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Definition of Dominating Set Problem

Dominating Set: Given a graph G and an integer k, does
there exist a subset of vertices D, with |D| = k , such that
every vertex in the graph is in, or adjacent to, a vertex in D?

Definition: The domination number of a graph G is the size
of a minimum dominating set, and is denoted by γ(G ).

Turán Graph T (5, 3):

γ( T (5, 3) ) = 1.
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Cartesian Product Graph, G2H

Cartesian Product: Given graphs G and H, the cartesian
product graph, denoted G2H, has vertex set

V (G )× V (H)

Given vertices iu, jv ∈ V (G2H), there is an edge between iu
and jv if i = j and (u, v) ∈ E [H], or u = v and (i , j) ∈ E [G ].

Example: Consider a triangle and an edge:
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Example: Consider a triangle and an edge:

γ(G ) = 1, γ(H) = 1 and γ(G2H) = 2 . γ(G )γ(H) < γ(G2H) .

Example: Consider a square and an edge:

γ(G ) = 2, γ(H) = 1 and γ(G2H) = 2 . γ(G )γ(H) = γ(G2H) .

Susan Margulies, Rice University Vizing’s Conjecture



Vizing’s Conjecture
Systems of Polynomial Equations

Dominating Set
Cartesian Product
Vizing’s Conjecture

Cartesian Product Graphs and Dominating Sets

Example: Consider a triangle and an edge:

γ(G ) = 1, γ(H) = 1 and γ(G2H) = 2 . γ(G )γ(H) < γ(G2H) .

Example: Consider a square and an edge:

γ(G ) = 2, γ(H) = 1 and γ(G2H) = 2 . γ(G )γ(H) = γ(G2H) .

Susan Margulies, Rice University Vizing’s Conjecture



Vizing’s Conjecture
Systems of Polynomial Equations

Dominating Set
Cartesian Product
Vizing’s Conjecture

Cartesian Product Graphs and Dominating Sets

Example: Consider a triangle and an edge:

γ(G ) = 1, γ(H) = 1 and γ(G2H) = 2 . γ(G )γ(H) < γ(G2H) .

Example: Consider a square and an edge:

γ(G ) = 2, γ(H) = 1 and γ(G2H) = 2 . γ(G )γ(H) = γ(G2H) .

Susan Margulies, Rice University Vizing’s Conjecture



Vizing’s Conjecture
Systems of Polynomial Equations

Dominating Set
Cartesian Product
Vizing’s Conjecture

Cartesian Product Graphs and Dominating Sets

Example: Consider a triangle and an edge:

γ(G ) = 1, γ(H) = 1 and γ(G2H) = 2 . γ(G )γ(H) < γ(G2H) .

Example: Consider a square and an edge:

γ(G ) = 2, γ(H) = 1 and γ(G2H) = 2 . γ(G )γ(H) = γ(G2H) .

Susan Margulies, Rice University Vizing’s Conjecture



Vizing’s Conjecture
Systems of Polynomial Equations

Dominating Set
Cartesian Product
Vizing’s Conjecture

Cartesian Product Graphs and Dominating Sets

Example: Consider a triangle and an edge:

γ(G ) = 1, γ(H) = 1 and γ(G2H) = 2 .

γ(G )γ(H) < γ(G2H) .

Example: Consider a square and an edge:

γ(G ) = 2, γ(H) = 1 and γ(G2H) = 2 . γ(G )γ(H) = γ(G2H) .

Susan Margulies, Rice University Vizing’s Conjecture



Vizing’s Conjecture
Systems of Polynomial Equations

Dominating Set
Cartesian Product
Vizing’s Conjecture

Cartesian Product Graphs and Dominating Sets

Example: Consider a triangle and an edge:

γ(G ) = 1, γ(H) = 1 and γ(G2H) = 2 .

γ(G )γ(H) < γ(G2H) .

Example: Consider a square and an edge:

γ(G ) = 2, γ(H) = 1 and γ(G2H) = 2 . γ(G )γ(H) = γ(G2H) .

Susan Margulies, Rice University Vizing’s Conjecture



Vizing’s Conjecture
Systems of Polynomial Equations

Dominating Set
Cartesian Product
Vizing’s Conjecture

Cartesian Product Graphs and Dominating Sets

Example: Consider a triangle and an edge:

γ(G ) = 1, γ(H) = 1 and γ(G2H) = 2 .

γ(G )γ(H) < γ(G2H) .

Example: Consider a square and an edge:

γ(G ) = 2, γ(H) = 1 and γ(G2H) = 2 . γ(G )γ(H) = γ(G2H) .

Susan Margulies, Rice University Vizing’s Conjecture



Vizing’s Conjecture
Systems of Polynomial Equations

Dominating Set
Cartesian Product
Vizing’s Conjecture

Cartesian Product Graphs and Dominating Sets

Example: Consider a triangle and an edge:

γ(G ) = 1, γ(H) = 1 and γ(G2H) = 2 .

γ(G )γ(H) < γ(G2H) .

Example: Consider a square and an edge:

γ(G ) = 2, γ(H) = 1 and γ(G2H) = 2 . γ(G )γ(H) = γ(G2H) .

Susan Margulies, Rice University Vizing’s Conjecture



Vizing’s Conjecture
Systems of Polynomial Equations

Dominating Set
Cartesian Product
Vizing’s Conjecture

Cartesian Product Graphs and Dominating Sets

Example: Consider a triangle and an edge:

γ(G ) = 1, γ(H) = 1 and γ(G2H) = 2 .

γ(G )γ(H) < γ(G2H) .

Example: Consider a square and an edge:

γ(G ) = 2, γ(H) = 1 and γ(G2H) = 2 .

γ(G )γ(H) = γ(G2H) .

Susan Margulies, Rice University Vizing’s Conjecture



Vizing’s Conjecture
Systems of Polynomial Equations

Dominating Set
Cartesian Product
Vizing’s Conjecture

Cartesian Product Graphs and Dominating Sets

Example: Consider a triangle and an edge:

γ(G ) = 1, γ(H) = 1 and γ(G2H) = 2 . γ(G )γ(H) < γ(G2H) .

Example: Consider a square and an edge:

γ(G ) = 2, γ(H) = 1 and γ(G2H) = 2 .

γ(G )γ(H) = γ(G2H) .

Susan Margulies, Rice University Vizing’s Conjecture



Vizing’s Conjecture
Systems of Polynomial Equations

Dominating Set
Cartesian Product
Vizing’s Conjecture

Cartesian Product Graphs and Dominating Sets

Example: Consider a triangle and an edge:

γ(G ) = 1, γ(H) = 1 and γ(G2H) = 2 . γ(G )γ(H) < γ(G2H) .

Example: Consider a square and an edge:

γ(G ) = 2, γ(H) = 1 and γ(G2H) = 2 . γ(G )γ(H) = γ(G2H) .

Susan Margulies, Rice University Vizing’s Conjecture



Vizing’s Conjecture
Systems of Polynomial Equations

Dominating Set
Cartesian Product
Vizing’s Conjecture

Vizing’s Conjecture

Vizing’s Conjecture (1963)

Given graphs G and H,

γ(G )γ(H) ≤ γ(G2H) .
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Brief History of Progress

Vizing proposes his conjecture in 1963.

In 1979, Barcalkin and German prove that Vizing’s conjecture
holds for a large class of graphs (“A-class” graphs).

In 1990, Faudree, Schelp and Shreve prove that Vizing’s
conjecture holds for graphs that satisfy a special “coloring
property”.

In 1991, El-Zahar and Pareek show that Vizing’s conjecture
holds for cycles.

In 2000, Clark and Suen show that γ(G )γ(H) ≤ 2γ(G2H) .

In 2003, Sun proves that Vizing’s conjecture holds if
γ(G ) ≤ 3.
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A given graph G and a dominating set of size k

Lemma

Given a graph G with n vertices, the following zero-dimensional
system of polynomial equations has a solution if and only if there
exists a dominating set of size k in G.

x2
i − xi = 0 , for i = 1, . . . , n ,

(1− xi )
∏

j :(i ,j)∈E(G)

(1− xj) = 0 , for i = 1, . . . , n ,

−k +
n∑

i=1

xi = 0 .
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An arbitrary graph G in n vertices and a dominating set of
size k

Lemma

The following zero-dimensional system of polynomial equations has
a solution if and only if there exists a graph G in n vertices that
has a dominating set of size k.

x2
i − xi = 0 , for i = 1, . . . , n ,

e2
ij − eij = 0 , for i , j = 1, . . . , n with i < j ,

(1− xi )
n∏

j=1

j 6=i

(1− eijxj) = 0 , for i = 1, . . . , n ,

−k +
n∑

i=1

xi = 0 .
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An arbitrary graph G in n vertices and a particular
dominating set of size k

Lemma

The following zero-dimensional system has a solution if and only if
there exists a graph G in n vertices that has a dominating set of
size k consisting of vertices {v1, v2, . . . , vk}.

e2
ij − eij = 0 , for i , j = 1, . . . , n with i < j ,

k∏
j=1

(1− eij) = 0 , for i = k + 1, . . . , n,
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An arbitrary graph G in n vertices and an arbitrary
dominating set of size k

Let Sk
n denote the set of k-subsets of {1, 2, . . . , n} .

Lemma

The following zero-dimensional system has a solution if and only if
there exists a graph G in n vertices that has a dominating set of
size k.

e2
ij − eij = 0 , for 1 ≤ i < j ≤ n,∏

S∈Sk
n

(∑
i /∈S

(∏
j∈S

(1− eij)
))

= 0 .
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Notation Definitions

Let PG be the set of polynomials representing a graph G in n
vertices with a dominating set of size k :

e2
ij − eij = 0 , for 1 ≤ i < j ≤ n,∏

S∈Sk
n

(∑
i /∈S

(∏
j∈S

(1− eij)
))

= 0 .

Let PH be the set of polynomials representing a graph H in n′

vertices with a dominating set of size l :

e ′
2
ij − e ′ij = 0 , for 1 ≤ i < j ≤ n′,∏

S∈S l
n′

(∑
i /∈S

(∏
j∈S

(1− e ′ij)
))

= 0 .
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Notation Definitions (continued)

Let PG2H be the set of polynomials representing the cartesian
product graph G2H with a dominating set of size r :

For i = 1, . . . , n and j = 1, . . . , n′ ,

z2
ij − zij = 0 ,

(1− zij)
n∏

k=1

(1− eikzkj)
n′∏

k=1

(1− e ′jkzik) = 0 ,

and

−r +
n∑

i=1

n′∑
j=1

zij = 0 ,
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The ideal I l
k and variety V l

k

Lemma

The system of polynomial equations PG ,PH and PG2H has a
solution if and only if there exist graphs G ,H in n, n′ vertices
respectively with dominating sets of size k, l respectively such that
their cartesian product graph G2H has a dominating set of size r .

Let I l
k := I (n, k , n′, l , r = kl − 1) := 〈PG ,PH ,PG2H〉 .

Let V l
k := V (I l

k) .
Note that I (V l

k) = I l
k since the ideal I l

k is radical.
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Unions, Intersections and Vizing’s Conjecture

Theorem

Vizing’s conjecture is true ⇐⇒ V l
k−1 ∪ V l−1

k = V l
k .

Proof.

Every point in the variety corresponds to a G ,H pair. Since
dominating sets can always be extended, V l

k−1 ∪ V l−1
k ⊆ V l

k .

If V l
k ⊆ V l

k−1 ∪ V l−1
k , then for every G ,H pair, either k or l is

strictly less than γ(G ), γ(H) respectively.
Thus, Vizing’s conjecture is true ⇐⇒ V l

k−1 ∪ V l−1
k = V l

k .

Corollary

Vizing’s conjecture is true ⇐⇒ I l
k−1 ∩ I l−1

k = I l
k .
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Searching for a Counter-Example by Counting Solutions

Recall

|V (I )| = # of solutions = dim

(
C[x1, x2, . . . , xn]

I

)

Lemma

If

dim

(
C[e, e ′, z ]

I l
k−1 ∩ I l−1

k

)
< dim

(
C[e, e ′, z ]

I l
k

)
for any n, n′, k , l , then Vizing’s conjecture is false. Moreover, there
exists a counter-example for Vizing’s conjecture for graphs G ,H,
with n, n′ vertices and γ(G ), γ(H) equal to k, l , respectively.
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Vizing’s Conjecture and Gröbner Bases

Let

P ′
G2H := PG2H \

{
− (kl − l) +

n∑
i=1

n′∑
j=1

zij

}

Conjecture

Is the following set of polynomials (described by cases 1 through 6)
a graph-theoretic interpretation of the unique, reduced Gröbner
basis of P ′

G2H?
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Vizing’s Conjecture and Gröbner Bases: Degree

Every polynomial in the Gröbner basis has the following form:

(xi1 − 1)(xid − 1) · · · (xiD − 1) ,

where D := (n − 1) + (n′ − 1) + 1 := n + n′ − 1.

In the P ′
tri2tri example, the degree equals five.
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Vizing’s Conjecture and Gröbner Bases: Case 1

Notation: Let G represent the set of G -levels in G2H. Given a
level l ∈ G , let

p(l) :=
∏

i∈V (l)

(xi − 1) .

Example: Consider the a-level in tri2tri. Then,

p(a) := (z1a − 1)(z2a − 1)(z3a − 1) .
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Vizing’s Conjecture and Gröbner Bases: Case 1

Case 1: There are |G | · |H| polynomials of the form:

p(g) ·
∏
l∈G :
l 6=g

(x [li ]− 1) , for each i ∈ V (G ) and each level g ∈ G .

Example: For g = a-level and i = 1, then

(z1a − 1)(z2a − 1)(z3a − 1)(z1b − 1)(z1c − 1)
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Vizing’s Conjecture and Gröbner Bases: Case 2

Notation: Let e ∈ E [H]. In G2H, the lexicographic order defined
for the Gröbner basis also defines a direction on the edges in G2H.

In particular, let h(e) define the G -level that where the edge
originates (according to the lexicographic order), and let t(e)
denote the G -level where the edge terminates.

Example: Consider the edge e ′ac and the c-level in tri2tri. Then,

p(h(e)) := (z1a − 1)(z2a − 1)(z3a − 1) ,

p(t(e)) := (z1c − 1)(z2c − 1)(z3c − 1) .
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Vizing’s Conjecture and Gröbner Bases: Case 2

Case 2: There are 2||H|| · |G |+ 2||G || · |H| polynomials of the following form:

(xe − 1)p(h(e))
∏

g∈G : g 6=G [t(e)]

and g 6=G [h(e)]

(gi − 1) , for each e ∈ E(H) and each i ∈ V (G)

(xe − 1)p(t(e))
∏

g∈G : g 6=G [t(e)]

and g 6=G [h(e)]

(gi − 1) , for each e ∈ E(H) and each i ∈ V (G)

Example: For e = e′ac and i = 1, then

(e′ac − 1)(z1a − 1)(z2a − 1)(z3a − 1)(z1b − 1) ,

(e′ac − 1)(z1c − 1)(z2c − 1)(z3c − 1)(z1b − 1) .
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Summary

Introduced Vizing’s conjecture (1963).

Presented a possible algebraic approach for ssolving Vizing’s
conjecture.

Conjectured a graph-theoretic interpretation of the Gröbner
basis of P ′

G2H (presented only cases 1 and 2).

Thank you for your kind attention!
Questions, comments, thoughts and suggestions are most welcome.
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