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Motivation

� String compactifications are an easy route to embedding four-dimensional 

physics in a ten-dimensional string theory. 

� Cartoon of heterotic compactification:

×

Aµωµ

Aµ �= ωµ
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� At large volume, physics amounts to choice of geometry and vector bundle   .   

Supergravity description well-studied. What about the worldsheet?

M6



Motivation

� Standard embedding ( Aµ = ωµ ) => we are in good shape:

� Spacetime low energy effective field theory: unbroken                 gauge group,     and        

matter multiplets, moduli 

� Worldsheet is (2,2) SCFT e.g. can compute              Yukawa couplings; special 

geometry; and mirror symmetry

� Quantum corrections are important in (2,2) models:

� Lead to interesting physics. To name a few: topology change, resolution of 

singularities, modification of Yukawa couplings etc.

E6 × E8

singularities, modification of Yukawa couplings etc.

� Cohomology rings are modified -> quantum cohomology rings. Interesting 

mathematics & important for considerations of mirror symmetry.

� What about quantum corrections in (0,2) models? 
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Motivation: (0,2) Compactifications

� Not known how to compute quantum corrections in many (0,2) theories

Lots of open questions: 

� What is the moduli space of (0,2) SCFTs? Where are they singular?

� What are the Yukawa couplings? What are the quantum cohomology rings? 

� Is there a notion of heterotic mirror symmetry? Is there special geometry?

� We analyze these questions for (0,2) models where bundle    is a small 

deformation from TV

� A priori expectations:
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� A priori expectations:

� Worldsheet: Break (2,2) SUSY to (0,2) SUSY. How much control over dynamics 

do we retain?

� Spacetime: a benign deformation, wiggling the bundle. Many results (e.g. Yukawa 

couplings) vary smoothly with moduli

� What works for (2,2) works for (0,2)?

� Results indicate this is the case. Even though method of proof different

� Deformations are finite, but still small. Picture is “local”

�
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6. Summary & Conclusion



Our Playground: Gauged Linear Sigma Model (GLSM) 

� 2D abelian gauge theory 

� Why is the GLSM useful?  

� GLSM quick route to generating and

computing in CFTs and NLSMs

� Can do half-twist on the GLSM 

� (0,2) analogues of the A-model and B-model

� Compute RG invariant properties of physical theories exactly

UV (GLSM)

IR (NLSM, CFT)

RG Flow

Hard

Easy
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� We will consider two classes of models:

� V-Model: Toric Variety V (e.g.     ) -> NLSM 

� M-Model:   CY Hypersurfaces in V (e.g. quintic in     ) -> SCFT

� (0,2) Deformations come in two varieties:

� E-deformations (deforming TV of toric variety V)

� J-deformations (deformations not descending from TV)

� We’ll compute the dependence of E and J in correlators, singularities 

V

M



Recall the (2,2)-GLSM

� The (2,2) GLSM has an action

� U(1)r    abelian gauge theory (a = 1,…,r)
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� U(1) abelian gauge theory (a = 1,…,r)

� homogenous coordinates of target space (i=1,…,n)

� FI parameters � Kähler moduli 

� W = 0: target space is toric variety (V-model) 

� W ≠ 0: superpotential induces a hypersurface  (M-model)

V

M



� Consider (0,2) theories with a (2,2) locus. Field content easily understood 

by decomposing (2,2) multiplets e.g.

� More generally

Review of (0,2) GLSM

FermionsBosons

Field Strength

Vector multiplet

Matter fields Φi Γi

V±,a

Σa Υa

i = 1, . . . , n(2,2) Field

left- or right-moving

Left-moving heterotic fermions
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� � target space coordinates &      � bundle 

� Bundle fermions       obey a constraint: 

� E    determines the behavior of the       bundle    

� Gives rise to (0,2) deformations  

Ei

D+Γ
i = Ei(Φ,Σ) Holomorphic function

Left-moving heterotic fermions

(0,2)(2,2)



Review of (0,2) GLSM

� Action for (0,2) GLSM:

Matter superpotential

where                                  and           are polynomial in the 

� On the (2,2) locus:               

� More generally, for (0,2) supersymmetry we require

� Consider first massive theories V-model where              followed by M-model 

(CICYs) where superpotential defines hypersurface M in V.  

qa = exp(−2πra + iθa) Φi
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� First consider the (0,2) V-Model, W=0. Useful warm-up for M-modelAction 

splits as

� Bosonic potential contains D-terms:

ra is FI parameter ~ Kähler modulus. Often write 

� There exist many phases FI-parameter space (i.e. Kähler moduli space)

Toric Varieties – V-model 

Higgs Branch

D-terms have solution. 

Geometric picture of toric variety V
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Coulomb Branch 
Geometric picture of toric variety V

Dynamics captured by 1-loop 

Potential Out here q -> 0 

�

classical (supergravity) limit

What’s an easy way to compute?

Lots of quantum corrections here



� For (2,2)-theories, can do an A-twist

� BRST operator

� Cohomology elements correspond to 
(1,1)-classes on V. Label them σ fields.

� Stress Energy tensor is BRST exact => 
observables are RG invariant

� Correlators                    may be 

computed by localization

� Perturbative corrections cancel

A/2-Twisted V-Model: An Easy Route to Correlators

� For (0,2) theories, can do A/2-twist

� BRST operator

� Cohomology elements are still σ

� Theory not topological. Invariant under  
rescalings of the worldsheet metric => 
observables RG invariant

� Localization still applies 
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� Semi-classical analysis arbitrarily good

� Two methods: 

� *     Higgs Branch: Summing gauge 
instantons 

� Coulomb branch: 1-loop potential 

� How does this change for (0,2)? 

� Do the two methods still apply?

� Higgs Branch

� Coulomb Branch

� If so, some more questions:

� Where are correlators singular?

� What is their moduli dependence? 



� First technique:      Higgs phase             

� General considerations imply correlator given by sum over gauge instantons

� Compute term-by-term in the instanton expansion. Correlators reduce to 

integration over zero modes 

Kähler parameters

Review: Summing Gauge Instantons on (2,2)

Straightforward to compute using 
toric geometry
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� map to (1,1)-classes on        ,  the space of zero modes

� Matter fields                     are holomorphic maps of degree 

� Moduli space of maps is a toric variety:

� Euler class for obstruction bundle

toric geometry



� For (0,2) theories story is much the same

� Sum over instanton sectors, and answer reduces to an integral over zero 

modes. In instanton sector n:

� For (2,2) theories, operators mapped to forms on the moduli space. Moduli space 

is toric & correlators reduce to toric intersection computations 

� For (0,2) theories, moduli space is unchanged. Operators now map to 1-forms 

A/2 V-Model: Summing Gauge Instantons on (0,2)

Now “sheafy” type objects. Hard?
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� For (0,2) theories, moduli space is unchanged. Operators now map to 1-forms 

valued in the bundle. What is the analogue of intersection theory in                 ?

� GLSM naturally generates toric like structures. Are there toric-like methods 

to compute this integral?



(0,2) Toric Intersection Theory

� Inspired by the (0,2) GLSM, conjecture “toric” methods for (0,2) theories 

� Define some objects familiar to (2,2)/toric intersection theory:

� – Grassmannian object with bundle indices

� – basis for 

� V                       (analogous to                    in (2,2) models)

� Analogue of Stanley-Resiner relations                   hold if  

� Normalisation of cup product: [(2,2) theories                                      ]Normalisation of cup product: [(2,2) theories                                      ]

where

� Extra fermion zero modes can result in a factor of
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(0,2) Toric Intersection Theory

� End result:

� Checks:

� Recover (2,2) result

� match the                (classical) limit of Coulomb branch analysis

� Works in a number of non-trivial examples

Thus, we have conjectured generalisation of toric interesection theory. � Thus, we have conjectured generalisation of toric interesection theory. 

� Is there a mathematical proof? 

� Mathematical consequences?
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A/2 V-Model: Coulomb Branch

� Second technique:     Coulomb Branch 

� Simple algebraic technique. Instantons are summed automatically

� fields get massive and can be integrated out

� Dynamics completely determined by 1-loop superpotential 

‘t Hooft anomaly matching and holomorphy implies 1-loop result is exact 

� Vacua are discrete and located at points where  
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� Correlators may be evaluated by localization 

� Reproduces answer computed on Higgs branch

(0,2) parameterssum over Coulomb vacua



Example: Resolved           

� Compute by Coulomb branch technique and gauge instanton sum

� For example:
Get instanton expansion by expanding 

in powers of qa

are E-deformation 

parameters
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� Interesting singularity structure:

� D          Kähler singularity. Familiar from (2,2)

� Bundle singularity. Visible even when q -> 0 (large radius limit)

� In (0,2) parameter space -> find a new branch (mixed Coulomb-Higgs) 

� Example of new structures present in the Heterotic bundle moduli space
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� To construct a Calabi-Yau, we add two additional multiplets            . Then 

turn on a superpotential term:

� Vacua:

� D-terms => matter fields      parameterize V 

M-Model: Hypersurfaces & Calabi-Yau’s

V

M

J

E

for (2,2)

Jock McOrist 20

� D-terms => matter fields      parameterize V 

� F-terms => Imply constraints (e.g. P = 0). Defines a hypersurface

� J functions give second type of (0,2)-deformations:

� J-deformations correspond geometrically to wiggling the hypersurface bundle

� To summarize (0,2)-deformations in M-model:

� E-deformations from V

� J-deformations from hypersurface

(2,2) (0,2) J-deformations (quintic)



A-Twist of M-Model (CY Hypersurface)

� With (2,2)-supersymmetry the M-model admits an A-twist

� Similar to V-Model (toric variety):

� cohomology given by                         pullbacks of      

� Localization still works: correlators reduce to an integration over moduli space

� Some important twists:

� Selection rule implies compute 3-point functions which are       Yukawa’s

� Vacuum equations are those of the V-model with additional constraints e.g. P=0

� Defines a locus                    . Tricky to compute gauge instantons on           (as 

opposed to        which is toric)
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opposed to        which is toric)

� Looks hard to compute correlators in conformal models…

� All is not lost! Superpotential is      exact. Correlators independent of details 

of the hypersurface (i.e. complex structure moduli)

� Implies M-model correlators (hard) may be related to V-model correlators 

(easy). Made precise by the Quantum Restriction Formula: 

� Computations now simple! Does this work for (0,2) theories?



M-Model: Quantum Restriction Formula for (0,2)
� Some a priori considerations:

� (0,2) Supersymmetry => only       BRST exact. 

Are correlators independent of all J-parameters? (e.g. may be holomorphic J dependence?)

� Does the Quantum Restriction Formula still apply? 

(M-model correlators reduce to V-model correlators?)

� We show it does work for (0,2)       

� By integrating out              fields
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� is BRST exact => does not formally affect correlators. Can take the limit             which 

implies                       

� As the moduli space & worldsheet are compact, this will not affect large field asymptotics

� Summing over instantons gives (0,2) Quantum Restriction Formula

� Important feature: J dropped out  => A/2-twisted theory is independent of 

complex structure and J-deformations



M-Model: Quantum Restriction Formula

� Additional comments:

� Related a M-model correlator (hard) to a V-model correlator (easy)

� This gives rise to unnormalized Yukawa couplings in the SCFT

� Can be extended to Complete Intersection Calabi-Yau’s (CICY)

� Independence of J-deformations important for any mirror symmetry 

considerations

� Let’s compute an example….
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M-Model Example: CY Hypersurface in resolved 

� Same example consider previously. Hypersurface defined using a 

superpotential W. On the (2,2) locus W is:

� Applying our V-model techniques and Quantum Restriction we get       

Yukawas: 

W = Φ0P (Φ1, . . . ,Φ6), P = (Φ81 + Φ
8
2)Φ

4
6 +Φ

4
3 + Φ

4
4 +Φ

4
5
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� Interesting features:

� Kähler and bundle moduli mixing -> treated on the same footing

� Large volume limit q -> 0 -- still can get bundle moduli singularities

� Easy to parameterize locus of points where SCFT is singular:

(1− 28q1)
2 − 218q21q2 = 0

(2,2) (0,2)
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B/2-Twisted M-Model (CY Hypersurface)

� M-Model admits a B/2-twist 

� On (2,2)-locus the B-Model has the following features: 

� BRST invariance => independent of Kähler parameters & no quantum corrections

� Correlators depend holomorphically on complex structure moduli

� Observables correspond to monomials in the superpotential e.g. 

� Correlators compute       Yukawa couplings 

� We show these features persist for a large class of (0,2)-models:

� Fermion zero mode analysis => most models have no quantum corrections

� In addition, if there is a Landau-Ginzburg phase (eg. quintic and               ):
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� In addition, if there is a Landau-Ginzburg phase (eg. quintic and               ):

� Correlators do not depend E-deformations 

� Reduce to a Landau-Ginzberg computation, exactly as on the (2,2)-locus

� Some models can not be ruled out from having instanton corrections



B/2-Twisted Model: Quantum Corrections?

� An example of a smooth M-model that is not ruled out by the zero-mode 

analysis. Charge matrix

with polynomial

� Further work is needed. 

� Possible resolution (inspired by E. Sharpe 2006): zero mode analysis not good 

enough; but path integral reduces to an exact form on a compact moduli space
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enough; but path integral reduces to an exact form on a compact moduli space



B/2-Twisted M-Model: Hypersurface in Resolved 

� Do an example. This will be illustrative of how things work in general

� M-model for Resolved             .  Is independent of quantum corrections.

Landau-Ginzburg phase:

� Consider                   where                , e.g.                  � Yukawa couplings

� Take                                               � Expanding            deep in the LG phase
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� Performing some field redefinitions, we show 

� In particular, the E-parameters drop out of the correlator! 

� Thus, the B/2- theory depends only on complex structure and J-deformations

� Further worked needed:

� When is there a LG phase? Reformulation of this condition, as well as selection rules 

in terms of combinatorial data i.e. polytopes would be a good, useful start.

� Better understanding of analogue of residue techniques for B/2-twisted models
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A/2-Twisted and B/2-Twisted Models: Mirrors?

� On the (2,2)-locus there is a well-developed notion of mirror symmetry. In the 

language of the GLSM it is quite pretty: 

A-twisted M-model              B-twisted W-model   

� M and W are mirror Calabi-Yaus.  Can be easily constructed via toric geometry 
(Batyrev, 1993, Borisov 1994)

Kähler moduli of M     complex structure moduli of W 
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� In the GLSM this is the ‘monomial-divisor mirror-map’ 

� The results we’ve obtained here are suggestive of a natural generalization to 

(0,2) theories:

A/2-twisted M-model                  B/2-twisted W-model

Kähler + E-deformations              Complex structure + J-deformations

� Is there a mirror map? For plain reflexive polytopes, this looks to be the case



Summary and Future Work

� We’ve explored some aspects of (0,2)-theories using half-twists

� Compute Yukawa couplings in a range of models via:

� Quantum Restriction Formula via A/2-twist

� Classical Intersection Theory  via B/2-twist

� We find the moduli space splits in a nice way:

(Kähler + E-deformations) � (Complex Structure + J-deformations)
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� (Kähler + E-deformations) � (Complex Structure + J-deformations)

� Interesting bundle singularities 

� Many future directions

� Understanding GLSM mirror map? How do cohomology rings map? 

� Kähler potential for the matter and moduli fields (normalize couplings). Is there a 

generalization of special geometry? 

� The most phenomenologically interesting vacua are rank 4 and rank 5 bundles. 

Does our analysis extend to these theories? 



Outline

1. Motivation: How much do we know about the Heterotic String?

2. (0,2) GLSMs

3. A/2-Twist V-Model (toric varieties – a good warm-up)

4. A/2-Twist M-Model (Calabi-Yau’s – Yukawa couplings)

5. B/2-Twist M-Model (LG theories)

Jock McOrist 32

6. Summary & Conclusion


