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p : Rd → R homogeneous polynomial of degree n
p(e) > 0

Defn: The polynomial p is

“hyperbolic in direction e ”

if for all x ∈ Rd , the univariate polynomial

λ 7→ p(λe − x) has only real roots.

Roots: λ1,e(x) ≤ λ2,e(x) ≤ · · · ≤ λn,e(x)

“eigenvalues of x (in direction e)”



LP:
p(x) = x1, . . . , xn

e > 0
λ 7→ p(λe − x) = (λe1 − x1) · · · (λen − xn)

Eigenvalues of x in direction e : x1
e1
, . . . , xn

en

SDP:
p(x) = det(x)

e � 0
λ 7→ det(λe − x) = det(e) det(λI − e−1/2xe−1/2)

Eigenvalues of x in direction e
= traditional eigenvalues of e−1/2xe−1/2



λ1,e(x) ≤ λ2,e(x) ≤ · · · ≤ λn,e(x) roots of λ 7→ p(x − λe)

Hyperbolicity Cone:

Λ++ := {x : 0 < λ1,e(x)}

= connected component of
{x : p(x) > 0} containing e

Gårding (1959): p is hyperbolic in direction e for all e ∈ Λ++

Corollary: Λ++ is a convex cone

Corollary: x 7→ λn,e(x) is a convex function



Bauschke, Güler, Lewis & Sendov:

If f : Rn → R is a convex and permutation-invariant
then x 7→ f (~λe(x)) is convex

Lax, Vinnikov and Helton Theorem:

Every 3-dimensional hyperbolicity cone is
a slice of a PSD cone.

Cor: Faces of hyperbolicity cones are exposed.

Chua: Every homogeneous cone is a slice of a PSD cone.



φ a univariate polynomial

If φ has only real roots then:
φ′ has only real roots.
Roots are interlaced: λ1 ≤ λ′1 ≤ λ2 ≤ · · · ≤ λ′n−1 ≤ λn

p a multivariate polynomial
p′e(x) := 〈∇p(x),e〉 (directional derivative)

If p is hyperbolic in direction e then:
p′e is hyperbolic in direction e.
Λ+ ⊆ Λ′e,+



Inductively:
p(i+1)

e (x) = 〈∇p(i)
e (x),e〉

Λ+ = Λ
(0)
e,+ ⊆ Λ

(1)
e,+ ⊆ · · · ⊆ Λ

(n−1)
e,+ = a halfspace

p(i)
e (x) = i! p(e) En−i(~λe(x))

where Ek = elementary symmetric polynomial of degree k

Λ
(i)
e,+ = {x : Ek (~λe(x)) ≥ 0, k = 1, . . . ,n − i}



Hyperbolic Program (HP):

min 〈c, x〉
s.t. Ax = b

x ∈ Λ+

Introduced by Güler (mid-90’s) in context of ipm’s:

“Central Path” = {x(η) : η > 0}
where x(η) solves

min η 〈c, x〉 − ln p(x)
s.t. Ax = b

O(
√

n) log(1/ε) iterations suffice
to reduce α := 〈c, x〉 − 〈b, y〉 to ε α





Thm: Fix α, β > 0.

If q1, q2 are hyperbolic in direction e

and k < deg(q1) + deg(q2)

then∑k
j=0

(
k
j

)
αjβk−jq1

(j)q2
(k−j)

is hyperbolic in direction e.

Pf:

• Q(x, t) := q1(x + tαe)q2(x + tβe)

• Hyperbolic in direction (0, 1)

• (e, 0) in hyperbolicity cone of Q, hence of Q(k)

• Thus, x 7→ Q(k)(x, 0) is hyperbolic in direction e �

Consequence: Can morph directly from Λ(k)
+ to Λ+

Downside: Don’t gain facial structure along the way



min 〈c, x〉
s.t. Ax = b

x ∈ Λ+

z = optimal solution

If z /∈ ∂Λ′e,+ then z solves

minx − ln〈c,e − x〉 − p(x)
p′e(x)

s.t. Ax = b

How good is Newton’s method at solving the latter problem?



Thm: If p is hyperbolic in direction e
then p/p′e is a concave function on Λ′e,++

Pf:
q(x , t) := tp(x) is hyperbolic in direction (e,1)

Hence, q′(e,1) is hyperbolic in direction (e,1)

Hyperbolicity cone of q′(e,1) is epigraph of x 7→ −p(x)/p′e(x)



min 〈c, x〉
s.t. Ax = b

x ∈ Λ+

z = optimal solution

If z /∈ ∂Λ′e,+ then z solves

minx − ln〈c,e − x〉 − p(x)
p′e(x)

s.t. Ax = b

How good is Newton’s method at solving the latter problem?



A general theorem on Newton’s method (Smale, Guler, ...)

min f (x)
s.t. Ax = b

Let z denote optimal solution

For u satisfying Au = 0, let φu(t) := f (z + tu), and define

γ := sup
u, k>2

∣∣∣∣∣ φ
(k)
u (0)

(k − 2)!φ
(2)
u (0)

k
2

∣∣∣∣∣
1

k−2

Thm: If x satisfies Ax = b and

〈x − z,∇2f (z)(x − z)〉 < 1
36 γ2

then Newton’s method initiated at x converges quadratically.



For interior-point methods:

f (x) = η 〈c, x〉 − ln p(x)

γ ≤ 1

So ‖x − x(η)‖∇2f (x(η)) <
1
6 ⇒ quadratic convergence

For present context:

f (x) = − ln〈c,e − x〉 − p(x)

p′e(x)

γ can be arbitrarily large

(“Inversely proportional to curvature of ∂Λ+ at z")



f (x) = − ln〈c,e − x〉 − p(x)

p′e(x)

Nonetheless, something meaningful can be said ...

Thm:

γ ≤ 4
min{‖x − z‖∇2f (z) : Ax = b and x ∈ ∂Λ′e,+}

In other words, quadratic convergence occurs on
nearly the largest “ball” within reason.



Limitation of theorem:
‖ ‖∇2f (z) reflects curvature of ∂Λ+ at z,

not shape of Λ′e,+ around z

That shape is reflected by Hessian of h(x) := − ln p′e(x)

If ‖ ‖∇2f (z) is (nearly) a scalar multiple of ‖ ‖∇2h(z)

then Newton’s domain of convergence
is truly the largest within reason




