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Outline

» Optimization: models, algorithms, software
v" Roots of linear optimization (LO)
v" Nonlinear Optimization -- Optimization classes
v" Black-Box / Derivative Free Optimization
v" Conic Linear Optimization: LO, SOCO, SDO
v" Robust Linear Optimization
v" Software

» Gamma knife surgery
v" Leksel Gamma Knife Perfexion
v" duration optimization
v Computational experience

» Comparing SILO with MOSEK and a projected gradient alg.
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Roots of Optimization

Let g,91....,9m € R™ given and = € R",
then glz <0, i=1,...,m imply gl'z <0,
if and only iIf

there exists 0 < A € R™ such that
g=Ag1+ ...+ Angn.

¢ Generalizations: Convex Farkas
Lemma (Farkas, 1906, no regularity)
Infinite linear systems (Haar 1918)
Discrete version (Murota, Tamura)

Farkas Gyula (1847-1930)

Motivation coming from theoretical mechanics,
Farkas studied conditions for mechanical equilibrium.
He built on the principles about virtual work (Fourier, Bernoulli).

Minimize functions / solve linear and nonlinear equations
Newton, Lagrange, Gauss, Euler, ......
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What we really mean by

Optimization/Optimal
Misinterpretations, misunderstandings

Keywords Should be Frequently

best solution/design;

no better solution or best I got;
optimal design exists that sat- in the given time, with
isfies the requirements my limited resources...

a discipline:

_ "programming”
. . theory, algorithms,
optimization a process

analysis, software
. : try to do better
domain expertise

Optimization, design optimization as a rigorous, mathematically
formulated discipline has very limited exposure Iin engineering

science, physics, undergraduate curriculum
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OPTIMIZATION — as "WE" see it

min  f(x)

I
.I'—"

h—i(.l‘) — D 1= 1 . .?fﬁJ?

where = e C C R™,
f(x), gi(x), hi(xz) are func-

tions.

Linear Optimization
Quadratic Optimization
Convex Optimization
Nonlinear Optimization
Derivative Free Optimization
Bi-level Optimization

Global Optimization
Optimization with Equilibrium constraints
Discrete Optimization
Combinatorial Optimization
Network flows

Mixed-Integer Optimization
Stochastic Optimization
Robust Optimization
Multi-objective Optimization
Heuristic Optimization

e analyze mathematical properties
e design and analyze algorithm
e implement software and solve problems

Q: Where the functions, problem data come from?
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BlackBox: Derivative Free Optimization

e Coordinate search (Hooke, Jeevs) min f(x)
e Simplex methods (Nelder, Mead)
e Pattern search (Torczon, Dennis, Audet)

e Filtering (Kelley)
DFO: (Powell, Conn, Scheinberg, Toint, Vicente)

1. Choose a set of linearly independent model functions;

(usually linear and quadratic monomials)

2. Choose a set of sample well poised points and a TR radius;

(the same number as the number of functions)

3. Evaluate the function at the sample pints;
(call the BlackBox)
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DFO (part 2)

Find the interpolation function in the model space:
(solve a linear system of equations)

(independent model functions, poised point set)

. Optimize the model around the best point in the trust region;

(trust region subproblem)

Update the point set and the interpolating model function;
(keep the best points, with good geometry, not far from best point)
(recalculate the interpolation function, possibly adding new model function(s)

and adjust, reduce/increase the TR radius)

Eventually improve the geometry of the model;

(this is another trust region subproblem)

Repeat steps 5-7;
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Cone-Linear Optimization (CLO)

Cone linear optimization problems play a crucial role in the theory,
algorithms and applications of modern optimization.
The Primal-dual pair of CLO problems is given as

(P) min 'z (D) max bly
st. Az—b €C st. c—Aly €3
T € Co 1Y = CT,

where b,y € R™, ¢,z € IR", A : m x n matrix, C1,C> are convex cones
and Cf = {s € IR" : #T's > 0, Yo € C;} are the dual cones for i =1, 2.

Important classes of CLO (not all) are solvable efficiently
(in polynomial time)
by using interior point methods.
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Povhedral cones: Linear Optimization

Polyhedral cones are either of the following:
(1) the set {0}; (12) the whole space IR"; or
(i12) positive orthant R} = {z e R": z > 0}.

Optimization problems where the cones C; and C, are either of these
polyhedral cones are linear optimization (LQO) problems.

Their duals are LO problems as well
Significance

Huge number of applications, incl. trust design,
transportation, planning.

Huge problems can be solved efficiently, even

on PC, by using modern IPM software.
The nonnegative orthant B
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T he Second order or Ice cream cone

n—1
SEI = reR" : \ZI?EIH
i=1

"Tce cream cone” is coming from the 3D shape of the cone.

The second order cone is self-dual:

| / (s =53,
\ / Optimization problems where the cones
/ Cy1 and Co are either polyhedral or sec-
/ ond order cones are
second order cone optimization(SOCQO)
Pho loo croam coma I problems.

Significance

Norm and distance minimization, Tschebyshev approximation,

robust optimization.
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T he Semidefinite cone

The semidefinite cone in IR™*" is defined as
S"={X e RV": X = X" 2TXz > 0¥z e R"|

i.e. the matrices X are symmetric and positive semidefinite,
denoted as X = 0.

Optimization problems where the
cones C1 and Co are either polyhe-
dral, second order or semidefinite
cones are called semidefinite opti-
mization (SDO) problems.

3 random 3D ross-sections of Sj_

The semidefinite cone is self-dual: (8™)* = 8™.
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T he SDO optimization problem

Let A;, i=1,--- .,n and C, X be n x n symmetric matrices,
b,y € R™ and let Tr(.) denote the trace of a matrix.

The primal-dual SDO problem is defined as

o T
(SP) min  Tr(CX) (SD) max by
st. Tr(A;X)—b; >0, Yi st. C— > Ay
]
X =0 T
- Y

Significance

Robust optimization, trust design, Linear Matrix Inequalities (LMI),
Eigenvalue/singular-value optimization, sensor networks,
Convex relaxation of nonconvex/integer problems,...

(and many more)
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Robust Linear Optimization
Classic — Polyhedral (scenario) approach

Let (a;,b;) be uncertain, it is com-

(P) min el ing from a polyhedral set (e.g. con-
T oy vex combination of "scenario” data
st. ajz—b; =0 Vi points):

The inequality alz > b,
=1, }.1‘ >0 must be true ﬂ}r all DOSSi-
ble values of (al, —b;):

—b; 1 —bl

T
’7 ny | al -| - 1y . |
Z A =0 for all Z}\j =1, A, =0  Infinitely many
L' J 1 i=1 constraints!

Finally the problem stays linear as: - -

(RP) min el'r
s.t. [a}]?'x—b} >0 for i=1,...,n; V3
Disadvantages: — Huge number of linear inequalities

— Polvhedral uncertainty set not realistic.
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Robust Linear Optimization

Let (a;,b;) be uncertain, it is coming

. T
(P) min e from an ellipsoid (e.g. level set of a
s.t. a_}';r —b; >0 Vg distribution):
. The inequality alz > b
aj _ a; +PulueRF vTu<1 must be true ﬂ}r all possi-
_bh _}0 ’ - ble values of ( , —bi):
J i :
-
x ~ \ . T
‘| +Pu >0 Vu: <1 697224 min { (Pu)’ >0
bj 1 uTu=l 1

> 0

- |
2

This is a nondifferentiable norm constraint: (See second order cones)

I

1 /2

T = [T 0
‘P < [a;]" = — b5,

Single nonlinear, norm-constraint!
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Eigenvalue Optimization

Given n x n symmetric matrices Aq,..., Am.

K

Problem: Find a nonnegative combination of the matrices that has

the maximal smallest eigenvalue.

( T 3

Y Ajy; — M is positive semidefinite

i=1 >
y.i}O = 1._,...,’.-‘?1

. F

Solution: max< A

Problem: Find a nonnegative combination of the matrices that has the

smallest maximal eigenvalue.
m

Al — ZAT--y?- is positive semidefinite

i=1

Solution: min }.‘
yl:_::lo i:]-:'-m

The semidefiniteness constraint is not differentiable, not easy to cal-
culate when formulated by explicit functions, e.g., min-eigenvalue, de-
terminant (of minors). See Semidefinite Optimization.
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Solvability of CLO problems — Use IPMs

Classic Linear Optimization

Large scale LO problems are solved efficiently.
(CPLEX, XPRESS-MP, MOSEK, GuRoBiI,
PcX, LIPSOL, CLP) offer simplex and interior point solvers.
Problems solved with 108 variables.
All commercials solvers offer powerful mixed integer engines.
SOCO and SDO

Traditional software is unable to handle conic constraints.
(SeDuMi, SDPT3, CSDP, DSDP,
SDPpack, SDPA, SDPHA, MOSEK etc.)
SOCO: Problems solved with 10° variables.
SDO: solved with 10% dimensional matrices.
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Solvability of CLO problems — Use IPMs

Developments on Modeling Languages

For conic and convex optimization problems

Convex problems can be solved more efficiently than NLOs.

Novel Convex Modeling Environments. (YALMIP, CvX CERR)

SDO, SOCO, eigenvalue, determinant, all known convex functions — convex calculus.
IPMs for General Nonlinear Problems

Geometric, entropy and £p-norm programming.
Implementatmns ﬂ:}r non-convex problems as well
Specialized software is developed. (IPOPT, IPTOPT-C,
KNITRO, MOSEK LOQO, PENNON, etc.)
Problems solved with 10% dimensional matrices.

Mixed Integer Nonlinear Optimization Problems

BARON. COUENNE. BonMin
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Disjunctive Conic Cuts for Mixed Integer Second Order Cone Optimization

Tamas Terlaky, Dept. ISE, Lehigh University, Bethlehem, PA
Joint work with Pietro Belotti (Clemson U.), Julio Goez (Lehigh U.), Ted Ralphs (Lehigh U.)

Mixed Integer Second order cone
optimization
minimize: c¢c'x
subject to: Ax=b
xeK
xezd xrN-d
e AcR™ ceR",beR"
o X=[NO",N,.... 0T
o LM ={X'| X} 2| X, [}, Lorentz cone
o K ={L} xL7 x...xL}¥}
« Rowsof Aare linearly independent

Proposition (Convex hull of the intersection of a
disjunction and a convex set)
Consider a closed convex set E and twohalfspaces A ={xcR":a'x<a},B={xcR":b'x < S}
such that they do not intersect inside E, i.e., ENA nB =¢. Denote A~ ={xeR":a'x=a},
B-={xeR":b'x< g}. If A~ and B~ are bounded, and there exists a convex cone K such that
KNA~=EnA~andK "B~ =ENB~, thenconv(E n(A UB))=EnK.

Illustration of the disjunctive conic cut
procedure

Integer optimal solution

-2
25 25 Previous . k

l . ; Disjunctive
-3, Relaxed optimal | solution cut V Sl 2, 2
2\ ; X, <=1 N Conic Cut
# \_solution 4 27\

\ : T e S S : 3 3
2 X
-2 15 -1 -05 0 05 1 15 2 2%, 4 0 1

X2 X

Let 0= (Q,q, pe )Ov(/ grrg IS a og’tll‘vaer&?ylfulacqulgn I)/ gf'l%y (%g ric gR/en by ds

the set {x : X'Qx+q' X+ p =0}. Given two hyperplanes 2 = {xeR":a/x<a},
2= {xeR":a,x <a,}, the family of quadrics having the same intersection with the
two hyperplanes as the quadric given by ds parametrized by 7 € R as

¢r)=(Q(7);a(7); p(7)), where
Q(t)zQ'}'TC(aia-zr +a2aI)1 q(z'):q- TC(Otla; +a2a'ir)! p(T):p+ZTCa10!2,
withc=1/(2a'a,) ifa’a, #0, andc=1 ifa'a, =0.

Let 7 be the larger root of equation q(z)> q(z)" Q(z)a(z)— p(z)= 0. The quadric
generated by Q =(Q(z),q(z), p(z))gives the disjunctive conic cut.

Conclusions

* We developed new disjunctive conic cuts for MISOCO.

* Itis algebraically simple to find the disjunctive conic cut for MISOCO
problems.




A Radiation Therapy Treatment
Application

Joint work with
Mohammad R. Oskoorouchi (California State University San Marcos)

Dionne Aleman, Hamid R. Ghaffari (University of Toronto)
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Gamma knife surgery

Gamma Knife surgery

Gamma Knife surgery is a bloodless
surgery for neurological diseases.

The surgery does not require the skull
to be opened for performance of the
operation. The patient is treated in
one session and can normally return
home shartly after treatment.

The method facilitates
treatment of very <n
targets deep within the brain.

The radioactive beams

are focused on the target
in the brain with extremely
high precision and without
damaging healthy tissue.
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Gamma knife Perfexion unit

Images courtesy of http://www.elekta.com
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Gamma knife treatment planning

» Each target structure should receive a
minimum prescription dose

» Critical structures should not be over dosed

» Target structure should not be over dosed
either
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Dose delivery

Images courtesy of http://www.elekta.com

State-of-the-art of optimization methods and software with RTT application
Tamas Terlaky, ISE Lehigh




Treatment

Images courtesy of http://www.elekta.com
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Sector Duration Optimization
(Ghaffari, Aleman, Ruscin, Jaffry 2009)

min :zz:jélFis(zjs)

seS j=1
S.1.
st:ynylbcjstlbc SES’ J:]'"“’Vs
1e® beB ceC
t,. =0, |l e®,beB,ceC
where,
W, 2
V_(ZJS_TS) 2T,
FS(ZJ-S)=< ,
;—:(TS—Z,-S) Z; <Tg

State-of-the-art of optimization methods and software with RTT application
Tamas Terlaky, ISE Lehigh




Semi-infinite Linear Formulation

min Z > 6.,

j=1 seS
S.1.
(W 2
_S(st _TS) S51'3’ st 2Ts
V
1 seS,Vj convex set
W, 2
V_(TS_ZjS) _513’ st <Ts
:ZZZDIbcjstlbc seS, J=1...,v,
le® beB ceC
tpe 20, | c®,beB,ceC
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Semi-infinite Optimization:
Interior Point Column Generation Algorithm
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SOCO Formulation

ZZZ D i

le® beB ceC
t,. =0,

seS, J=1...,v,
seS, J=1...,v,
seS, J=1...,v,
seS, |=1...,v,

|l e®,beB,ceC
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SOCO Formulation
min &,

SES
s.t. |
“Vis SZ;—T <Y ses, J=1...,v,
Vii(v_\/syfs+wsﬁs)£58, seS
s J=1
VjSZO, XJ-SZO seS, J=1...,v,
Zio =D > > Digetine seS,j=1...,v,
1€® beB ceC
t,. >0, | e®,beB,ceC
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Computational Results

Problem Dimension Objective Value CPU Time (min)
nlso PRG IPCG  MOSEK | PRG IPCG  MOSEK | PRG IPCG  MOSEK
10 240 480+141 99336 57.06 56.84 56.88 60.36 1.19 2.85
15 360 720+160 99456 58.08 57.92 59.96 79.28 2.02 4.74
20 480 960+189 99576 53.77 53.70 56.74 148.41 4.22 9.18
25 600 1200+181 99696 43.57 43.45 48.52 349.13 5.22 10.01
30 720 1440+188 99816 41.89 41.44 45.54 466.71 7.56 12.36
35 840 1680+187 99936 40.48 39.35 39.52 877.01 11.14 22.57
45 1080  2160+199 100176 40.71 39.78 39.96 1520.25 21.15 29.47
55 1320  2640+200 100416 35.61 35.22 35.53 3053.94 31.22 50.89
65 1560  3120+206 100656 37.78 36.22 - 4051.90 46.37 -

105 2520  5040+209 101616 - 33.43 - 9999.99  129.22 -
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Brain image (projected gradient)

etV i
[ prainstem

== —&80% PD |4
(< -\—.\\ —100% PD

L S0
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Brain image (MOSEK)

H oo |
W [ Brainstem
\l —80% PD |4
v \“_\\k —100% PD |
]\ i
S [ |
B |
By '
5 e 7
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Brain image (IPCG)

) etV i
[ prainstem

- —4a0% PD |-

[ T —100% PD

L S0
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Summary

» Radiation Therapy Treatment (IMRT, IGRT, PTT...)
IS a rich area of novel optimization problems, new
technologies bring new problems

» Many modeling, algorithmic and software options,
so choose the best model, algorithm, software

Case Study

» Analyzed models for an optimal Perfexion treatment
plan having fixed isocenter locations

» Compared algorithms for the models: IPCG
outperforms PCG classical IPMs (MOSEK)
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Thanks

Questions?
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