarily large. Each form in the real pencil of Q_1, Q_2 is indefinite, but Q_1 has only rank 4. Now if $Q_1(\mathbf{x}) = 0$ for rational $\mathbf{x} \in \mathbb{Q}^s$, then necessarily

$$x_1=\ldots=x_4=0.$$

Then $Q_2(\mathbf{x}) = 0$ implies that

$$x_5=\ldots=x_s=0.$$

Hence a lower bound on s alone is not enough, $(a, b) \in (a, b)$ and $(a, b) \in (a, b)$

Theorem (W.M. Schmidt 1982)

Let $Q_1,\ldots,Q_r\in \mathbb{Q}[X_1,\ldots,X_s]$ be quadratic forms. Suppose that

- each form in the rational pencil of Q_1, \ldots, Q_r has rank exceeding $2r^2 + 3r$,
- the system $Q_1 = \ldots = Q_r = 0$ has non-singular p-adic zeros,

• the system $Q_1 = \ldots = Q_r = 0$ has a non-singular real zero.

Then the system $Q_1(\mathbf{x}) = \ldots = Q_r(\mathbf{x}) = 0$ has a non-trivial rational zero.

Birch (1962) established a very general result: Let $F_1, \ldots, F_r \in \mathbb{Z}[X_1, \ldots, X_s]$ be forms of degree d, and let V^* be the union of the loci of singularities of the varieties

$$F_1(\mathbf{x}) = \mu_1, \ldots, F_r(\mathbf{x}) = \mu_r.$$

Moreover, let \mathfrak{B} be a box in \mathbb{R}^s with sides parallel to the coordinate axes, and contained in the unit box, and let $\mathfrak{N}(P)$ be the number of integer solutions $\mathbf{x} \in \mathbb{Z}^s$ of the system

$$F_1(\mathbf{x}) = \ldots = F_r(\mathbf{x}) = 0$$

in the box $\{\mathbf{x} \in \mathbb{Z}^s \cap P\mathfrak{B}\}$. Then if

$$s > \dim V^* + r(r+1)(d-1)2^{d-1},$$
 (1)

then the asymptotic formula

$$\mathfrak{N}(P) = \mathfrak{J}\mathfrak{S}P^{s-rd} + O(P^{s-rd-\delta})$$

holds true.

<ロト 4 回 ト 4 回 ト 4 回 ト 1 回 9 Q Q</p>

Here \mathfrak{J} is the *singular integral*, and \mathfrak{S} is the *singular series*. Interpretation of \mathfrak{S} and \mathfrak{J} :

• \mathfrak{S} is a measure for the density of *p*-adic solutions of $F_1 = \ldots = F_r = 0$,

• \mathfrak{J} is a measure for the density of real solutions of $F_1 = \ldots = F_r = 0.$

Assuming that

F₁ = ... = F_r = 0 has a *non-singular* p-adic solution for all primes p,

• $F_1 = \ldots = F_r = 0$ has a *non-singular* real solution,

one can show that

$$\mathfrak{J}>0,\ \mathfrak{S}>0$$

and deduces that

$$\mathfrak{N}(P) \to \infty \quad (P \to \infty).$$

Usually, V^* is difficult to describe, and one would prefer a condition which is easier to handle. Need some more notation: For a rational cubic form $C(X_1, \ldots, X_s)$, its *h*-invariant is the smallest non-negative integer k such that C can be written as

$$C=\sum_{i=1}^k Q_i L_i$$

for suitable rational quadratic forms $Q_i(X_1, \ldots, X_s)$ and rational linear forms $L_i(X_1, \ldots, X_s)$.

Theorem (W.M. Schmidt 1982)

Let $Q_1, \ldots, Q_r \in \mathbb{Z}[X_1, \ldots, X_s]$ be quadratic forms. Suppose that each form in the rational pencil of Q_1, \ldots, Q_r has rank exceeding $2r^2 + 3r$. Then in the notation from above,

$$\mathfrak{N}(P) = \mathfrak{J}\mathfrak{S}P^{s-2r} + O(P^{s-2r-\delta}).$$

Likewise, if $C_1, \ldots, C_r \in \mathbb{Z}[X_1, \ldots, X_s]$ are cubic forms, such that each form in their rational pencil has h-invariant exceeding $10r^2 + 6r$, then

$$\mathfrak{N}(P) = \mathfrak{J}\mathfrak{S}P^{s-3r} + O(P^{s-3r-\delta}).$$

Birch's condition (1) reads

• $s > \dim V^* + 2r^2 + 2r$ for d = 2,

•
$$s > \dim V^* + 8r^2 + 8r$$
 for $d = 3$,

so one might wonder if Schmidt's rank- and *h*-invariant bounds $2r^2 + 3r$ and $10r^2 + 6r$ can be relaxed to $2r^2 + 2r$ and $8r^2 + 8r$, respectively. This is indeed the case.

Theorem (D. 201?)

Let $Q_1, \ldots, Q_r \in \mathbb{Z}[X_1, \ldots, X_s]$ be quadratic forms, such that each form in their rational pencil has rank exceeding $2r^2 + 2r$. Then in the notation from above, the asymptotic formula

$$\mathfrak{N}(P) = \mathfrak{J}\mathfrak{S}P^{s-2r} + O(P^{s-2r-\delta})$$

holds true. Likewise, if $C_1, \ldots, C_r \in \mathbb{Z}[X_1, \ldots, X_s]$ are cubic forms, such that each form in their rational pencil has h-invariant exceeding $8r^2 + 8r$, then

$$\mathfrak{N}(P) = \mathfrak{J}\mathfrak{S}P^{s-3r} + O(P^{s-3r-\delta}).$$

▲ロト ▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の Q @

Theorem (D. 2004)

Let p be a rational prime, and let $Q_1, \ldots, Q_r \in \mathbb{Q}_p[X_1, \ldots, X_s]$ be quadratic forms such that each form in their p-adic pencil has rank exceeding

$$\begin{cases} 2r^2 & r \text{ even} \\ 2r^2 + 2 & r \text{ odd.} \end{cases}$$

Then the system

$$Q_1(\mathbf{x}) = \ldots = Q_r(\mathbf{x}) = 0$$

has a non-singular p-adic solution $\mathbf{x} \in \mathbb{Q}_p^s$.

Corollary

Let $Q_1, \ldots, Q_r \in \mathbb{Q}[X_1, \ldots, X_s]$ be quadratic forms. Suppose that each form in the complex pencil of Q_1, \ldots, Q_r has rank exceeding $2r^2 + 2r$. Further assume that the system $Q_1 = \ldots = Q_r = 0$ has a non-singular real zero. Then the system $Q_1 = \ldots = Q_r = 0$ has a non-trivial rational zero.

For r = 1 one gets back Meyer's Theorem.

The Corollary follows from the theorems on the previous two slides and the observation that the $2r^2 + 2r$ pencil condition over \mathbb{C} also implies a $2r^2 + 2r$ pencil condition over \mathbb{Q} as well as over all \mathbb{Q}_p .

The proof uses the *Hardy-Littlewood circle method* from Analytic Number Theory. Basic idea: Let

$$e(x) = e^{2\pi i x}$$

Then for $\mathbf{n} \in \mathbb{Z}^n$, we have

$$\int_{[0,1]'} e(\mathbf{nx}) \, d\mathbf{x} = \left\{ \begin{array}{ll} 1 & \text{if } \mathbf{n} = \mathbf{0} \\ 0 & \text{if } \mathbf{n} \neq \mathbf{0}. \end{array} \right.$$

Hence

$$\mathfrak{N}(P)=\int_{[0,1]^r}S(\alpha)\,d\alpha,$$

where $S(\alpha) = S(\alpha_1, \dots, \alpha_r)$ is the *exponential sum*

ŧ

$$S(\alpha) = \sum_{\mathbf{x} \in P\mathfrak{B}} e(\alpha_1 F_1(\mathbf{x}) + \ldots + \alpha_r F_r(\mathbf{x})).$$

Philosophy: If all α_i are 'close to a rational point', then $S(\alpha)$ can be asymptotically evaluated. Otherwise, $S(\alpha)$ is 'small'. Ideally, this gives an asymptotic formula for $\mathfrak{N}(P)$. To keep notation simple, focus on quadratics now. Both Birch and Schmidt used the following form of Weyl's inequality.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Lemma (Weyl's inequality for systems of quadratic forms)

Let $0 \le \theta < 1$, $\epsilon > 0$ and k > 0. Then we either (i) have

$$S(\alpha) \ll P^{s-k},$$

or (ii) there are integers a_1, \ldots, a_r, q such that

$$(a_1, \dots, a_r, q) = 1,$$

 $|q\alpha_i - a_i| \ll P^{-2+r\theta} \quad (1 \le i \le r),$
 $1 \le q \le P^{r\theta},$

or (iii) we have

$$\#\{\mathbf{x} \in P^{ heta}\mathfrak{B} : rank(\Psi_j^{(i)}(\mathbf{x})) < r\} \gg (P^{ heta})^{s-2k/ heta-\epsilon}$$

where

$$\Phi_j(\mathbf{a}; \mathbf{x}) = \sum_{i=1}^r a_i \Psi_j^{(i)}(\mathbf{x}) \quad (1 \leq j \leq s),$$

$$\Psi_{j}^{(i)}(\mathbf{x}) = 2\sum_{k=1}^{s} c_{j,k}^{(i)} x_{k} \quad (1 \leq i \leq r, 1 \leq j \leq s),$$

$$Q_i(X_1,\ldots,X_s)=\sum_{j,k=1}^s c_{jk}^{(i)}X_jX_k \quad (1\leq i\leq r).$$

The main tool for proving Weyl's inequality is Cauchy-Schwarz' inequality. 'Differentiating' a quadratic expression yields a linear one, and this is the reason why the linear forms Ψ and Φ occur.

Alternative (iii) can be given a more suitable interpretation for systems of forms.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Lemma (Weyl's inequality for systems of quadratic forms II)

Let $0 \le \theta < 1$, $\epsilon > 0$ and k > 0. Then we either (i) have

$$S(\alpha) \ll P^{s-k},$$

or (ii) there are integers a_1, \ldots, a_r, q such that

$$(a_1, \dots, a_r, q) = 1,$$

 $|q\alpha_i - a_i| \ll P^{-2+r\theta} \quad (1 \le i \le r),$
 $1 \le q \le P^{r\theta},$

or (iii) there are integers a_1, \ldots, a_r , not all zero, such that

$$\mathfrak{M}(a_1,\ldots,a_r;P^{\theta})\gg (P^{\theta})^{s-2k/\theta-\epsilon}$$

where

$$\mathfrak{M}(a_1,\ldots,a_r;H) = \#\{\mathbf{x}\in\mathbb{Z}^s:\mathbf{x}\in H\mathfrak{B} \\ \text{and } \Phi_j(\mathbf{a};\mathbf{x}) = 0 \ (1\leq j\leq s)\},\$$

Clearly, the larger the dimension of the span of Φ_1, \ldots, Φ_s in the space of linear forms in **x**, the smaller $\mathfrak{M}(a_1, \ldots, a_r; H)$. That dimension can be controlled by the smallest rank in the pencil of Q_1, \ldots, Q_r .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Corollary

Suppose that each quadratic form in the rational pencil of Q_1, \ldots, Q_r has rank at least m. Then, using the notation from above, we either (i) have

$$S(\alpha) \ll P^{s-m\theta/2},$$

or alternative (ii) holds true.

So alternative (iii) got eliminated. The rest is a lengthy, but straightforward application of the circle method.

Now let A be a non-singular positive definite symmetric integer $n \times n$ -matrix, and B be a positive definite symmetric integer $m \times m$ -matrix. The matrix equation

$$X^{t}AX = B \tag{2}$$

corresponds to the representation of a quadratic form B by a quadratic form A. Let N(A, B) be the number of integer solutions X of (2).

For fixed A, interested in asymptotic formula for N(A, B). Case m = 1 has long history; m > 1 more difficult, also need to define what it means that B is 'large enough' (in terms of A). Let

$$\min B = \min_{\mathbf{x} \in \mathbb{Z}^m \setminus \{\mathbf{0}\}} \mathbf{x}^t B \mathbf{x}$$

be the *first successive minimum of* B. We can only expect an asymptotic formula for N(A, B) if min B is sufficiently large for given A.

In a similar way, can define second successive minimum etc. If

 $\min B \gg (\det B)^{1/m},$

then all successive minima of B are roughly of the same size. Using Siegel modular forms, Raghavan (1959) proved the following

Theorem (Raghavan (1959))

Let c > 0 and n > 2m + 2. Then if

 $\min B \ge c(\det B)^{1/m},$

then for det $B \gg_c 1$ we have

$$\mathcal{N}(A,B) = \mathfrak{J}\mathfrak{S}(\det B)^{(n-m-1)/2} + O((\det B)^{(n-m-1)/2-\delta}).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Writing (2) as a system of quadratic equations, problem can also be attacked by the circle method. Dependence on n gets worse, but condition on B can be relaxed!

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Theorem (D., Harvey – work in progress)

Let c > 0 and suppose that

min $B \geq (\det B)^c$.

Then there exists $N(c) \in \mathbb{N}$ such that if $n \ge N(c)$ and det $B \gg_c 1$, then

$$N(A,B) = \mathfrak{J}\mathfrak{S}(\det B)^{(n-m-1)/2} + O((\det B)^{(n-m-1)/2-\delta}).$$