Quantum Cohomology via the Linear Sigma Model

Jock McOrist

DAMTP
University of Cambridge
0712.3272, 0810.0012

Motivation

- String compactifications are an easy route to embedding four-dimensional physics in a ten-dimensional string theory.
- Cartoon of heterotic compactification:

- At large volume, physics amounts to choice of geometry and vector bundle \mathcal{E}. Supergravity description well-studied. What about the worldsheet?

Motivation

- Standard embedding $\left(A_{\mu}=\omega_{\mu}\right)$)> we are in good shape:
- Spacetime low energy effective field theory: unbroken $E_{6} \times E_{8}$ gauge group, 27 and $\overline{27}$ matter multiplets, moduli
- Worldsheet is $(2,2)$ SCFT e.g. can compute $27^{3}, \overline{27}^{3}$ Yukawa couplings; special geometry; and mirror symmetry
- Quantum corrections are important in $(2,2)$ models:
- Lead to interesting physics. To name a few: topology change, resolution of singularities, modification of Yukawa couplings etc.
- Cohomology rings are modified -> quantum cohomology rings. Interesting mathematics \& important for considerations of mirror symmetry.
- What about quantum corrections in $(0,2)$ models?

Motivation: $(0,2)$ Compactifications

- Not known how to compute quantum corrections in many $(0,2)$ theories Lots of open questions:
- What is the moduli space of $(0,2)$ SCFTs? Where are they singular?
- What are the Yukawa couplings? What are the quantum cohomology rings?
- Is there a notion of heterotic mirror symmetry? Is there special geometry?
- We analyze these questions for $(0,2)$ models where bundle \mathcal{E} is a small deformation from TV
- A priori expectations:
- Worldsheet: Break $(2,2)$ SUSY to $(0,2)$ SUSY. How much control over dynamics do we retain?
- Spacetime: a benign deformation, wiggling the bundle. Many results (e.g. Yukawa couplings) vary smoothly with moduli
- What works for $(2,2)$ works for $(0,2)$?
- Results indicate this is the case. Even though method of proof different
- Deformations are finite, but still small. Picture is "local"

Outline

च 1. Motivation: How much do we know about the Heterotic String?
2. $(\mathbf{0}, \mathbf{2})$ GLSMs
3. A/2-Twist V-Model (toric varieties - a good warm-up)
4. A/2-Twist M-Model (Calabi-Yau's - Yukawa couplings)
5. $\mathrm{B} / 2$-Twist M-Model (LG theories)
6. Summary \& Conclusion

Our Playground: Gauged Linear Sigma Model (GLSM)

- 2D abelian gauge theory
- Why is the GLSM useful?
- GLSM quick route to generating and computing in CFTs and NLSMs
- Can do half-twist on the GLSM
- $(0,2)$ analogues of the A-model and B-model

- Compute RG invariant properties of physical theories exactly
- We will consider two classes of models:
- V-Model: Toric Variety V (e.g. \mathbb{P}^{4}) -> NLSM
- M-Model: CY Hypersurfaces in V (e.g. quintic in \mathbb{P}^{4}) -> SCFT
- $(0,2)$ Deformations come in two varieties:
- E-deformations (deforming TV of toric variety V)
- J-deformations (deformations not descending from TV)

- We'll compute the dependence of E and J in correlators, singularities

Recall the (2,2)-GLSM

- The (2,2) GLSM has an action $S=S_{\text {kin }}+S_{\mathrm{F}-\mathrm{I}}+S_{\mathrm{W}}$

$$
\begin{aligned}
S_{\mathrm{kin}} & =\int d^{2} y d^{4} \theta \sum_{i} \bar{\Phi}_{i} e^{2 \sum_{a} Q_{i, a} V_{a}} \Phi^{i}-\sum_{a=1}^{r} \frac{1}{4} \int d^{2} y d^{4} \theta \bar{\Sigma}_{a} \Sigma_{a} \\
S_{\mathrm{F}-\mathrm{I}} & =\left.\frac{1}{4 \pi} \int d^{2} y d \theta^{+} d \bar{\theta}^{-} \log \left(q_{a}\right) \Sigma_{a}\right|_{\bar{\theta}^{+}=\theta^{-}=0}+\text { h.c. } \\
S_{W} & =-\left.\int d^{2} y d^{2} \theta W(\Phi)\right|_{\bar{\theta}^{+}=\bar{\theta}^{-}=0}+\text { h.c.. }
\end{aligned}
$$

- $\mathrm{U}(1)^{r}$ abelian gauge theory $(\mathrm{a}=1, \ldots, \mathrm{r})$
- Φ^{i} homogenous coordinates of target space ($\mathrm{i}=1, \ldots, \mathrm{n}$)
- $q^{a}=e^{-2 \pi r_{a}+i \theta_{a}}$ FI parameters \Leftrightarrow Kähler moduli
- $\quad \mathrm{W}=0$: target space is toric variety (V-model)
- $W \neq 0$: superpotential induces a hypersurface (M-mode)

Review of $(0,2)$ GLSM

- Consider $(0,2)$ theories with a $(2,2)$ locus. Field content easily understood by decomposing (2,2) multiplets $\Phi_{2,2}=\underbrace{\phi+\theta^{+} \psi_{+}+\ldots}_{\Phi_{0,2}}+\underbrace{\theta^{-} \gamma_{-}-\theta^{-} \theta^{+} F+\ldots}_{\Gamma_{0,2}}$
- More generally

$(2,2)$ Field	Bosons	Fermions
Matter fields	Φ^{i}	Γ^{i}
Vector multiplet	$V_{ \pm, a}$	
Field Strength	Σ_{a}	Υ_{a}
$i=1, \ldots, n$ $\pm=1, \ldots, r$ \pm left- or right-moving		
Left-moving heterotic		

- $\Phi^{i} \Leftrightarrow$ target space coordinates $\& \Gamma^{i} \Leftrightarrow$ bundle \mathcal{E}
- Bundle fermions Γ^{i} obey a constraint: $\overline{\mathcal{D}}_{+} \Gamma^{i}=E^{i}(\Phi, \Sigma) \longleftarrow$ Holomorphic function
- $\quad E^{i}$ determines the behavior of the Γ^{i} bundle \mathcal{E}
- Gives rise to $(0,2)$ deformations
$(2,2)$
$(0,2)$

Review of $(0,2)$ GLSM

- Action for $(0,2)$ GLSM:

$$
\begin{aligned}
S_{\text {kin }} & =\int d^{2} y d^{2} \theta\left\{-\frac{1}{8 e_{0}^{2}} \bar{\Upsilon}_{a} \Upsilon_{a}-\frac{i}{2 e_{0}^{2}} \bar{\Sigma}_{a} \partial_{-} \Sigma_{a}-\frac{i}{2} \bar{\Phi}^{i}\left(\partial_{-}+i Q_{i}^{a} V_{a,-}\right) \Phi^{i}-\frac{1}{2} \bar{\Gamma}^{i} \Gamma^{i}\right\} \\
S_{\mathrm{F}-\mathrm{I}} & =\left.\frac{1}{8 \pi i} \int d^{2} y d \theta^{+} \Upsilon_{a} \log \left(q_{a}\right)\right|_{\bar{\theta}^{+}=0}+\text { h.c. }, \\
S_{F} & =\left.\int d^{2} y d \theta^{+} \Gamma^{i} J_{i}(\Phi)\right|_{\bar{\theta}^{+}=0}+\text { h.c.. } \longleftarrow \text { Matter superpotential }
\end{aligned}
$$

where $q^{a}=\exp \left(-2 \pi r_{a}+i \theta_{a}\right)$ and $J_{i}(\Phi)$ are polynomial in the Φ^{i}

- On the $(2,2)$ locus: $J_{i}=\frac{\partial W}{\partial \Phi^{2}}$.
- More generally, for $(0,2)$ supersymmetry we require $\sum_{i} E^{i} J_{i}=0$
- Consider first massive theories V-model where $J_{i}=0$ followed by M-model (CICYs) where superpotential defines hypersurface M in V .

Outline

च 1. Motivation: How much do we know about the Heterotic String?
』 2. $(0,2)$ GLSMs
3. $\mathbf{A} / \mathbf{2}$-Twist V-Model (toric varieties - a good warm-up)
4. A/2-Twist M-Model (Calabi-Yau's - Yukawa couplings)
5. $\mathrm{B} / 2$-Twist M-Model (LG theories)
6. Summary \& Conclusion

Toric Varieties - V-model

- First consider the $(0,2) \mathrm{V}$-Model, $\mathrm{W}=0$. Useful warm-up for M-modelAction splits as $S=S_{\text {kin }}+S_{\text {F-I }}$
- Bosonic potential contains D-terms: $\sum_{a=1}^{r}\left(\sum_{i} Q_{i}^{a}\left|\phi_{i}\right|^{2}-r^{a}\right)^{2}=0$
\mathbf{r}_{a} is FI parameter \sim Kähler modulus. Often write $q^{a}=e^{-2 \pi r_{a}+i \theta_{a}}$
- There exist many phases FI-parameter space (i.e. Kähler moduli space)

What's an easy way to compute?

A/2-Twisted V-Model: An Easy Route to Correlators

- For (2,2)-theories, can do an A-twist
- $\quad Q_{T}=\bar{Q}_{+}+Q_{-} \quad$ BRST operator
- Cohomology elements correspond to (1,1)-classes on V. Label them σ fields.
- Stress Energy tensor is BRST exact => observables are RG invariant
- Correlators $\left\langle\sigma_{1} \ldots \sigma_{s}\right\rangle$ may be computed by localization
- Perturbative corrections cancel
- Semi-classical analysis arbitrarily good
- Two methods:
- $<$ Higgs Branch: Summing gauge instantons
- * Coulomb branch: 1-loop potential
- How does this change for $(0,2)$?
- For $(0,2)$ theories, can do $\mathrm{A} / 2$-twist
- $\quad Q_{T}=\bar{Q}_{+}$BRST operator
- Cohomology elements are still σ
- Theory not topological. Invariant under rescalings of the worldsheet metric => observables RG invariant
- Localization still applies
- Do the two methods still apply?
- * Higgs Branch
- Koulomb Branch
- If so, some more questions:
- Where are correlators singular?
- What is their moduli dependence?

Review: Summing Gauge Instantons on $(2,2)$

- First technique: \star Higgs phase $\langle\phi\rangle \neq 0$
- General considerations imply correlator given by sum over gauge instantons

$$
\left\langle\sigma_{1} \ldots \sigma_{s}\right\rangle=\sum_{\vec{n}}\left\langle\sigma_{1} \ldots \sigma_{s}\right\rangle_{\vec{n}} \vec{q}^{\vec{n}} \longleftarrow \text { Kähler parameters }
$$

- Compute term-by-term in the instanton expansion. Correlators reduce to integration over zero modes

$$
\left\langle\sigma_{1} \ldots \sigma_{s}\right\rangle_{\vec{n}}=\int_{\mathcal{M}_{\vec{n}}}\left(\sigma_{1} \ldots \sigma_{s} \chi_{n}\right) \longleftarrow \quad \begin{aligned}
& \text { Straightforward to compute using } \\
& \text { toric geometry }
\end{aligned}
$$

- σ_{a} map to (1,1)-classes on $\mathcal{M}_{\vec{n}}$, the space of zero modes
- Matter fields $\phi^{i}: \Sigma \rightarrow V$ are holomorphic maps of degree $d_{i}=\sum_{a} Q_{i}^{a} n_{a}$
- Moduli space of maps is a toric variety: $\mathcal{M}_{\vec{n}}=\frac{\mathbb{C}^{N}-F}{\left[\mathbb{C}^{*}\right]^{n}}$
- Euler class for obstruction bundle $\chi_{\vec{n}}=\prod_{i \mid d_{i}<0} \operatorname{det}\left(\sigma_{a} Q_{i}^{a}\right)^{-1-d_{i}}$

A/2 V-Model: Summing Gauge Instantons on (0,2)

- For $(0,2)$ theories story is much the same
- Sum over instanton sectors, and answer reduces to an integral over zero modes. In instanton sector n:

$$
\left\langle\sigma_{1} \ldots \sigma_{s}\right\rangle_{\vec{n}}=\int_{\mathcal{M}_{\vec{n}}}\left(\widetilde{\sigma}_{1} \ldots \widetilde{\sigma}_{s} \widetilde{\chi}_{\vec{n}}\right) \longleftarrow \text { Now "sheafy" type objects. Hard? }
$$

- For $(2,2)$ theories, operators mapped to forms on the moduli space. Moduli space is toric \& correlators reduce to toric intersection computations
- For $(0,2)$ theories, moduli space is unchanged. Operators now map to 1-forms valued in the bundle. What is the analogue of intersection theory in $H^{*}\left(V, \mathcal{E}^{*}\right)$?
- GLSM naturally generates toric like structures. Are there toric-like methods to compute this integral?

$(0,2)$ Toric Intersection Theory

- Inspired by the $(0,2)$ GLSM, conjecture "toric" methods for $(0,2)$ theories
- Define some objects familiar to (2,2)/toric intersection theory:
- π_{i} - Grassmannian object with bundle indices
- $\tilde{\eta}_{a}$ - basis for $H^{1}\left(V, \mathcal{E}^{*}\right)$
- $\tilde{\xi}_{i}=\pi_{j} \tilde{\eta}_{a} E_{i}^{a j} \quad$ (analogous to $\xi_{i}=Q_{i}^{a} \eta_{a}$ in $(2,2)$ models)
- Analogue of Stanley-Resiner relations $\prod_{i \in F} \tilde{\xi}_{i}=0$ hold if $\tilde{\eta}_{a}=\eta_{a}$
- Normalisation of cup product: $\left[(2,2)\right.$ theories $\left.\#\left(\widetilde{\xi}_{i_{1}} \cdots \tilde{\xi}_{i_{d}}\right)=\int_{V} \tilde{\xi}_{i_{1}} \wedge \cdots \wedge \widetilde{\xi}_{i_{d}}\right]$

$$
\#\left(\widetilde{\xi}_{i_{1}} \cdots \widetilde{\xi}_{i_{d}}\right)=\#\left(\widetilde{\eta}_{a_{1}} \cdots \widetilde{\eta}_{a_{d}}\right) \#\left(\pi_{j_{1}} \cdots \pi_{j_{d}}\right) E_{i_{1}}^{a_{1} j_{1}} \cdots E_{i_{d}}^{a_{d} j_{d}}
$$

where

$$
\begin{aligned}
\#\left(\widetilde{\xi}_{i_{1}} \cdots \widetilde{\xi}_{i_{d}}\right) & =\operatorname{det}_{p} Q \\
\left.\#\left(\pi_{j_{1}} \cdots \pi_{j_{d}}\right)\right|_{p} & =\left|\operatorname{det}_{p} Q\right| \epsilon_{j_{1} \cdots j_{d} j_{d+1} \cdots j_{n}}\left[\epsilon_{i_{1} \cdots i_{d} i_{d+1} \cdots i_{n}}\right]^{2} E_{i_{d+1}}^{1, j_{d+1}} \cdots E_{i_{n}}^{r, j_{n}}
\end{aligned}
$$

- Extra fermion zero modes can result in a factor of

$$
\chi_{\vec{n}}=\prod_{i \mid d_{i}<0} \operatorname{det}\left(\widetilde{\eta}_{a} Q_{i}^{a}\right)^{-1-d_{i}}
$$

$(0,2)$ Toric Intersection Theory

- End result:

$$
\left\langle\sigma_{a_{1}} \cdots \sigma_{a_{k}}\right\rangle=\sum_{n \in \mathcal{K}^{\vee}} \#\left(\widetilde{\eta}_{a_{1}} \cdots \widetilde{\eta}_{a_{k}} \chi_{n}\right)_{\mathcal{M}_{n}} \prod_{a=1}^{r} q_{a}^{n_{a}}
$$

- Checks:
- Recover $(2,2)$ result
- $\#\left(\widetilde{\eta}_{a_{1}} \cdots \widetilde{\eta}_{a_{d}}\right)$ match the $q_{a} \rightarrow 0$ (classical) limit of Coulomb branch analysis
- Works in a number of non-trivial examples
- Thus, we have conjectured generalisation of toric interesection theory.
- Is there a mathematical proof?
- Mathematical consequences?

A/2 V-Model: Coulomb Branch

- Second technique: خCoulomb Branch
- Simple algebraic technique. Instantons are summed automatically
- Φ fields get massive and can be integrated out
- Dynamics completely determined by 1-loop superpotential

$$
\mathcal{L}_{\text {eff }}=\int d \theta^{+} \Upsilon_{a} \widetilde{J}^{a}+\text { h.c. with } \widetilde{J}^{a}=\log \left[\Pi_{\alpha}\left(\operatorname{det} M_{(\alpha)}\right)^{Q_{(\alpha)}^{a}} / q^{a}\right]
$$

't Hooft anomaly matching and holomorphy implies 1-loop result is exact

- Vacua are discrete and located at points where

$$
\Pi_{\alpha}\left(\operatorname{det} M_{(\alpha)}\right)^{Q_{(\alpha)}^{a}}=q_{a}
$$

- Correlators may be evaluated by localization

$$
\left\langle\sigma_{1} \ldots \sigma_{s}\right\rangle=\sum_{\sigma^{*}} \sigma_{1} \ldots \sigma_{s}\left[\operatorname{det}\left(\widetilde{J}_{a, b}\right) \Pi_{\alpha} \operatorname{det} M_{(\alpha)}\right]^{-1}
$$

- Reproduces answer computed on Higgs branch

Example: Resolved $\mathbb{P}_{1,1,2,2,2}^{4}$

- Compute by Coulomb branch technique and gauge instanton sum
- For example:

Get instanton expansion by expanding

$$
\begin{aligned}
\left\langle\sigma_{1}^{3} \sigma_{2}\right\rangle & =\frac{1}{D_{2}}, \\
\left\langle\sigma_{1} \sigma_{2}^{3}\right\rangle & =\frac{\epsilon_{1}^{2}+\epsilon_{2} \epsilon_{3}\left(1-2 \epsilon_{1}\right)+\left(6 \epsilon_{1}-12 \epsilon_{2} \epsilon_{3}+1\right) q_{2}+4 q_{2}^{2}}{D_{1}^{2} D_{2}}, \\
& \\
\quad \epsilon_{i} \text { are E-deformation } & D_{1}=4 q_{2}-1
\end{aligned} \quad q_{2}=e^{-2 \pi r_{2}+i \theta_{2}} \begin{array}{ll}
\text { parameters } & D_{2}=1+2 \epsilon_{1}-4 \epsilon_{2} \epsilon_{3}
\end{array}
$$

- Interesting singularity structure:
- $D_{1}=0$ Kähler singularity. Familiar from $(2,2)$
- $D_{2}=0$ Bundle singularity. Visible even when $\mathrm{q}->0$ (large radius limit)
- In $(0,2)$ parameter space -> find a new branch (mixed Coulomb-Higgs)
- Example of new structures present in the Heterotic bundle moduli space

Outline

च 1. Motivation: How much do we know about the Heterotic String?
ص 2. $(0,2)$ GLSMs
』 з. A/2-Twist V-Model
4. A/2-Twist M-Model (Calabi-Yau's - Yukawa couplings)
5. $\quad \mathrm{B} / 2$-Twist M-Model (LG theories)
6. Summary \& Conclusion

M-Model: Hypersurfaces \& Calabi-Yau's

- To construct a Calabi-Yau, we add two additional multiple $\left(\Phi^{0}, \Gamma^{0}\right)$. Then turn on a superpotential term:
$S_{J}=\left.\int d^{2} y d \theta^{+} \Gamma^{i} J_{i}(\Phi)\right|_{\bar{\theta}^{+}=0}+$ h.c..
$J_{i} \sim \frac{\partial W}{\partial \phi^{2}}$ for $(2,2)$
- Vacua:
- D-terms => matter fields Φ^{i} parameterize V
- F-terms $=>$ Imply constraints (e.g. $\mathrm{P}=0$). Defines a hypersurface $M \subset V$
- J functions give second type of (0,2)-deformations:

$$
\begin{aligned}
J_{i}=\frac{\partial W}{\partial \phi^{i}} & \rightarrow J_{i}=\frac{\partial W}{\partial \phi^{i}}+\sum a_{i j k l} \phi^{i} \phi^{j} \phi^{k} \phi^{l} \\
(2,2) & (0,2)
\end{aligned}
$$

- J-deformations correspond geometrically to wiggling the hypersurface bundle
- To summarize (0,2)-deformations in M-model:
- E-deformations from V
- J-deformations from hypersurface

A-Twist of M-Model (CY Hypersurface)

- With (2,2)-supersymmetry the M-model admits an A-twist
- Similar to V-Model (toric variety):
- $\quad Q_{T}$ cohomology given by $\sigma \leftrightarrow H^{1,1}(M)$ pullbacks of $H^{1,1}(V)$
- Localization still works: correlators reduce to an integration over moduli space
- Some important twists:
- Selection rule implies compute 3-point functions which are $\overline{27}^{3}$ Yukawa's
- Vacuum equations are those of the V -model with additional constraints e.g. $\mathrm{P}=0$
- Defines a locus $\mathcal{M}_{n ; P} \subset \mathcal{M}_{n}$. Tricky to compute gauge instantons on $\mathcal{M}_{n ; P}$ (as opposed to \mathcal{M}_{n} which is toric)
- Looks hard to compute correlators in conformal models...
- All is not lost! Superpotential is Q_{T} exact. Correlators independent of details of the hypersurface (i.e. complex structure moduli)
- Implies M-model correlators (hard) may be related to V-model correlators (easy). Made precise by the Quantum Restriction Formula:

$$
\left\langle\left\langle\sigma_{a_{1}} \cdots \sigma_{a_{d-1}}\right\rangle\right\rangle_{M}=\left\langle\sigma_{a_{1}} \cdots \sigma_{a_{d-1}} \frac{-K}{1-K}\right\rangle_{V}-K=\sum_{i=1}^{n} Q_{i}^{a} \sigma_{a}
$$

- Computations now simple! Does this work for $(0,2)$ theories?

M-Model: Quantum Restriction Formula for (0,2)

- Some a priori considerations:
- $(0,2)$ Supersymmetry => only \bar{J}_{i} BRST exact.

Are correlators independent of all J -parameters? (e.g. may be holomorphic J dependence?)

- Does the Quantum Restriction Formula still apply?
(M-model correlators reduce to V-model correlators?)
- We show it does work for $(0,2)$
- By integrating out $\left(\Phi^{0}, \Gamma^{0}\right)$ fields

$$
\left\langle\left\langle\sigma_{a_{1}} \cdots \sigma_{a_{d-1}}\right\rangle\right\rangle_{\vec{n}}=-\int D[\text { fields }]_{V ; \mathcal{M}_{n}} e^{-S_{V}} e^{-[P \bar{P}]_{0}}\left[(-K)^{1-d_{0}}+g(J, \bar{P})\right] \sigma_{a_{1}} \cdots \sigma_{a_{d-1}},
$$

- \bar{P} is BRST exact $=>$ does not formally affect correlators. Can take the limit $\bar{P} \rightarrow 0$ which implies $g(J, \bar{P}) \rightarrow 0$
- As the moduli space \& worldsheet are compact, this will not affect large field asymptotics
- Summing over instantons gives $(0,2)$ Quantum Restriction Formula

$$
\left\langle\left\langle\sigma_{a_{1}} \cdots \sigma_{a_{d-1}}\right\rangle\right\rangle_{M}=\left\langle\sigma_{a_{1}} \cdots \sigma_{a_{d-1}} \frac{-K}{1-K}\right\rangle_{V}-K=\sum_{i=1}^{n} Q_{i}^{a} \sigma_{a}
$$

- Important feature: J dropped out $=>\mathrm{A} / 2$-twisted theory is independent of complex structure and J-deformations

M-Model: Quantum Restriction Formula

- Additional comments:
- Related a M-model correlator (hard) to a V-model correlator (easy)
- This gives rise to unnormalized Yukawa couplings in the SCFT
- Can be extended to Complete Intersection Calabi-Yau's (CICY)
- Independence of J-deformations important for any mirror symmetry considerations
- Let's compute an example....

M-Model Example: CY Hypersurface in resolved $\mathbb{P}_{1,1,2,2,2}^{4}$

- Same example consider previously. Hypersurface defined using a superpotential W . On the $(2,2)$ locus W is:

$$
W=\Phi_{0} P\left(\Phi_{1}, \ldots, \Phi_{6}\right), \quad P=\left(\Phi_{1}^{8}+\Phi_{2}^{8}\right) \Phi_{6}^{4}+\Phi_{3}^{4}+\Phi_{4}^{4}+\Phi_{5}^{4}
$$

- Applying our V-model techniques and Quantum Restriction we get $\overline{27}^{3}$

Yukawas: $\quad\left\langle\left\langle\sigma_{1}^{3}\right\rangle\right\rangle=\frac{8}{D_{\epsilon}}, \quad\left\langle\left\langle\sigma_{1}^{2} \sigma_{2}\right\rangle\right\rangle=\frac{4\left(1-2^{8} q_{1}\right)}{D_{\epsilon}}$,

$$
\left\langle\left\langle\sigma_{1} \sigma_{2}^{2}\right\rangle\right\rangle=\frac{4\left(2^{10} q_{1} q_{2}-2 q_{2}+2^{8} \epsilon_{1} q_{1}+2 \epsilon_{2} \epsilon_{3}-\epsilon_{1}\right)}{\left(1-4 q_{2}\right) D_{\epsilon}}
$$

where $D_{\epsilon}=\left(1-2^{8} q_{1}\right)^{2}-2^{18} q_{1}^{2} q_{2}+2 \epsilon_{1}\left(1-2^{8} q_{1}\right)-4 \epsilon_{2} \epsilon_{3}=0$

- Interesting features:
- Kähler and bundle moduli mixing -> treated on the same footing
- Large volume limit q -> 0 -- still can get bundle moduli singularities
- Easy to parameterize locus of points where SCFT is singular:

$$
\underset{(2,2)}{\left(1-2^{8} q_{1}\right)^{2}-2^{18} q_{1}^{2} q_{2}}=0 \longrightarrow\left(1-2^{8} q_{1}\right)^{2}-2^{18} q_{1}^{2} q_{2}+2 \epsilon_{1}\left(1-2^{8} q_{1}\right)-4 \epsilon_{2} \epsilon_{3}=0
$$

Outline

च 1. Motivation: How much do we know about the Heterotic String?
』 2. $(0,2)$ GLSMs
ป 3. $\mathrm{A} / 2$-Twist V-Model (toric varieties - a good warm-up)
ป 4. A/2-Twist M-Model (Calabi-Yau's - Yukawa couplings)
5. $\mathbf{B} / \mathbf{2}-$ Twist M-Model (LG theories)
6. Summary \& Conclusion

B/2-Twisted M-Model (CY Hypersurface)

- M-Model admits a B/2-twist
- On (2,2)-locus the B-Model has the following features:
- BRST invariance => independent of Kähler parameters \& no quantum corrections
- Correlators depend holomorphically on complex structure moduli
- Observables correspond to monomials in the superpotential e.g. $\mathcal{O}=\phi^{0}\left(\phi^{i}\right)^{5}$
- Correlators compute 27^{3} Yukawa couplings
- We show these features persist for a large class of (0,2)-models:
- Fermion zero mode analysis => most models have no quantum corrections
- In addition, if there is a Landau-Ginzburg phase (eg. quintic and $\mathbb{P}_{1,1,2,2,2}^{4}$):
- Correlators do not depend E-deformations
- Reduce to a Landau-Ginzberg computation, exactly as on the $(2,2)$-locus
- Some models can not be ruled out from having instanton corrections

B/2-Twisted Model: Quantum Corrections?

- An example of a smooth M-model that is not ruled out by the zero-mode analysis. Charge matrix

$$
Q=\left(\begin{array}{cccccc}
1 & 1 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & -1 & -1
\end{array}\right)
$$

with polynomial $P=\phi_{1}^{4}+\phi_{2}^{4}+\left(\phi_{3}^{4}+\phi_{4}^{4}+\phi_{3}^{2} \phi_{4}^{2}\right) \phi_{5}^{4}+\left(\phi_{3}^{4}+\phi_{4}^{4}\right) \phi_{6}^{4}$

- Further work is needed.
- Possible resolution (inspired by E. Sharpe 2006): zero mode analysis not good enough; but path integral reduces to an exact form on a compact moduli space

B/2-Twisted M-Model: Hypersurface in Resolved $\mathbb{P}_{1,1,2,2,2}^{4}$

- Do an example. This will be illustrative of how things work in general
- M-model for Resolved $\mathbb{P}_{1,1,2,2,2}^{4}$. Is independent of quantum corrections.

Landau-Ginzburg phase: $r_{2}<0$ and $2 r_{1}+r_{2}<0$

- Consider $\left\langle\left\langle\mathcal{O}_{1} \mathcal{O}_{2} \mathcal{O}_{3}\right\rangle_{M}\right.$ where $\mathcal{O}_{a}=\phi^{0} f_{a}$, e.g. $\mathcal{O}=\phi^{0} \phi_{3}^{4} \quad \Leftrightarrow 27^{3}$ Yukawa couplings
- Take $r_{2} \sim-M^{2}$ and $2 r_{1}+r_{2} \sim-M^{2} \Leftrightarrow$ Expanding $\mathcal{L}_{G L S M}$ deep in the LG phase
- Performing some field redefinitions, we show

$$
\left\langle\mathcal{O}_{1} \mathcal{O}_{2} \mathcal{O}_{3}\right\rangle_{G L S M}=\left\langle f_{1} f_{2} f_{3}\right\rangle_{L G-O r b}
$$

- In particular, the E-parameters drop out of the correlator!
- Thus, the B/2- theory depends only on complex structure and J-deformations
- Further worked needed:
- When is there a LG phase? Reformulation of this condition, as well as selection rules in terms of combinatorial data i.e. polytopes would be a good, useful start.
- Better understanding of analogue of residue techniques for B/2-twisted models

Outline

च 1. Motivation: How much do we know about the Heterotic String?
ص 2. $(0,2)$ GLSMs
ป 3. $\mathrm{A} / 2$-Twist V-Model (toric varieties - a good warm-up)
ป 4. $\mathrm{A} / 2$-Twist M-Model (Calabi-Yau's - Yukawa couplings)
■ 5. B/2-Twist M-Model (LG theories)
6. Summary \& Conclusion

A/2-Twisted and B/2-Twisted Models: Mirrors?

- On the (2,2)-locus there is a well-developed notion of mirror symmetry. In the language of the GLSM it is quite pretty:

$$
\text { A-twisted M-model } \Longleftrightarrow \text { B-twisted W-model }
$$

- M and W are mirror Calabi-Yaus. Can be easily constructed via toric geometry (Batyrev, 1993, Borisov 1994)

$$
\text { Kähler moduli of } M \longleftrightarrow \text { complex structure moduli of } W
$$

- In the GLSM this is the 'monomial-divisor mirror-map'
- The results we've obtained here are suggestive of a natural generalization to $(0,2)$ theories:

A/2-twisted M-model $\Longleftrightarrow B / 2$-twisted W-model
Kähler + E-deformations \Longleftrightarrow Complex structure + J-deformations

- Is there a mirror map? For plain reflexive polytopes, this looks to be the case

Summary and Future Work

- We've explored some aspects of (0,2)-theories using half-twists
- Compute Yukawa couplings in a range of models via:
- $\overline{27}^{3}$ Quantum Restriction Formula via A/2-twist
- 27^{3} Classical Intersection Theory via B/2-twist
- We find the moduli space splits in a nice way:
- (Kähler + E-deformations) \Leftrightarrow (Complex Structure + J-deformations)
- Interesting bundle singularities
- Many future directions
- Understanding GLSM mirror map? How do cohomology rings map?
- Kähler potential for the matter and moduli fields (normalize couplings). Is there a generalization of special geometry?
- The most phenomenologically interesting vacua are rank 4 and rank 5 bundles. Does our analysis extend to these theories?

Outline

च 1. Motivation: How much do we know about the Heterotic String?
ص 2. $(0,2)$ GLSMs
\triangle 3. $\mathrm{A} / 2$-Twist V-Model (toric varieties - a good warm-up)

- 4. A/2-Twist M-Model (Calabi-Yau's - Yukawa couplings)
- 5. B/2-Twist M-Model (LG theories)

7 6. Summary \& Conclusion

