Vizing's Conjecture and Techniques from Computer Algebra

Susan Margulies
Computational and Applied Math, Rice University joint work in progress with I.V. Hicks ${ }^{1}$

March 2, 2010
${ }^{1}$ funded by VIGRE and NSF-CMMI-0926618 and NSF-DMS-0729251

Definition of Dominating Set Problem

- Dominating Set: Given a graph G and an integer k, does there exist a subset of vertices D, with $|D|=k$, such that every vertex in the graph is in, or adjacent to, a vertex in D ?

Definition of Dominating Set Problem

- Dominating Set: Given a graph G and an integer k, does there exist a subset of vertices D, with $|D|=k$, such that every vertex in the graph is in, or adjacent to, a vertex in D ?
- Definition: The domination number of a graph G is the size of a minimum dominating set, and is denoted by $\gamma(G)$.

Definition of Dominating Set Problem

- Dominating Set: Given a graph G and an integer k, does there exist a subset of vertices D, with $|D|=k$, such that every vertex in the graph is in, or adjacent to, a vertex in D ?
- Definition: The domination number of a graph G is the size of a minimum dominating set, and is denoted by $\gamma(G)$.
- Turán Graph $T(5,3)$:

Definition of Dominating Set Problem

- Dominating Set: Given a graph G and an integer k, does there exist a subset of vertices D, with $|D|=k$, such that every vertex in the graph is in, or adjacent to, a vertex in D ?
- Definition: The domination number of a graph G is the size of a minimum dominating set, and is denoted by $\gamma(G)$.
- Turán Graph $T(5,3): \gamma(T(5,3))=1$.

Cartesian Product Graph, GロH

- Cartesian Product: Given graphs G and H, the cartesian product graph, denoted $G \square H$, has vertex set

$$
V(G) \times V(H)
$$

Cartesian Product Graph, GロH

- Cartesian Product: Given graphs G and H, the cartesian product graph, denoted $G \square H$, has vertex set

$$
V(G) \times V(H)
$$

Given vertices $i u, j v \in V(G \square H)$, there is an edge between iu and $j v$ if $i=j$ and $(u, v) \in E[H]$, or $u=v$ and $(i, j) \in E[G]$.

Cartesian Product Graph, GロH

- Cartesian Product: Given graphs G and H, the cartesian product graph, denoted $G \square H$, has vertex set

$$
V(G) \times V(H)
$$

Given vertices $i u, j v \in V(G \square H)$, there is an edge between iu and $j v$ if $i=j$ and $(u, v) \in E[H]$, or $u=v$ and $(i, j) \in E[G]$.

- Example: Consider a triangle and an edge:

G

H

Cartesian Product Graph, GロH

- Cartesian Product: Given graphs G and H, the cartesian product graph, denoted $G \square H$, has vertex set

$$
V(G) \times V(H)
$$

Given vertices $i u, j v \in V(G \square H)$, there is an edge between iu and $j v$ if $i=j$ and $(u, v) \in E[H]$, or $u=v$ and $(i, j) \in E[G]$.

- Example: Consider a triangle and an edge:

G

H

$\mathrm{G} \square \mathrm{H}$

Cartesian Product Graphs and Dominating Sets

- Example: Consider a triangle and an edge:

G

H

Cartesian Product Graphs and Dominating Sets

- Example: Consider a triangle and an edge:

G

H

Cartesian Product Graphs and Dominating Sets

- Example: Consider a triangle and an edge:

G

H

Cartesian Product Graphs and Dominating Sets

- Example: Consider a triangle and an edge:

G

H

Cartesian Product Graphs and Dominating Sets

- Example: Consider a triangle and an edge:

G

H

G ロ H
$\gamma(G)=1, \gamma(H)=1$ and $\gamma(G \square H)=2$.

Cartesian Product Graphs and Dominating Sets

- Example: Consider a triangle and an edge:

- Example: Consider a square and an edge:

Cartesian Product Graphs and Dominating Sets

- Example: Consider a triangle and an edge:

- Example: Consider a square and an edge:

Cartesian Product Graphs and Dominating Sets

- Example: Consider a triangle and an edge:

G

G ロ H
$\gamma(G)=1, \gamma(H)=1$ and $\gamma(G \square H)=2$.

- Example: Consider a square and an edge:

G

H

$G \square H$

Cartesian Product Graphs and Dominating Sets

- Example: Consider a triangle and an edge:

G

G ロ H
$\gamma(G)=1, \gamma(H)=1$ and $\gamma(G \square H)=2$.

- Example: Consider a square and an edge:

G

H

$\mathrm{G} \square \mathrm{H}$
$\gamma(G)=2, \gamma(H)=1$ and $\gamma(G \square H)=2$.

Cartesian Product Graphs and Dominating Sets

- Example: Consider a triangle and an edge:

G

G ロ H
$\gamma(G)=1, \gamma(H)=1$ and $\gamma(G \square H)=2 . \gamma(G) \gamma(H)<\gamma(G \square H)$.

- Example: Consider a square and an edge:

G

H

$\mathrm{G} \square \mathrm{H}$
$\gamma(G)=2, \gamma(H)=1$ and $\gamma(G \square H)=2$.

Cartesian Product Graphs and Dominating Sets

- Example: Consider a triangle and an edge:

G

G ロ H
$\gamma(G)=1, \gamma(H)=1$ and $\gamma(G \square H)=2 . \gamma(G) \gamma(H)<\gamma(G \square H)$.

- Example: Consider a square and an edge:

Vizing's Conjecture

Vizing's Conjecture (1963)
Given graphs G and H,

$$
\gamma(G) \gamma(H) \leq \gamma(G \square H) .
$$

Brief History of Progress

- Vizing proposes his conjecture in 1963.

Brief History of Progress

- Vizing proposes his conjecture in 1963.
- In 1979, Barcalkin and German prove that Vizing's conjecture holds for a large class of graphs ("A-class" graphs).

Brief History of Progress

- Vizing proposes his conjecture in 1963.
- In 1979, Barcalkin and German prove that Vizing's conjecture holds for a large class of graphs ("A-class" graphs).
- In 1990, Faudree, Schelp and Shreve prove that Vizing's conjecture holds for graphs that satisfy a special "coloring property".

Brief History of Progress

- Vizing proposes his conjecture in 1963.
- In 1979, Barcalkin and German prove that Vizing's conjecture holds for a large class of graphs ("A-class" graphs).
- In 1990, Faudree, Schelp and Shreve prove that Vizing's conjecture holds for graphs that satisfy a special "coloring property".
- In 1991, El-Zahar and Pareek show that Vizing's conjecture holds for cycles.

Brief History of Progress

- Vizing proposes his conjecture in 1963.
- In 1979, Barcalkin and German prove that Vizing's conjecture holds for a large class of graphs ("A-class" graphs).
- In 1990, Faudree, Schelp and Shreve prove that Vizing's conjecture holds for graphs that satisfy a special "coloring property".
- In 1991, El-Zahar and Pareek show that Vizing's conjecture holds for cycles.
- In 2000, Clark and Suen show that $\gamma(G) \gamma(H) \leq 2 \gamma(G \square H)$.

Brief History of Progress

- Vizing proposes his conjecture in 1963.
- In 1979, Barcalkin and German prove that Vizing's conjecture holds for a large class of graphs ("A-class" graphs).
- In 1990, Faudree, Schelp and Shreve prove that Vizing's conjecture holds for graphs that satisfy a special "coloring property".
- In 1991, El-Zahar and Pareek show that Vizing's conjecture holds for cycles.
- In 2000, Clark and Suen show that $\gamma(G) \gamma(H) \leq 2 \gamma(G \square H)$.
- In 2003, Sun proves that Vizing's conjecture holds if $\gamma(G) \leq 3$.

A given graph G and a dominating set of size k

Lemma

Given a graph G with n vertices, the following zero-dimensional system of polynomial equations has a solution if and only if there exists a dominating set of size k in G.

$$
\begin{aligned}
x_{i}^{2}-x_{i} & =0, \quad \text { for } i=1, \ldots, n, \\
\left(1-x_{i}\right) \prod_{j:(i, j) \in E(G)}\left(1-x_{j}\right) & =0, \\
-k+\sum_{i=1}^{n} x_{i} & =0
\end{aligned}
$$

An arbitrary graph G in n vertices and a dominating set of

 size k
Lemma

The following zero-dimensional system of polynomial equations has a solution if and only if there exists a graph G in n vertices that has a dominating set of size k.

$$
\begin{aligned}
& x_{i}^{2}-x_{i}=0, \quad \text { for } i=1, \ldots, n, \\
& e_{i j}^{2}-e_{i j}=0, \text { for } i, j=1, \ldots, n \text { with } i<j, \\
&\left(1-x_{i}\right) \prod_{\substack{j=1 \\
j \neq i}}^{n}\left(1-e_{i j} x_{j}\right)=0, \quad \text { for } i=1, \ldots, n, \\
&-k+\sum_{i=1}^{n} x_{i}=0 .
\end{aligned}
$$

An arbitrary graph G in n vertices and a particular dominating set of size k

Lemma

The following zero-dimensional system has a solution if and only if there exists a graph G in n vertices that has a dominating set of size k consisting of vertices $\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$.

$$
e_{i j}^{2}-e_{i j}=0, \quad \text { for } i, j=1, \ldots, n \text { with } i<j
$$

$$
\prod_{j=1}^{k}\left(1-e_{i j}\right)=0, \quad \text { for } i=k+1, \ldots, n
$$

An arbitrary graph G in n vertices and an arbitrary dominating set of size k

Let S_{n}^{k} denote the set of k-subsets of $\{1,2, \ldots, n\}$.

An arbitrary graph G in n vertices and an arbitrary dominating set of size k

Let S_{n}^{k} denote the set of k-subsets of $\{1,2, \ldots, n\}$.

Lemma

The following zero-dimensional system has a solution if and only if there exists a graph G in n vertices that has a dominating set of size k.

$$
\begin{aligned}
e_{i j}^{2}-e_{i j} & =0, \quad \text { for } 1 \leq i<j \leq n, \\
\prod_{S \in S_{n}^{k}}\left(\sum_{i \neq S}\left(\prod_{j \in S}\left(1-e_{i j}\right)\right)\right) & =0 .
\end{aligned}
$$

Notation Definitions

Let \mathscr{P}_{G} be the set of polynomials representing a graph G in n vertices with a dominating set of size k :

$$
\begin{aligned}
e_{i j}^{2}-e_{i j} & =0, \quad \text { for } 1 \leq i<j \leq n, \\
\prod_{S \in S_{n}^{k}}\left(\sum_{i \notin S}\left(\prod_{j \in S}\left(1-e_{i j}\right)\right)\right) & =0 .
\end{aligned}
$$

Notation Definitions

Let \mathscr{P}_{G} be the set of polynomials representing a graph G in n vertices with a dominating set of size k :

$$
\begin{aligned}
e_{i j}^{2}-e_{i j} & =0, \quad \text { for } 1 \leq i<j \leq n, \\
\prod_{S \in S_{n}^{k}}\left(\sum_{i \neq S}\left(\prod_{j \in S}\left(1-e_{i j}\right)\right)\right) & =0 .
\end{aligned}
$$

Let \mathscr{P}_{H} be the set of polynomials representing a graph H in n^{\prime} vertices with a dominating set of size l :

$$
\begin{aligned}
e_{i j}^{\prime 2}-e_{i j}^{\prime} & =0, \quad \text { for } 1 \leq i<j \leq n^{\prime}, \\
\prod_{S \in S_{n^{\prime}}^{\prime}}\left(\sum_{i \notin S}\left(\prod_{j \in S}\left(1-e^{\prime}{ }_{i j}\right)\right)\right) & =0 .
\end{aligned}
$$

Notation Definitions (continued)

Let $\mathscr{P}_{G \square H}$ be the set of polynomials representing the cartesian product graph $G \square H$ with a dominating set of size r :

For $i=1, \ldots, n$ and $j=1, \ldots, n^{\prime}$,

$$
z_{i j}^{2}-z_{i j}=0
$$

$$
\left(1-z_{i j}\right) \prod_{k=1}^{n}\left(1-e_{i k} z_{k j}\right) \prod_{k=1}^{n^{\prime}}\left(1-e_{j k}^{\prime} z_{i k}\right)=0
$$

and

$$
-r+\sum_{i=1}^{n} \sum_{j=1}^{n^{\prime}} z_{i j}=0
$$

The ideal I_{k}^{\prime} and variety V_{k}^{\prime}

Lemma

The system of polynomial equations $\mathscr{P}_{G}, \mathscr{P}_{H}$ and $\mathscr{P}_{G \square H}$ has a solution if and only if there exist graphs G, H in n, n^{\prime} vertices respectively with dominating sets of size k, I respectively such that their cartesian product graph $G \square H$ has a dominating set of size r.

The ideal I_{k}^{\prime} and variety V_{k}^{\prime}

Lemma

The system of polynomial equations $\mathscr{P}_{G}, \mathscr{P}_{H}$ and $\mathscr{P}_{G \square H}$ has a solution if and only if there exist graphs G, H in n, n^{\prime} vertices respectively with dominating sets of size k, I respectively such that their cartesian product graph $G \square H$ has a dominating set of size r.

$$
\text { Let } I_{k}^{\prime}:=I\left(n, k, n^{\prime}, I, r=k I-1\right):=\left\langle\mathscr{P}_{G}, \mathscr{P}_{H}, \mathscr{P}_{G \square H}\right\rangle .
$$

The ideal I_{k}^{\prime} and variety V_{k}^{\prime}

Lemma

The system of polynomial equations $\mathscr{P}_{G}, \mathscr{P}_{H}$ and $\mathscr{P}_{G \square H}$ has a solution if and only if there exist graphs G, H in n, n^{\prime} vertices respectively with dominating sets of size k, I respectively such that their cartesian product graph $G \square H$ has a dominating set of size r.

Let $I_{k}^{\prime}:=I\left(n, k, n^{\prime}, I, r=k I-1\right):=\left\langle\mathscr{P}_{G}, \mathscr{P}_{H}, \mathscr{P}_{G \square H}\right\rangle$.
Let $V_{k}^{\prime}:=V\left(I_{k}^{\prime}\right)$.

The ideal I_{k}^{\prime} and variety V_{k}^{\prime}

Lemma

The system of polynomial equations $\mathscr{P}_{G}, \mathscr{P}_{H}$ and $\mathscr{P}_{G \square H}$ has a solution if and only if there exist graphs G, H in n, n^{\prime} vertices respectively with dominating sets of size k, I respectively such that their cartesian product graph $G \square H$ has a dominating set of size r.

Let $I_{k}^{\prime}:=I\left(n, k, n^{\prime}, l, r=k I-1\right):=\left\langle\mathscr{P}_{G}, \mathscr{P}_{H}, \mathscr{P}_{G \square H}\right\rangle$.
Let $V_{k}^{\prime}:=V\left(I_{k}^{\prime}\right)$.
Note that $I\left(V_{k}^{l}\right)=I_{k}^{\prime}$ since the ideal I_{k}^{l} is radical.

Unions, Intersections and Vizing's Conjecture

Theorem

Vizing's conjecture is true $\Longleftrightarrow V_{k-1}^{\prime} \cup V_{k}^{I-1}=V_{k}^{\prime}$.

Proof.

Unions, Intersections and Vizing's Conjecture

Theorem

Vizing's conjecture is true $\Longleftrightarrow V_{k-1}^{\prime} \cup V_{k}^{I-1}=V_{k}^{\prime}$.

Proof.

Every point in the variety corresponds to a G, H pair.

Unions, Intersections and Vizing's Conjecture

Theorem

Vizing's conjecture is true $\Longleftrightarrow V_{k-1}^{\prime} \cup V_{k}^{\prime-1}=V_{k}^{\prime}$.

Proof.

Every point in the variety corresponds to a G, H pair. Since dominating sets can always be extended, $V_{k-1}^{\prime} \cup V_{k}^{I-1} \subseteq V_{k}^{\prime}$.

Unions, Intersections and Vizing's Conjecture

Theorem

Vizing's conjecture is true $\Longleftrightarrow V_{k-1}^{\prime} \cup V_{k}^{I-1}=V_{k}^{\prime}$.

Proof.

Every point in the variety corresponds to a G, H pair. Since dominating sets can always be extended, $V_{k-1}^{\prime} \cup V_{k}^{I-1} \subseteq V_{k}^{\prime}$. If $V_{k}^{\prime} \subseteq V_{k-1}^{\prime} \cup V_{k}^{I-1}$, then for every G, H pair, either k or l is strictly less than $\gamma(G), \gamma(H)$ respectively.

Unions, Intersections and Vizing's Conjecture

Theorem

Vizing's conjecture is true $\Longleftrightarrow V_{k-1}^{\prime} \cup V_{k}^{I-1}=V_{k}^{\prime}$.

Proof.

Every point in the variety corresponds to a G, H pair. Since dominating sets can always be extended, $V_{k-1}^{\prime} \cup V_{k}^{I-1} \subseteq V_{k}^{\prime}$. If $V_{k}^{\prime} \subseteq V_{k-1}^{\prime} \cup V_{k}^{I-1}$, then for every G, H pair, either k or l is strictly less than $\gamma(G), \gamma(H)$ respectively.
Thus, Vizing's conjecture is true $\Longleftrightarrow V_{k-1}^{\prime} \cup V_{k}^{I-1}=V_{k}^{\prime}$.

Unions, Intersections and Vizing's Conjecture

Theorem

Vizing's conjecture is true $\Longleftrightarrow V_{k-1}^{\prime} \cup V_{k}^{I-1}=V_{k}^{\prime}$.

Proof.

Every point in the variety corresponds to a G, H pair. Since dominating sets can always be extended, $V_{k-1}^{\prime} \cup V_{k}^{I-1} \subseteq V_{k}^{\prime}$. If $V_{k}^{\prime} \subseteq V_{k-1}^{\prime} \cup V_{k}^{I-1}$, then for every G, H pair, either k or l is strictly less than $\gamma(G), \gamma(H)$ respectively.
Thus, Vizing's conjecture is true $\Longleftrightarrow V_{k-1}^{\prime} \cup V_{k}^{I-1}=V_{k}^{\prime}$.

Corollary

Vizing's conjecture is true $\Longleftrightarrow I_{k-1}^{\prime} \cap I_{k}^{I-1}=I_{k}^{\prime}$.

Searching for a Counter-Example by Counting Solutions

Recall

$$
|V(I)|=\# \text { of solutions }=\operatorname{dim}\left(\frac{\mathbb{C}\left[x_{1}, x_{2}, \ldots, x_{n}\right]}{l}\right)
$$

Lemma

If

$$
\operatorname{dim}\left(\frac{\mathbb{C}\left[e, e^{\prime}, z\right]}{I_{k-1}^{\prime} \cap I_{k}^{I-1}}\right)<\operatorname{dim}\left(\frac{\mathbb{C}\left[e, e^{\prime}, z\right]}{I_{k}^{\prime}}\right)
$$

for any n, n^{\prime}, k, l, then Vizing's conjecture is false. Moreover, there exists a counter-example for Vizing's conjecture for graphs G, H, with n, n^{\prime} vertices and $\gamma(G), \gamma(H)$ equal to k, l, respectively.

Vizing's Conjecture and Gröbner Bases

Let

$$
\mathscr{P}_{G \square H}^{\prime}:=\mathscr{P}_{G \square H} \backslash\left\{-(k l-l)+\sum_{i=1}^{n} \sum_{j=1}^{n^{\prime}} z_{i j}\right\}
$$

Vizing's Conjecture and Gröbner Bases

Let

$$
\mathscr{P}_{G \square H}^{\prime}:=\mathscr{P}_{G \square H} \backslash\left\{-(k l-l)+\sum_{i=1}^{n} \sum_{j=1}^{n^{\prime}} z_{i j}\right\}
$$

Conjecture

Is the following set of polynomials (described by cases 1 through 6) a graph-theoretic interpretation of the unique, reduced Gröbner basis of $\mathscr{P}_{G \square H}^{\prime}$?

Vizing's Conjecture and Gröbner Bases: Degree

Vizing's Conjecture and Gröbner Bases: Degree

G

H

Every polynomial in the Gröbner basis has the following form:

$$
\left(x_{i_{1}}-1\right)\left(x_{i_{d}}-1\right) \cdots\left(x_{i_{D}}-1\right),
$$

where $D:=(n-1)+\left(n^{\prime}-1\right)+1:=n+n^{\prime}-1$.

Vizing's Conjecture and Gröbner Bases: Degree

G

H

Every polynomial in the Gröbner basis has the following form:

$$
\left(x_{i_{1}}-1\right)\left(x_{i_{d}}-1\right) \cdots\left(x_{i_{D}}-1\right),
$$

where $D:=(n-1)+\left(n^{\prime}-1\right)+1:=n+n^{\prime}-1$.
In the $\mathscr{P}_{\text {tri } \square \text { tri }}^{\prime}$ example, the degree equals five.

Vizing's Conjecture and Gröbner Bases: Case 1

G

H

Notation: Let \mathscr{G} represent the set of G-levels in $G \square H$. Given a level $I \in \mathscr{G}$, let

$$
p(I):=\prod_{i \in V(I)}\left(x_{i}-1\right) .
$$

Vizing's Conjecture and Gröbner Bases: Case 1

G

H

$G \square H$

Notation: Let \mathscr{G} represent the set of G-levels in $G \square H$. Given a level $I \in \mathscr{G}$, let

$$
p(I):=\prod_{i \in V(I)}\left(x_{i}-1\right)
$$

Example: Consider the a-level in tri \square tri. Then,

$$
p(a):=\left(z_{1 a}-1\right)\left(z_{2 a}-1\right)\left(z_{3 a}-1\right) .
$$

Vizing's Conjecture and Gröbner Bases: Case 1

G

H

$\mathrm{G} \square \mathrm{H}$

Case 1: There are $|G| \cdot|H|$ polynomials of the form:
$p(g) \cdot \prod\left(x\left[l_{i}\right]-1\right), \quad$ for each $i \in V(G)$ and each level $g \in \mathscr{G}$.
$1 \in \mathscr{G}:$
$1 \neq g$

Vizing's Conjecture and Gröbner Bases: Case 1

G

H

$\mathrm{G} \square \mathrm{H}$

Case 1: There are $|G| \cdot|H|$ polynomials of the form:
$p(g) \cdot \prod\left(x\left[l_{i}\right]-1\right), \quad$ for each $i \in V(G)$ and each level $g \in \mathscr{G}$.
$I \in \mathscr{G}:$
$l \neq g$
Example: For $g=a$-level and $i=1$, then

$$
\left(z_{1 a}-1\right)\left(z_{2 a}-1\right)\left(z_{3 a}-1\right)\left(z_{1 b}-1\right)\left(z_{1 c}-1\right)
$$

Vizing's Conjecture and Gröbner Bases: Case 2

G

H

$\mathrm{G} \square \mathrm{H}$

Notation: Let $e \in E[H]$. In $G \square H$, the lexicographic order defined for the Gröbner basis also defines a direction on the edges in $G \square H$.

Vizing's Conjecture and Gröbner Bases: Case 2

G

H

$\mathrm{G} \square \mathrm{H}$

Notation: Let $e \in E[H]$. In $G \square H$, the lexicographic order defined for the Gröbner basis also defines a direction on the edges in $G \square H$. In particular, let $h(e)$ define the G-level that where the edge originates (according to the lexicographic order), and let $t(e)$ denote the G-level where the edge terminates.

Vizing's Conjecture and Gröbner Bases: Case 2

G

H

$\mathrm{G} \square \mathrm{H}$

Notation: Let $e \in E[H]$. In $G \square H$, the lexicographic order defined for the Gröbner basis also defines a direction on the edges in $G \square H$. In particular, let $h(e)$ define the G-level that where the edge originates (according to the lexicographic order), and let $t(e)$ denote the G-level where the edge terminates.

Example: Consider the edge $e_{a c}^{\prime}$ and the c-level in tri \square tri. Then,

$$
\begin{aligned}
p(h(e)) & :=\left(z_{1 a}-1\right)\left(z_{2 a}-1\right)\left(z_{3 a}-1\right), \\
p(t(e)) & :=\left(z_{1 c}-1\right)\left(z_{2 c}-1\right)\left(z_{3 c}-1\right) .
\end{aligned}
$$

Vizing's Conjecture and Gröbner Bases: Case 2

Case 2: There are $2\|H\| \cdot|G|+2\|G\| \cdot|H|$ polynomials of the following form:
$\left(x_{e}-1\right) p(h(e)) \prod_{\substack{g \in \mathscr{G}: \\ \text { and } g \neq \mathscr{G}[t(e)] \\ g \neq \mathscr{G}(e)]]}}\left(g_{i}-1\right), \quad$ for each $e \in E(H)$ and each $i \in V(G)$
$\left(x_{e}-1\right) p(t(e)) \prod_{\substack{g \in \mathscr{G}: \\ \text { and } \\ g \neq \mathscr{G}[\mathscr{G}[t(e)]\\}}\left(g_{i}-1\right), \quad$ for each $e \in E(H)$ and each $i \in V(G)$

Vizing's Conjecture and Gröbner Bases: Case 2

G

H

$\mathrm{G} \square \mathrm{H}$

Case 2: There are $2\|H\| \cdot|G|+2\|G\| \cdot|H|$ polynomials of the following form:
$\left(x_{e}-1\right) p(h(e)) \prod_{\substack{g \in \mathscr{S}: \\ \text { and } \\ g \neq \mathscr{G}[t[t e)]}}\left(g_{i}-1\right), \quad$ for each $e \in E(H)$ and each $i \in V(G)$

$$
\left(x_{e}-1\right) p(t(e)) \quad \prod \quad\left(g_{i}-1\right), \quad \text { for each } e \in E(H) \text { and each } i \in V(G)
$$

Example: For $e=e_{a c}^{\prime}$ and $i=1$, then

$$
\begin{aligned}
& \left(e_{a c}^{\prime}-1\right)\left(z_{1 a}-1\right)\left(z_{2 a}-1\right)\left(z_{3 a}-1\right)\left(z_{1 b}-1\right), \\
& \left(e_{a c}^{\prime}-1\right)\left(z_{1 c}-1\right)\left(z_{2 c}-1\right)\left(z_{3 c}-1\right)\left(z_{1 b}-1\right) .
\end{aligned}
$$

Summary

- Introduced Vizing's conjecture (1963).

Summary

- Introduced Vizing's conjecture (1963).
- Presented a possible algebraic approach for ssolving Vizing's conjecture.

Summary

- Introduced Vizing's conjecture (1963).
- Presented a possible algebraic approach for ssolving Vizing's conjecture.
- Conjectured a graph-theoretic interpretation of the Gröbner basis of $\mathscr{P}_{G \square H}^{\prime}$ (presented only cases 1 and 2).

Summary

- Introduced Vizing's conjecture (1963).
- Presented a possible algebraic approach for ssolving Vizing's conjecture.
- Conjectured a graph-theoretic interpretation of the Gröbner basis of $\mathscr{P}_{G \square H}^{\prime}$ (presented only cases 1 and 2).

Thank you for your kind attention!
Questions, comments, thoughts and suggestions are most welcome.

