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Starting point:

Theorem (Meyer 1884)

Let Q ∈ Q[X1, . . . ,Xs ] be an indefinite quadratic form where
s ≥ 5. Then Q has a non-trivial rational zero.

More generally, for rational quadratic forms the Local-Global
principle holds true (Minkowski 1905): Non-trivial rational zeros
exist if and only if non-trivial real and p-adic zeros exist.

The condition s ≥ 5 in Meyer’s result makes sure that for all
primes p there are non-trivial p-adic zeros.

The condition ‘Q indefinite’ makes sure that there is a
non-trivial real zero.

The 5 in the theorem is best possible.

What about systems of forms, higher degree forms?
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Theorem

(Colliot-Thélène, Sansuc, Swinnerton-Dyer 1987) Let
Q1,Q2 ∈ Q[X1, . . . ,Xs ] be quadratic forms where s ≥ 9. Suppose
that each form in their rational pencil has rank at least 5, and that
each form in their real pencil is indefinite. Then the system
Q1(x) = Q2(x) = 0 has a non-trivial rational zero x.

The pencil of a system of forms F1, . . . ,Fr is the set of all
forms

a1F1 + . . .+ ar Fr

where a 6= 0.

s ≥ 9 is needed to make sure non-trivial p-adic solutions exist

‘indefinite’ part of pencil condition needed to make sure
non-trivial real solutions exist

9 is best possible
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The condition rank ≥ 5 for all forms in the rational pencil is
necessary as seen by the following example (W.M. Schmidt 1982):
Let

Q1(X1, . . . ,Xs) = X 2
1 + X 2

2 + X 2
3 − 7X 2

4

and

Q2(X1, . . . ,Xs) = X 2
1 + X 2

2 + X 2
3 + X 2

4 − X 2
5 − . . .− X 2

s ,

where s may be arbitrarily large. Each form in the real pencil of
Q1,Q2 is indefinite, but Q1 has only rank 4.
Now if Q1(x) = 0 for rational x ∈ Qs , then necessarily

x1 = . . . = x4 = 0.

Then Q2(x) = 0 implies that

x5 = . . . = xs = 0.

Hence a lower bound on s alone is not enough.
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Theorem (W.M. Schmidt 1982)

Let Q1, . . . ,Qr ∈ Q[X1, . . . ,Xs ] be quadratic forms. Suppose that

each form in the rational pencil of Q1, . . . ,Qr has rank
exceeding 2r2 + 3r ,

the system Q1 = . . . = Qr = 0 has non-singular p-adic zeros,

the system Q1 = . . . = Qr = 0 has a non-singular real zero.

Then the system Q1(x) = . . . = Qr (x) = 0 has a non-trivial
rational zero.
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Birch (1962) established a very general result: Let
F1, . . . ,Fr ∈ Z[X1, . . . ,Xs ] be forms of degree d , and let V ∗ be the
union of the loci of singularities of the varieties

F1(x) = µ1, . . . ,Fr (x) = µr .

Moreover, let B be a box in Rs with sides parallel to the
coordinate axes, and contained in the unit box, and let N(P) be
the number of integer solutions x ∈ Zs of the system

F1(x) = . . . = Fr (x) = 0

in the box {x ∈ Zs ∩ PB}. Then if

s > dim V ∗ + r(r + 1)(d − 1)2d−1, (1)

then the asymptotic formula

N(P) = JSPs−rd + O(Ps−rd−δ)

holds true.
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Here J is the singular integral, and S is the singular series.
Interpretation of S and J:

S is a measure for the density of p-adic solutions of
F1 = . . . = Fr = 0,

J is a measure for the density of real solutions of
F1 = . . . = Fr = 0.

Assuming that

F1 = . . . = Fr = 0 has a non-singular p-adic solution for all
primes p,

F1 = . . . = Fr = 0 has a non-singular real solution,

one can show that
J > 0, S > 0

and deduces that

N(P)→∞ (P →∞).
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Usually, V ∗ is difficult to describe, and one would prefer a
condition which is easier to handle.
Need some more notation: For a rational cubic form
C (X1, . . . ,Xs), its h-invariant is the smallest non-negative integer
k such that C can be written as

C =
k∑

i=1

QiLi

for suitable rational quadratic forms Qi (X1, . . . ,Xs) and rational
linear forms Li (X1, . . . ,Xs).
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Theorem (W.M. Schmidt 1982)

Let Q1, . . . ,Qr ∈ Z[X1, . . . ,Xs ] be quadratic forms. Suppose that
each form in the rational pencil of Q1, . . . ,Qr has rank exceeding
2r2 + 3r . Then in the notation from above,

N(P) = JSPs−2r + O(Ps−2r−δ).

Likewise, if C1, . . . ,Cr ∈ Z[X1, . . . ,Xs ] are cubic forms, such that
each form in their rational pencil has h-invariant exceeding
10r2 + 6r , then

N(P) = JSPs−3r + O(Ps−3r−δ).
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Birch’s condition (1) reads

s > dim V ∗ + 2r2 + 2r for d = 2,

s > dim V ∗ + 8r2 + 8r for d = 3,

so one might wonder if Schmidt’s rank- and h-invariant bounds
2r2 + 3r and 10r2 + 6r can be relaxed to 2r2 + 2r and 8r2 + 8r ,
respectively. This is indeed the case.
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Theorem (D. 201?)

Let Q1, . . . ,Qr ∈ Z[X1, . . . ,Xs ] be quadratic forms, such that each
form in their rational pencil has rank exceeding 2r2 + 2r . Then in
the notation from above, the asymptotic formula

N(P) = JSPs−2r + O(Ps−2r−δ)

holds true. Likewise, if C1, . . . ,Cr ∈ Z[X1, . . . ,Xs ] are cubic forms,
such that each form in their rational pencil has h-invariant
exceeding 8r2 + 8r , then

N(P) = JSPs−3r + O(Ps−3r−δ).
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Theorem (D. 2004)

Let p be a rational prime, and let Q1, . . . ,Qr ∈ Qp[X1, . . . ,Xs ] be
quadratic forms such that each form in their p-adic pencil has rank
exceeding {

2r2 r even
2r2 + 2 r odd.

Then the system

Q1(x) = . . . = Qr (x) = 0

has a non-singular p-adic solution x ∈ Qs
p.
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Corollary

Let Q1, . . . ,Qr ∈ Q[X1, . . . ,Xs ] be quadratic forms. Suppose that
each form in the complex pencil of Q1, . . . ,Qr has rank exceeding
2r2 + 2r . Further assume that the system Q1 = . . . = Qr = 0 has
a non-singular real zero. Then the system Q1 = . . . = Qr = 0 has
a non-trivial rational zero.

For r = 1 one gets back Meyer’s Theorem.
The Corollary follows from the theorems on the previous two slides
and the observation that the 2r2 + 2r pencil condition over C also
implies a 2r2 + 2r pencil condition over Q as well as over all Qp.
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The proof uses the Hardy-Littlewood circle method from Analytic
Number Theory. Basic idea: Let

e(x) = e2πix .

Then for n ∈ Zn, we have∫
[0,1]r

e(nx) dx =

{
1 if n = 0
0 if n 6= 0.

Hence

N(P) =

∫
[0,1]r

S(α) dα,

where S(α) = S(α1, . . . , αr ) is the exponential sum

S(α) =
∑

x∈PB

e(α1F1(x) + . . .+ αr Fr (x)).

Philosophy: If all αi are ‘close to a rational point’, then S(α) can
be asymptotically evaluated. Otherwise, S(α) is ‘small’. Ideally,
this gives an asymptotic formula for N(P).
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To keep notation simple, focus on quadratics now. Both Birch and
Schmidt used the following form of Weyl’s inequality.
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Lemma (Weyl’s inequality for systems of quadratic forms)

Let 0 ≤ θ < 1, ε > 0 and k > 0. Then we either (i) have

S(α)� Ps−k ,

or (ii) there are integers a1, . . . , ar , q such that

(a1, . . . , ar , q) = 1,

|qαi − ai | � P−2+rθ (1 ≤ i ≤ r),

1 ≤ q ≤ P rθ,

or (iii) we have

#{x ∈ PθB : rank(Ψ
(i)
j (x)) < r} � (Pθ)s−2k/θ−ε

where
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Φj(a; x) =
r∑

i=1

aiΨ
(i)
j (x) (1 ≤ j ≤ s),

Ψ
(i)
j (x) = 2

s∑
k=1

c
(i)
j ,kxk (1 ≤ i ≤ r , 1 ≤ j ≤ s),

Qi (X1, . . . ,Xs) =
s∑

j ,k=1

c
(i)
jk XjXk (1 ≤ i ≤ r).

The main tool for proving Weyl’s inequality is Cauchy-Schwarz’
inequality. ‘Differentiating’ a quadratic expression yields a linear
one, and this is the reason why the linear forms Ψ and Φ occur.
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Alternative (iii) can be given a more suitable interpretation for
systems of forms.
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Lemma (Weyl’s inequality for systems of quadratic forms II)

Let 0 ≤ θ < 1, ε > 0 and k > 0. Then we either (i) have

S(α)� Ps−k ,

or (ii) there are integers a1, . . . , ar , q such that

(a1, . . . , ar , q) = 1,

|qαi − ai | � P−2+rθ (1 ≤ i ≤ r),

1 ≤ q ≤ P rθ,

or (iii) there are integers a1, . . . , ar , not all zero, such that

M(a1, . . . , ar ; Pθ)� (Pθ)s−2k/θ−ε

where
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M(a1, . . . , ar ; H) = #{x ∈ Zs : x ∈ HB

and Φj(a; x) = 0 (1 ≤ j ≤ s)},

Clearly, the larger the dimension of the span of Φ1, . . . ,Φs in the
space of linear forms in x, the smaller M(a1, . . . , ar ; H). That
dimension can be controlled by the smallest rank in the pencil of
Q1, . . . ,Qr .
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Corollary

Suppose that each quadratic form in the rational pencil of
Q1, . . . ,Qr has rank at least m. Then, using the notation from
above, we either (i) have

S(α)� Ps−mθ/2,

or alternative (ii) holds true.

So alternative (iii) got eliminated. The rest is a lengthy, but
straightforward application of the circle method.
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Now let A be a non-singular positive definite symmetric integer
n × n-matrix, and B be a positive definite symmetric integer
m ×m-matrix. The matrix equation

X tAX = B (2)

corresponds to the representation of a quadratic form B by a
quadratic form A. Let N(A,B) be the number of integer solutions
X of (2).
For fixed A, interested in asymptotic formula for N(A,B).
Case m = 1 has long history; m > 1 more difficult, also need to
define what it means that B is ‘large enough’ (in terms of A).
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Let
min B = min

x∈Zm\{0}
xtBx

be the first successive minimum of B. We can only expect an
asymptotic formula for N(A,B) if min B is sufficiently large for
given A.
In a similar way, can define second successive minimum etc.
If

min B � (det B)1/m,

then all successive minima of B are roughly of the same size.
Using Siegel modular forms, Raghavan (1959) proved the following
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Theorem (Raghavan (1959))

Let c > 0 and n > 2m + 2. Then if

min B ≥ c(det B)1/m,

then for det B �c 1 we have

N(A,B) = JS(det B)(n−m−1)/2 + O((det B)(n−m−1)/2−δ).
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Writing (2) as a system of quadratic equations, problem can also
be attacked by the circle method. Dependence on n gets worse,
but condition on B can be relaxed!
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Theorem (D., Harvey – work in progress)

Let c > 0 and suppose that

min B ≥ (det B)c .

Then there exists N(c) ∈ N such that if n ≥ N(c) and det B �c 1,
then

N(A,B) = JS(det B)(n−m−1)/2 + O((det B)(n−m−1)/2−δ).


