Weyl's inequality and systems of forms

Rainer Dietmann

Royal Holloway, University of London
Banff workshop on "Diophantine Methods, Lattices, and Arithmetic Theory of Quadratic Forms", 17 November 2011

Starting point:

Theorem (Meyer 1884)

Let $Q \in \mathbb{Q}\left[X_{1}, \ldots, X_{s}\right]$ be an indefinite quadratic form where $s \geq 5$. Then Q has a non-trivial rational zero.

More generally, for rational quadratic forms the Local-Global principle holds true (Minkowski 1905): Non-trivial rational zeros exist if and only if non-trivial real and p-adic zeros exist.

- The condition $s \geq 5$ in Meyer's result makes sure that for all primes p there are non-trivial p-adic zeros.
- The condition ' Q indefinite' makes sure that there is a non-trivial real zero.
- The 5 in the theorem is best possible.

What about systems of forms, higher degree forms?

Theorem

(Colliot-Thélène, Sansuc, Swinnerton-Dyer 1987) Let
$Q_{1}, Q_{2} \in \mathbb{Q}\left[X_{1}, \ldots, X_{s}\right]$ be quadratic forms where $s \geq 9$. Suppose that each form in their rational pencil has rank at least 5, and that each form in their real pencil is indefinite. Then the system $Q_{1}(\mathbf{x})=Q_{2}(\mathbf{x})=0$ has a non-trivial rational zero \mathbf{x}.

- The pencil of a system of forms F_{1}, \ldots, F_{r} is the set of all forms

$$
a_{1} F_{1}+\ldots+a_{r} F_{r}
$$

where $\mathbf{a} \neq \mathbf{0}$.

- $s \geq 9$ is needed to make sure non-trivial p-adic solutions exist
- 'indefinite' part of pencil condition needed to make sure non-trivial real solutions exist
■ 9 is best possible

The condition rank ≥ 5 for all forms in the rational pencil is necessary as seen by the following example (W.M. Schmidt 1982): Let

$$
Q_{1}\left(X_{1}, \ldots, X_{s}\right)=X_{1}^{2}+X_{2}^{2}+X_{3}^{2}-7 X_{4}^{2}
$$

and

$$
Q_{2}\left(X_{1}, \ldots, X_{s}\right)=X_{1}^{2}+X_{2}^{2}+X_{3}^{2}+X_{4}^{2}-X_{5}^{2}-\ldots-X_{s}^{2}
$$

where s may be arbitrarily large. Each form in the real pencil of Q_{1}, Q_{2} is indefinite, but Q_{1} has only rank 4.
Now if $Q_{1}(\mathbf{x})=0$ for rational $\mathbf{x} \in \mathbb{Q}^{s}$, then necessarily

$$
x_{1}=\ldots=x_{4}=0 .
$$

Then $Q_{2}(\mathbf{x})=0$ implies that

$$
x_{5}=\ldots=x_{s}=0 .
$$

Hence a lower bound on s alone is not enough.

Theorem (W.M. Schmidt 1982)

Let $Q_{1}, \ldots, Q_{r} \in \mathbb{Q}\left[X_{1}, \ldots, X_{s}\right]$ be quadratic forms. Suppose that
■ each form in the rational pencil of Q_{1}, \ldots, Q_{r} has rank exceeding $2 r^{2}+3 r$,

- the system $Q_{1}=\ldots=Q_{r}=0$ has non-singular p-adic zeros,
- the system $Q_{1}=\ldots=Q_{r}=0$ has a non-singular real zero.

Then the system $Q_{1}(\mathbf{x})=\ldots=Q_{r}(\mathbf{x})=0$ has a non-trivial rational zero.

Birch (1962) established a very general result: Let $F_{1}, \ldots, F_{r} \in \mathbb{Z}\left[X_{1}, \ldots, X_{s}\right]$ be forms of degree d, and let V^{*} be the union of the loci of singularities of the varieties

$$
F_{1}(\mathbf{x})=\mu_{1}, \ldots, F_{r}(\mathbf{x})=\mu_{r} .
$$

Moreover, let \mathfrak{B} be a box in \mathbb{R}^{s} with sides parallel to the coordinate axes, and contained in the unit box, and let $\mathfrak{N}(P)$ be the number of integer solutions $\mathbf{x} \in \mathbb{Z}^{s}$ of the system

$$
F_{1}(\mathbf{x})=\ldots=F_{r}(\mathbf{x})=0
$$

in the box $\left\{\mathbf{x} \in \mathbb{Z}^{\boldsymbol{s}} \cap P \mathfrak{B}\right\}$. Then if

$$
\begin{equation*}
s>\operatorname{dim} V^{*}+r(r+1)(d-1) 2^{d-1} \tag{1}
\end{equation*}
$$

then the asymptotic formula

$$
\mathfrak{N}(P)=\mathfrak{J} \mathfrak{S} P^{s-r d}+O\left(P^{s-r d-\delta}\right)
$$

holds true.

Here \mathfrak{J} is the singular integral, and \mathfrak{S} is the singular series. Interpretation of \mathfrak{S} and \mathfrak{J} :

■ \mathfrak{S} is a measure for the density of p-adic solutions of

$$
F_{1}=\ldots=F_{r}=0
$$

- \mathfrak{J} is a measure for the density of real solutions of

$$
F_{1}=\ldots=F_{r}=0 .
$$

Assuming that
■ $F_{1}=\ldots=F_{r}=0$ has a non-singular p-adic solution for all primes p,

- $F_{1}=\ldots=F_{r}=0$ has a non-singular real solution, one can show that

$$
\mathfrak{J}>0, \mathfrak{S}>0
$$

and deduces that

$$
\mathfrak{N}(P) \rightarrow \infty \quad(P \rightarrow \infty)
$$

Usually, V^{*} is difficult to describe, and one would prefer a condition which is easier to handle.
Need some more notation: For a rational cubic form
$C\left(X_{1}, \ldots, X_{s}\right)$, its h-invariant is the smallest non-negative integer k such that C can be written as

$$
C=\sum_{i=1}^{k} Q_{i} L_{i}
$$

for suitable rational quadratic forms $Q_{i}\left(X_{1}, \ldots, X_{s}\right)$ and rational linear forms $L_{i}\left(X_{1}, \ldots, X_{s}\right)$.

Theorem (W.M. Schmidt 1982)

Let $Q_{1}, \ldots, Q_{r} \in \mathbb{Z}\left[X_{1}, \ldots, X_{s}\right]$ be quadratic forms. Suppose that each form in the rational pencil of Q_{1}, \ldots, Q_{r} has rank exceeding $2 r^{2}+3 r$. Then in the notation from above,

$$
\mathfrak{N}(P)=\mathfrak{J} \subseteq P^{s-2 r}+O\left(P^{s-2 r-\delta}\right)
$$

Likewise, if $C_{1}, \ldots, C_{r} \in \mathbb{Z}\left[X_{1}, \ldots, X_{s}\right]$ are cubic forms, such that each form in their rational pencil has h-invariant exceeding $10 r^{2}+6 r$, then

$$
\mathfrak{N}(P)=\mathfrak{J} \subseteq P^{s-3 r}+O\left(P^{s-3 r-\delta}\right)
$$

Birch's condition (1) reads
■ $s>\operatorname{dim} V^{*}+2 r^{2}+2 r$ for $d=2$,
■ $s>\operatorname{dim} V^{*}+8 r^{2}+8 r$ for $d=3$,
so one might wonder if Schmidt's rank- and h-invariant bounds $2 r^{2}+3 r$ and $10 r^{2}+6 r$ can be relaxed to $2 r^{2}+2 r$ and $8 r^{2}+8 r$, respectively. This is indeed the case.

Theorem (D. 201?)

Let $Q_{1}, \ldots, Q_{r} \in \mathbb{Z}\left[X_{1}, \ldots, X_{s}\right]$ be quadratic forms, such that each form in their rational pencil has rank exceeding $2 r^{2}+2 r$. Then in the notation from above, the asymptotic formula

$$
\mathfrak{N}(P)=\mathfrak{J} \mathfrak{S} P^{s-2 r}+O\left(P^{s-2 r-\delta}\right)
$$

holds true. Likewise, if $C_{1}, \ldots, C_{r} \in \mathbb{Z}\left[X_{1}, \ldots, X_{s}\right]$ are cubic forms, such that each form in their rational pencil has h-invariant exceeding $8 r^{2}+8 r$, then

$$
\mathfrak{N}(P)=\mathfrak{J} \subseteq P^{s-3 r}+O\left(P^{s-3 r-\delta}\right)
$$

Theorem (D. 2004)

Let p be a rational prime, and let $Q_{1}, \ldots, Q_{r} \in \mathbb{Q}_{p}\left[X_{1}, \ldots, X_{s}\right]$ be quadratic forms such that each form in their p-adic pencil has rank exceeding

$$
\begin{cases}2 r^{2} & r \text { even } \\ 2 r^{2}+2 & r \text { odd }\end{cases}
$$

Then the system

$$
Q_{1}(\mathbf{x})=\ldots=Q_{r}(\mathbf{x})=0
$$

has a non-singular p-adic solution $\mathbf{x} \in \mathbb{Q}_{p}^{s}$.

Corollary

Let $Q_{1}, \ldots, Q_{r} \in \mathbb{Q}\left[X_{1}, \ldots, X_{s}\right]$ be quadratic forms. Suppose that each form in the complex pencil of Q_{1}, \ldots, Q_{r} has rank exceeding $2 r^{2}+2 r$. Further assume that the system $Q_{1}=\ldots=Q_{r}=0$ has a non-singular real zero. Then the system $Q_{1}=\ldots=Q_{r}=0$ has a non-trivial rational zero.

For $r=1$ one gets back Meyer's Theorem.
The Corollary follows from the theorems on the previous two slides and the observation that the $2 r^{2}+2 r$ pencil condition over \mathbb{C} also implies a $2 r^{2}+2 r$ pencil condition over \mathbb{Q} as well as over all \mathbb{Q}_{p}.

The proof uses the Hardy-Littlewood circle method from Analytic Number Theory. Basic idea: Let

$$
e(x)=e^{2 \pi i x}
$$

Then for $\mathbf{n} \in \mathbb{Z}^{n}$, we have

$$
\int_{[0,1]^{r}} e(\mathbf{n x}) d \mathbf{x}= \begin{cases}1 & \text { if } \mathbf{n}=\mathbf{0} \\ 0 & \text { if } \mathbf{n} \neq \mathbf{0}\end{cases}
$$

Hence

$$
\mathfrak{N}(P)=\int_{[0,1]^{r}} S(\boldsymbol{\alpha}) d \boldsymbol{\alpha}
$$

where $S(\boldsymbol{\alpha})=S\left(\alpha_{1}, \ldots, \alpha_{r}\right)$ is the exponential sum

$$
S(\boldsymbol{\alpha})=\sum_{\mathbf{x} \in P \mathfrak{B}} e\left(\alpha_{1} F_{1}(\mathbf{x})+\ldots+\alpha_{r} F_{r}(\mathbf{x})\right)
$$

Philosophy: If all α_{i} are 'close to a rational point', then $S(\boldsymbol{\alpha})$ can be asymptotically evaluated. Otherwise, $S(\boldsymbol{\alpha})$ is 'small'. Ideally, this gives an asymptotic formula for $\mathfrak{N}(P)$.

To keep notation simple, focus on quadratics now. Both Birch and Schmidt used the following form of Weyl's inequality.

Lemma (Weyl's inequality for systems of quadratic forms)

Let $0 \leq \theta<1, \epsilon>0$ and $k>0$. Then we either (i) have

$$
S(\boldsymbol{\alpha}) \ll P^{s-k}
$$

or (ii) there are integers a_{1}, \ldots, a_{r}, q such that

$$
\begin{array}{r}
\left(a_{1}, \ldots, a_{r}, q\right)=1, \\
\left|q \alpha_{i}-a_{i}\right| \ll P^{-2+r \theta} \quad(1 \leq i \leq r), \\
1 \leq q \leq P^{r \theta}
\end{array}
$$

or (iii) we have

$$
\#\left\{\mathbf{x} \in P^{\theta} \mathfrak{B}: \operatorname{rank}\left(\Psi_{j}^{(i)}(\mathbf{x})\right)<r\right\} \gg\left(P^{\theta}\right)^{s-2 k / \theta-\epsilon}
$$

where

$$
\begin{gathered}
\Phi_{j}(\mathbf{a} ; \mathbf{x})=\sum_{i=1}^{r} a_{i} \Psi_{j}^{(i)}(\mathbf{x}) \quad(1 \leq j \leq s), \\
\Psi_{j}^{(i)}(\mathbf{x})=2 \sum_{k=1}^{s} c_{j, k}^{(i)} x_{k} \quad(1 \leq i \leq r, 1 \leq j \leq s), \\
Q_{i}\left(X_{1}, \ldots, X_{s}\right)=\sum_{j, k=1}^{s} c_{j k}^{(i)} X_{j} X_{k} \quad(1 \leq i \leq r) .
\end{gathered}
$$

The main tool for proving Weyl's inequality is Cauchy-Schwarz' inequality. 'Differentiating' a quadratic expression yields a linear one, and this is the reason why the linear forms Ψ and Φ occur.

Alternative (iii) can be given a more suitable interpretation for systems of forms.

Lemma (Weyl's inequality for systems of quadratic forms II)

Let $0 \leq \theta<1, \epsilon>0$ and $k>0$. Then we either (i) have

$$
S(\boldsymbol{\alpha}) \ll P^{s-k}
$$

or (ii) there are integers a_{1}, \ldots, a_{r}, q such that

$$
\begin{array}{r}
\left(a_{1}, \ldots, a_{r}, q\right)=1, \\
\left|q \alpha_{i}-a_{i}\right| \ll P^{-2+r \theta} \quad(1 \leq i \leq r), \\
1 \leq q \leq P^{r \theta}
\end{array}
$$

or (iii) there are integers a_{1}, \ldots, a_{r}, not all zero, such that

$$
\mathfrak{M}\left(a_{1}, \ldots, a_{r} ; P^{\theta}\right) \gg\left(P^{\theta}\right)^{s-2 k / \theta-\epsilon}
$$

where

$$
\begin{aligned}
\mathfrak{M}\left(a_{1}, \ldots, a_{r} ; H\right)= & \#\left\{\mathbf{x} \in \mathbb{Z}^{s}: \mathbf{x} \in H \mathfrak{B}\right. \\
& \text { and } \left.\Phi_{j}(\mathbf{a} ; \mathbf{x})=0(1 \leq j \leq s)\right\},
\end{aligned}
$$

Clearly, the larger the dimension of the span of $\Phi_{1}, \ldots, \Phi_{s}$ in the space of linear forms in \mathbf{x}, the smaller $\mathfrak{M}\left(a_{1}, \ldots, a_{r} ; H\right)$. That dimension can be controlled by the smallest rank in the pencil of Q_{1}, \ldots, Q_{r}.

Corollary

Suppose that each quadratic form in the rational pencil of Q_{1}, \ldots, Q_{r} has rank at least m. Then, using the notation from above, we either (i) have

$$
S(\boldsymbol{\alpha}) \ll P^{s-m \theta / 2}
$$

or alternative (ii) holds true.
So alternative (iii) got eliminated. The rest is a lengthy, but straightforward application of the circle method.

Now let A be a non-singular positive definite symmetric integer $n \times n$-matrix, and B be a positive definite symmetric integer $m \times m$-matrix. The matrix equation

$$
\begin{equation*}
X^{t} A X=B \tag{2}
\end{equation*}
$$

corresponds to the representation of a quadratic form B by a quadratic form A. Let $N(A, B)$ be the number of integer solutions X of (2).
For fixed A, interested in asymptotic formula for $N(A, B)$. Case $m=1$ has long history; $m>1$ more difficult, also need to define what it means that B is 'large enough' (in terms of A).

Let

$$
\min B=\min _{\mathbf{x} \in \mathbb{Z}^{m} \backslash\{\mathbf{0}\}} \mathbf{x}^{t} B \mathbf{x}
$$

be the first successive minimum of B. We can only expect an asymptotic formula for $N(A, B)$ if $\min B$ is sufficiently large for given A.
In a similar way, can define second successive minimum etc.
If

$$
\min B \gg(\operatorname{det} B)^{1 / m},
$$

then all successive minima of B are roughly of the same size. Using Siegel modular forms, Raghavan (1959) proved the following

Theorem (Raghavan (1959))

Let $c>0$ and $n>2 m+2$. Then if

$$
\min B \geq c(\operatorname{det} B)^{1 / m}
$$

then for $\operatorname{det} B>_{c} 1$ we have

$$
N(A, B)=\mathfrak{J} \subseteq(\operatorname{det} B)^{(n-m-1) / 2}+O\left((\operatorname{det} B)^{(n-m-1) / 2-\delta}\right)
$$

Writing (2) as a system of quadratic equations, problem can also be attacked by the circle method. Dependence on n gets worse, but condition on B can be relaxed!

Theorem (D., Harvey - work in progress)
Let $c>0$ and suppose that $\min B \geq(\operatorname{det} B)^{c}$.

Then there exists $N(c) \in \mathbb{N}$ such that if $n \geq N(c)$ and $\operatorname{det} B \gg_{c} 1$, then

$$
N(A, B)=\mathfrak{J} \mathfrak{S}(\operatorname{det} B)^{(n-m-1) / 2}+O\left((\operatorname{det} B)^{(n-m-1) / 2-\delta}\right) .
$$

