Optimizing Over Hyperbolicity Cones

By Using Their Derivative Relaxations
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@ p:RY - R homogeneous polynomial of degree
@ ple)>0

Defn: The polynomial p is
“hyperbolic in direction e”
if for all x € RY, the univariate polynomial

A — p(Ae — x) has only real roots.

Roots: A\ a(Xx) < Ape(X) < - < Ape(X)

“eigenvalues of x (in direction ¢)”



LP:
@ p(X)=X{,...,Xn
ee>0
A= plhe—x)=(Aeg —xq1) - (Aey — Xp)

Eigenvalues of x in direction e: % ... %
€1 €n

SDP:
@ p(x) = det(x)
@ec>0
A — det(Ae — x) = det(e) det(A — e~ /2xe™1/2)

Eigenvalues of x in direction e
= traditional eigenvalues of e=1/2xe~1/2



Me(X) < Ape(x) <o < ApelX) roots of A — p(x — Ae)

)

Hyperbolicity Cone:

Aew ={x:0< XM a(x)}

= connected component of
{x : p(x) > 0} containing e

Garding (1959):  pis hyperbolic in direction e forall e € A,
Corollary: A, is a convex cone

Corollary:  x — A\ c(x) is a convex function



Bauschke, Guler, Lewis & Sendov:

If f: R” — R is a convex and permutation;invariant
then x — f(A\z(x)) is convex

Lax, Vinnikov and Helton Theorem:

Every 3-dimensional hyperbolicity cone is
a slice of a PSD cone.

Cor: Faces of hyperbolicity cones are exposed.



¢ aunivariate polynomial

If ¢ has only real roots then:
@ ¢’ has only real roots.

@ Roots are interlaced: Ay < X; <X <--- <

a multivariate polynomial
L(x):=(Vp(x),e) (directional derivative)

If pis hyperbolic in direction e then:
@ 1. is hyperbolic in direction e.
o N, CAL,



Inductively: _ _
PV (x) = (Vo (%), e)

A, = /\Sﬁ C /\gl c...C /\g’:” = a halfspace

p(x) = it ple) Eni(Xe(x))
where E, = elementary symmetric polynomial of degree k

/\(e{)+:{XZEk(Xe(X))20, k=1,....,n—1i}



Hyperbolic Program (HP):
min (¢, x)

s.t. Ax =
X en,

Introduced by Giler (mid-90’s) in context of ipm’s:

“Central Path” = {x(n) : n > 0}
where x(n) solves

min 7 {(c,x) —Inp(x

(c,
st. Ax=0>b

O(v/n)log(1/e) iterations suffice
to reduce a := (¢, x) — (b, y) to e



min (¢, x) min (¢, x)

s.t. Ax =050 s.t. Ax =0




Thm: Fixa,8 > 0.

If g1, g2 are hyperbolic in direction e

and k < deg(qy) + deg(qz)

then
Sk (F)ad Bi=ig, () gy k=D
IS hyperbolic in direction e.
Pf:
o Q(x,t) := q1(x + tae)q(x + tPe)
e Hyperbolic in direction (0, 1)
e (e,0) in hyperbolicity cone of (), hence of Q*)
e Thus, z — Q¥ (z,0) is hyperbolic in direction e [J
Consequence: Can morph directly from Af) to Ay

Downside: Don't gain facial structure along the way



min (¢, X)
st. Ax=0
x e,

z = optimal solution



Thm: If p is hyperbolic in direction e

/g H !/
then p/p, is a concave function on A\, , |

Pf:
@ qg(x,t) = tp(x) is hyperbolic in direction (e, 1)
@ Hence, 2971) is hyperbolic in direction (e, 1)
@ Hyperbolicity cone of ’(671) is epigraph of x — —p(x)/pL(x



min  (c, x)
st Ax =
x e,

z = optimal solution

If z ¢ ON, , then z solves

miny —In{c,e—x) —
st. AX =

X

o

How good is Newton’s method at solving the latter problem?



A general theorem on Newton’s method (Smale, Guler, ...)

min X

ot ¥ — Let z denote optimal solution

For u satisfying Au =0, let ¢,(t) := f(z + tu), and define

7y i= Sup
u, k>2

Thm: If x satisfies Ax = b and

1

(x — 2, V2(2)(x — 2)) < 362

then Newton’s method initiated at x converges quadratically.



For interior-point methods:
x)=n{c,x) —Inp(x
v <1

So [[x — x(n)l[w2r(x(n)) < % = quadratic convergence

For present context:

X

x)=—In{c,e—x) —
) /eX

~ can be arbitrarily large

(“Inversely proportional to curvature of 9\, at z")



X
/
el X

x)=—In(c,e—x) —

Nonetheless, something meaningful can be said ...

Thm:

4
min{||x — z||y2,) : AXx = band x € O\, . }

T >

In other words, quadratic convergence occurs on
nearly the largest “ball” within reason.



Limitation of theorem:
| |lv2/(» reflects curvature of A, at z,
not shape of A, , around z

That shape is reflected by Hessian of /(x) := —InpL(x
If || |lv2r» is (nearly) a scalar multiple of || ||vz/»

then Newton’s domain of convergence
is truly the largest within reason





