Optimizing Over Hyperbolicity Cones By Using Their Derivative Relaxations

Jim Renegar

《曰》 《聞》 《臣》 《臣》 三臣 …

p: ℝ^d → ℝ homogeneous polynomial of degree n
 p(e) > 0

Defn: The polynomial p is

"hyperbolic in direction e"

if for all $x \in \mathbb{R}^d$, the univariate polynomial

 $\lambda \mapsto \rho(\lambda e - x)$ has only real roots.

Roots: $\lambda_{1,e}(x) \leq \lambda_{2,e}(x) \leq \cdots \leq \lambda_{n,e}(x)$

"eigenvalues of x (in direction e)"

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ ● ●

LP:

•
$$p(x) = x_1, \dots, x_n$$

• $e > 0$
 $\lambda \mapsto p(\lambda e - x) = (\lambda e_1 - x_1) \cdots (\lambda e_n - x_n)$
Eigenvalues of x in direction $e: \frac{x_1}{e_1}, \dots, \frac{x_n}{e_n}$

SDP:

•
$$p(x) = \det(x)$$

• $e \succ 0$
 $\lambda \mapsto \det(\lambda e - x) = \det(e) \det(\lambda I - e^{-1/2}xe^{-1/2})$

Eigenvalues of x in direction e

= traditional eigenvalues of $e^{-1/2}xe^{-1/2}$

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

$$\lambda_{1,e}(x) \le \lambda_{2,e}(x) \le \dots \le \lambda_{n,e}(x)$$
 roots of $\lambda \mapsto p(x - \lambda e)$

Hyperbolicity Cone:

$$\Lambda_{++} := \{x : 0 < \lambda_{1,e}(x)\}$$

= connected component of $\{x : p(x) > 0\}$ containing *e*

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ ● ●

Gårding (1959):p is hyperbolic in direction e for all $e \in \Lambda_{++}$ Corollary: Λ_{++} is a convex coneCorollary: $x \mapsto \lambda_{n,e}(x)$ is a convex function

Bauschke, Güler, Lewis & Sendov:

If $f : \mathbb{R}^n \to \mathbb{R}$ is a convex and permutation-invariant then $x \mapsto f(\vec{\lambda}_e(x))$ is convex

Lax, Vinnikov and Helton Theorem:

Every 3-dimensional hyperbolicity cone is a slice of a PSD cone.

Cor: Faces of hyperbolicity cones are exposed.

Chua: Every homogeneous cone is a slice of a PSD cone.

《曰》 《聞》 《臣》 《臣》 三臣 …

- ϕ a univariate polynomial
- If ϕ has only real roots then:
 - ϕ' has only real roots.
 - Roots are interlaced: $\lambda_1 \leq \lambda'_1 \leq \lambda_2 \leq \cdots \leq \lambda'_{n-1} \leq \lambda_n$

 $\begin{array}{ll} \rho & \mbox{a multivariate polynomial} \\ \rho_{e}'(x) := \langle \nabla \rho(x), e \rangle & \mbox{(directional derivative)} \end{array}$

If *p* is hyperbolic in direction *e* then:

- p'_e is hyperbolic in direction e.
- $\Lambda_+ \subseteq \Lambda'_{e,+}$

Inductively:

$$p_{e}^{(i+1)}(x) = \langle \nabla p_{e}^{(i)}(x), e \rangle$$
$$\Lambda_{+} = \Lambda_{e,+}^{(0)} \subseteq \Lambda_{e,+}^{(1)} \subseteq \dots \subseteq \Lambda_{e,+}^{(n-1)} = a \text{ halfspace}$$

$$p_e^{(i)}(x) = i! \, p(e) \, E_{n-i}(\vec{\lambda}_e(x))$$

(n)

where E_k = elementary symmetric polynomial of degree k

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

$$\Lambda_{e,+}^{(i)} = \{ x : E_k(\vec{\lambda}_e(x)) \ge 0, \ k = 1, \dots, n-i \}$$

Hyperbolic Program (HP):

$$\begin{array}{ll} \min & \langle c, x \rangle \\ \text{s.t.} & Ax = b \\ & x \in \Lambda_+ \end{array}$$

Introduced by Güler (mid-90's) in context of ipm's:

"Central Path" = {
$$x(\eta) : \eta > 0$$
}
where $x(\eta)$ solves
min $\eta \langle c, x \rangle - \ln p(x)$
s.t. $Ax = b$

 $O(\sqrt{n}) \log(1/\epsilon)$ iterations suffice

to reduce $\alpha := \langle \mathbf{c}, \mathbf{x} \rangle - \langle \mathbf{b}, \mathbf{y} \rangle$ to $\epsilon \alpha$

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

min
$$\langle c, x \rangle$$
min $\langle c, x \rangle$ s.t. $Ax = b$ s.t. $Ax = b$ $x \in \Lambda_+$ $x \in \Lambda_{+,e}^{(i)}$

Thm: Fix $\alpha, \beta > 0$.

If q_1, q_2 are hyperbolic in direction eand $k < \deg(q_1) + \deg(q_2)$

then

$$\sum_{j=0}^{k} \binom{k}{j} \alpha^{j} \beta^{k-j} q_1^{(j)} q_2^{(k-j)}$$

is hyperbolic in direction e.

Pf:

•
$$Q(x,t) := q_1(x + t\alpha e)q_2(x + t\beta e)$$

• Hyperbolic in direction
$$(0, 1)$$

• (e,0) in hyperbolicity cone of Q, hence of $Q^{(k)}$

• Thus, $x \mapsto Q^{(k)}(x, 0)$ is hyperbolic in direction $e \square$ Consequence: Can morph directly from $\Lambda_+^{(k)}$ to Λ_+ Downside: Don't gain facial structure along the way

$$\begin{array}{ll} \min & \langle c, x \rangle \\ \text{s.t.} & Ax = b \\ & x \in \Lambda_+ \end{array}$$

z = optimal solution

If
$$z \notin \partial \Lambda'_{e,+}$$
 then z solves

$$\begin{array}{l} \min_{x} & -\ln\langle c, e - x \rangle - \frac{p(x)}{p'_{e}(x)} \\ \text{s.t.} & Ax = b \end{array}$$

How good is Newton's method at solving the latter problem?

<ロト <四ト <注入 <注下 <注下 <

Thm: If p is hyperbolic in direction e

then p/p'_e is a concave function on $\Lambda'_{e,++}$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ ● ●

Pf:

- q(x,t) := tp(x) is hyperbolic in direction (*e*, 1)
- Hence, $q'_{(e,1)}$ is hyperbolic in direction (e, 1)
- Hyperbolicity cone of $q'_{(e,1)}$ is epigraph of $x \mapsto -p(x)/p'_e(x)$

$$\begin{array}{ll} \min & \langle c, x \rangle \\ \text{s.t.} & Ax = b \\ & x \in \Lambda_+ \end{array}$$

z = optimal solution

If
$$z \notin \partial \Lambda'_{e,+}$$
 then z solves

$$\min_{x} - \ln \langle c, e - x \rangle - \frac{p(x)}{p'_{e}(x)}$$
s.t. $Ax = b$

How good is Newton's method at solving the latter problem?

< ロ > < 四 > < 臣 > < 臣 > < 臣 > < 臣 >

A general theorem on Newton's method (Smale, Guler, ...)

min f(x)s.t. Ax = b Let z denote optimal solution

For *u* satisfying Au = 0, let $\phi_u(t) := f(z + tu)$, and define

$$\gamma := \sup_{u, k>2} \left| \frac{\phi_u^{(k)}(0)}{(k-2)! \, \phi_u^{(2)}(0)^{\frac{k}{2}}} \right|^{\frac{1}{k-2}}$$

Thm: If *x* satisfies Ax = b and

$$\langle x-z, \nabla^2 f(z)(x-z) \rangle < \frac{1}{36 \gamma^2}$$

then Newton's method initiated at x converges quadratically.

For interior-point methods:

$$\begin{split} f(x) &= \eta \left< c, x \right> - \ln p(x) \\ \gamma &\leq 1 \end{split}$$
 So $\|x - x(\eta)\|_{\nabla^2 f(x(\eta))} < \frac{1}{6} \Rightarrow ext{ quadratic convergence}$

For present context:

$$f(x) = -\ln \langle oldsymbol{c}, oldsymbol{e} - x
angle - rac{p(x)}{p_{e}'(x)}$$

 γ can be arbitrarily large

("Inversely proportional to curvature of $\partial \Lambda_+$ at Z")

$$f(x) = -\ln \langle c, e - x \rangle - \frac{p(x)}{p'_e(x)}$$

Nonetheless, something meaningful can be said ...

Thm:

$$\gamma \leq \frac{4}{\min\{\|x-z\|_{\nabla^2 f(z)} : Ax = b \text{ and } x \in \partial \Lambda'_{\theta,+}\}}$$

In other words, quadratic convergence occurs on nearly the largest "ball" within reason.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Limitation of theorem: $\| \|_{\nabla^2 f(z)}$ reflects curvature of $\partial \Lambda_+$ at *z*, **not** shape of $\Lambda'_{e,+}$ around *z*

That shape is reflected by Hessian of $h(x) := -\ln p'_e(x)$

If $\| \|_{\nabla^2 f(z)}$ is (nearly) a scalar multiple of $\| \|_{\nabla^2 h(z)}$ then Newton's domain of convergence is *truly* the largest within reason

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ