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Convex Relaxation

A classic solution technique for combinatorial
optimization is convex relaxation: enlarge the
feasible region or underestimate the objective
function to yield an optimization problem with
convex feasible region and objective function.

Convex optimization is usually ‘easy’ to solve.

The solution to the relaxation yields a lower
bound on the optimizer.

More recent idea: sometimes the relaxed
solution is optimal for the original problem for
instances constructed in a certain manner.
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Example: compressive sensing

The sparsest vector problem is: find the vector
x with the fewest number of nonzero entries
satisfying underdetermined linear equations
Ax = b.

This problem is NP-hard.

[Cf. Donoho; Candès, Romberg and Tao;
Zhang; others.] Suppose that A has the
spherical section property. Suppose also that
solution x∗ is sufficiently sparse. Then the
convex relaxation min ‖x‖1 s.t. Ax = b yields
x∗.
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Maximum clique and biclique problems

Clique: Given an undirected graph (V ,E ), find
k vertices mutually interconnected such that k
is maximized

Biclique: Given a bipartite graph (U ,V ,E ),
find a subgraph (U∗,V ∗,E ∗) containing all
possible |U∗| · |V ∗| edges such that |U∗| · |V ∗|
is maximized

Max-clique and max-biclique are both NP-hard
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Biclique reformulation as rank
minimization

Existence of an mn biclique as rank
minimization:

min rank(X )
s.t. X (i , j) ∈ [0, 1] ∀(i , j) ∈ U × V

X (i , j) = 0 ∀(i , j) ∈ (U × V )− E∑
(i ,j) X (i , j) ≥ mn

Similar formulation exists for clique
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Matrix rank minimization

Matrix rank minimization is an optimization
problem: min rank(X ) s.t. X ∈ C , where C is
a convex subset of Rm×n.

In general, the problem is NP-hard.
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Matrix rank minimization and nuclear
norm

Nuclear norm of X , written ‖X‖∗ is sum of X ’s
singular values.

Several authors, e.g., Fazel thesis (2002),
suggested nuclear norm as a relaxation of rank.
Nuclear norm is a convex function.

Recht, Fazel, Parrilo (2007) showed nuclear
norm relaxation is exact for an interesting class
of matrix rank minimization problems
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Matrix rank minimization and compressive
sensing

RFP extended compressive sensing properties
to rank minimization: If A ∈ Rm×n×p satisfies a
certain property, X̂ is sufficiently low rank, and
b = AX̂ , then X̂ can be recovered by
minimizing ‖X‖∗ subject to AX = b.

Nuclear norm minimization can be rewritten as
semidefinite programming.
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Nuclear norm relaxation

Nuclear norm relaxation of biclique:

(NNR)

min ‖X‖∗
s.t. X (i , j) ≥ 0 ∀(i , j) ∈ U × V ,

X (i , j) = 0 ∀(i , j) ∈ (U × V )− E ,∑
(i ,j) X (i , j) ≥ mn.

This relaxation is convex.
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Our results for clique

Consider an N-node graph G consisting of an
n-node clique Kn plus diversionary edges:

Up to O(n2) deterministically-placed diversionary
edges; at most O(n) Kn-vertices adjacent to any
non-Kn-vertex, or,
All nonclique edges inserted independently at
random with probability p, and N = O(n2).

Then the nuclear norm relaxation finds the
maximum clique.

Similar results for biclique.
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Optimality of deterministic result

If the adversary could place Ω(n2) diversionary
edges, he could create a new n-clique.

If the adversary could insert edges to make a
nonclique node adjacent to n clique nodes, he
could enlarge the planted clique.
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Subgradient of nuclear norm

Proof technique: show that the maximum
clique is optimal for (NNR) by showing that
KKT conditions are satisfied. Furthermore
show that optimal solution is unique.

Suppose A ∈ Rm×n has rank r and SVD
A = σ1u1vT1 + · · ·+ σrurvTr . Then φ ∈ ∂‖A‖∗
iff φ = u1vT1 + · · ·+ urvTr + W s.t. ‖W ‖ ≤ 1,
span(W ) ⊥ span{u1, . . . ,ur},
span(W T ) ⊥ span{v1, . . . , vr}.



Convex relaxation and randomized problems Clique, biclique and rank minimization KKT conditions Clustering Conclusions

KKT conditions (biclique case)

Theorem. Suppose X is a feasible rank-one matrix
X = ūv̄T , where ū, v̄ are the characteristic vectors
of U∗ ⊂ U , V ∗ ⊂ V resp, |U∗| = m, |V ∗| = n.
Then X is optimal for (NNR) iff
∃W ∈ RM×N , λ ∈ RM×N , µ ∈ R s.t.

ūv̄T√
mn

+ W = µeeT +
∑

(i ,j)∈(U×V )−E

λijeie
T
j

with ‖W ‖ ≤ 1, W T ū = 0, W v̄ = 0, µ ≥ 0. In this
case, U∗,V ∗ is an optimal solution for the max
biclique problem.

If, in addition, µ > 0 and
‖W ‖ < 1, X is the unique optimizer.
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Finding W , λ, µ

Thus, showing that (NNR) finds the optimal
biclique reduces to constructing W , λ, µ.

Our paper gives explicit formulas for W , λ, µ.

Proof that KKT conditions hold for W , λ, µ
constructed by our formulas in the case of
randomly chosen noise edges boils down to
estimating the norm of a random matrix.
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Norm of W : randomized case

Theorem (Geman, 1980). Suppose Ŵ is an
M × N random matrix with M ∼ N and with
entries chosen independently from a fixed
distribution whose mean is 0 (plus a few other
assumptions). Then with probability

exponentially close to 1, ‖Ŵ ‖ ≤ O(
√
N).

Can show W ≈ Ŵ /
√
mn.

Implies that we can take M ,N as large as
m2, n2 and still obtain ‖W ‖ ≤ 1.
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Analysis of randomization in clique case

Follows the same lines, except in place of
Geman’s theorem we require Füredi and
Komlós’s (1981) analysis of the norm of a
random symmetric matrix.

Similar result obtained: our algorithm can find
a “planted” clique of with n nodes, n(n − 1)/2
edges, in a random graph with O(n2) vertices
(and hence O(n4) edges).
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The combinatorial clustering problem

Clustering: given a sequence of data points
with known pairwise distances, group them into
clusters so that points in each cluster are closer
to each other than to points in other clusters.

Can be posed very generally as follows. Given a
graph on n data points, where edges indicate
compatibility, find a set of s disjoint cliques
that cover as many nodes as possible.

Obviously NP-hard since the s = 1 case is the
classical max clique problem.
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Our convex relaxation for combinatorial
cluster problem

maximize
∑∑

Xij

s.t. Xe ≤ e,
(SDR) trace(X ) = s,

Xij = 0 ∀(i , j) /∈ E ,
X ≥ 0 (semidefiniteness)
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Solution induced by s cliques

Suppose graph contains s disjoint cliques
C1, . . . ,Cs ; sizes c1, . . . , cs .
Then

X =



1/c1 · · · 1/c1
...

...
1/c1 · · · 1/c1

. . .
1/cs · · · 1/cs

...
...

1/cs · · · 1/cs


in which first c1 rows/cols correspond to C1,
etc, is feasible and has objective value of

∑
j cj .
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Our results

Our result (A & Vavasis, in progress) is that
the relaxation described above is exact for
combinatorial cluster problem contaminated by
noise (extra nodes and edges).

We assume the cliques are all within a constant
factor of each other; let α denote the min
clique size.

Again, two cases: deterministic noise and
random noise.
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Adversary chosen (deterministic) noise

The adversary can insert up to O(α2) noise
nodes (not in any clique) . . .

and O(α2) noise edges, provided . . .

at most O(α) noise edges incident upon any
node.

These bounds are the best possible up to
constants.
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Random noise

There may be as many as O(α2) noise nodes.

There may be as many as
√
α cliques.

Except for clique edges, each edge inserted
independently with probability p.
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Proof technique

Proof requires construction of S , the KKT
multiplier of the constraint that X is positive
semidefinite, satisfying linear constraints.

Establishing that S is PSD involves norm
bounds for its off-diagonal blocks.

Thus, as in earlier theorems, proof boils down
to finding an off-diagonal block (a matrix)
satisfying certain linear constraints whose norm
is not too large.
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Our approach to finding the dual

We parametrize the unknown matrix with a
number of parameters exactly equal to the
number of constraints. This yields a square
system of linear equations with some noise
present in the coefficients and right-hand side.

We show that the solution to this linear system
is a perturbation of an easy-to-analyze
(diagonal plus rank-one) linear system.

Finally, we use Geman to analyze the norm of
the perturbation and claim that the solution to
the perturbed system is similar to the solution
of the easy-to-analyze system.
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Conclusions and open questions

Convex relaxation can find a clique or biclique
in a graph that contains the clique and biclique
plus many diversionary edges.

If the diversionary edges are placed at random,
then the algorithm can tolerate many more of
them.

Analogous result for clustering problem.

Would be interesting to extend the technique
to other information retrieval problems, e.g.,
nonnegative matrix factorization.

Efficient and accurate solvers needed.
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