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Motivation

String compactifications are an easy route to embedding four-dimensional
physics in a ten-dimensional string theory.

Cartoon of heterotic compactification:

RS,l M6

At large volume, physics amounts to choice of geometry and vector bundle €.
Supergravity description well-studied. What about the worldsheet?
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Motivation

Standard embedding (A, = », ) =>we are in good shape:

o Spacetime low energy effective field theory: unbroken Eg x Eg gauge group,27 and 27
matter multiplets, moduli

o Worldsheet is (2,2) SCFT e.g. can compute 273, 27° Yukawa couplings; special
geometry; and mirror symmetry

Quantum corrections are important in (2,2) models:

o Lead to interesting physics. To name a few: topology change, resolution of
singularities, modification of Yukawa couplings etc.

o Cohomology rings are modified -> quantum cohomology rings. Interesting
mathematics & important for considerations of mirror symmetry.

What about quantum corrections in (0,2) models?
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Motivation: (0,2) Compactifications

Not known how to compute quantum corrections in many (0,2) theories

Lots of open questions:

o What is the moduli space of (0,2) SCFTs? Where are they singular?

o What are the Yukawa couplings? What are the quantum cohomology rings?
o Is there a notion of heterotic mirror symmetry? Is there special geometry?
We analyze these questions for (0,2) models where bundle £ is a small
deformation from TV

A priori expectations:

o Worldsheet: Break (2,2) SUSY to (0,2) SUSY. How much control over dynamics
do we retain?

o Spacetime: a benign deformation, wiggling the bundle. Many results (e.g. Yukawa
couplings) vary smoothly with moduli

What works for (2,2) works for (0,2)7?
o Results indicate this is the case. Even though method of proof different
o Deformations are finite, but still small. Picture is “local”

Jock McOrist 4



Outline

Motivation: How much do we know about the Heterotic String?
(0,2) GLSMs

A/2-Twist V-Model (toric varieties — a good warm-up)
A/2-Twist M-Model (Calabi-Yau’s — Yukawa couplings)
B/2-Twist M-Model (LG theories)

Summary & Conclusion

Jock McOrist



Our Playground: Gauged Linear Sigma Model (GLSM)

2D abelian gauge theory

Why is the GLSM useful?

o GLSM quick route to generating an
computing in CFTs and NLSMs

Can do half-twist on the GLSM
o (0,2) analogues of the A-model and B-model

UV (GLSM) <— Easy

d RG Flow ——

IR (NLSM, CFT) «— Hard

o Compute RG invariant properties of physical theories exactly

We will consider two classes of models:

o V-Model: Toric Variety V (e.g.PP*) -> NLSM

a0 M-Model: CY Hypersurfaces in V (e.g. quintic in P*) -> SCFT
(0,2) Deformations come in two varieties: M
o E-deformations (deforming TV of toric variety V)

o J-deformations (deformations not descending from TV)

We’ll compute the dependence of E and J in correlators, singularities
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Recall the (2,2)-GLSM

The (2,2) GLSM has an action S = Skin + Sr_1 + Sw
_ . "1 _
_ 2 44 2 Qi,aVa i 2 44
Siin = /d yd QZCI)Z-e 2 o —;Z/d yd* 0%, 5,
Sp_1 = ﬁ/d%d(?*‘dﬁ_ log(qa)Xalg+_, _, +hec.,
Sw = — / Pyd> oW (®)| o4 _5-_ +hec..

o U(1)r abelian gauge theory (a = 1,...,r)

o @' homogenous coordinates of target space (i=1,...,n)

a g% =e ?™ati% Fl pgrameters < Kéhler moduli

o W = 0: target space is toric variety (V-model)

o W # 0: superpotential induces a hypersurface (M-model)
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Review of (0,2) GLSM

Consider (0,2) theories with a (2,2) locus. Field content easily understood

by decomposing (2,2) multiplets @,

More generally
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o' < target space coordinates & I'" < bundle ¢
o Bundle fermions I'* obey a constraint: D, I'* = E*(®, X.)«— Holomorphic function
o E' determines the behavior of the I'* bundle&
o Givesrise to (0,2) deformations

0 or

(2,2)

E'~ Y Q'Y

Q7 ¢’

a

©:;0(D;)

Ty

—>
0 0

/
N
I'oo
1=1,...,n
a=1,...,r

= left- or right-moving

Left-moving heterotic fermions

(0,2)

E'~ Y, Midis,

OT’

E

Jock McOrist

©;O(D;) E 0




Review ot (0,2) GLSM

Action for (0,2) GLSM:

()

1 = — ) —i A P
Skiﬂ — /dzyd29 {_S?TaTa - Eaa—za - E(I) (8— + Z'Q?Va,—)(l)@ — §F F@} s
0

26% 2
Sp_1 = % d>ydo+ Y, log(qa)|5+_, + h.c.,
Sr = /dzyd9+FiJi(‘D)lg+:0+h-0-. < Matter superpotential

where ¢* = exp(—2nr, +i6,) and J;(®) are polynomial in the ®?

On the (2,2) locus: J; = ggﬁ-
More generally, for (0,2) supersymmetry we require >, E*J; =0

Consider first massive theories V-model where J; =0 followed by M-model
(CICYs) where superpotential defines hypersurface M in V.
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Toric Varieties — V-model

First consider the (0,2) V-Model, W=0. Useful warm-up for M-modelAction
splits as S = Skin + Sr—1
o Bosonic potential contains D-terms: - (X: Q¢lei* —r%)* =0

r,is Fl parameter ~ Kahler modulus. Often write ¢* = e7>™*

o There exist many phases Fl-parameter space (i.e. Kahler moduli space)

- n X Higgs Branch (¢) # 0
nianmmm—— | Vi / \ x D-terms have solution.
™ Geometric picture of toric variety V

Coulomb Branch (o) # 0 \ >~ \ Vi

Dynamics captured by 1-loop \

Potential ;}7/7/ - (;ut hereq->0
_____H_\___ﬁ_ !
- / classical (supergravity) limit

Lots of quantum corrections here

What’s an easy way to compute?
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For (2,2)-theories, can do an A-twist
o Qr=Q,+Q- BRST operator

o Cohomology elements correspond to
(1,1)-classes on V. Label them o fields.

o Stress Energy tensor is BRST exact =>
observables are RG invariant

Correlators (01...05) may be
computed by localization

o Perturbative corrections cancel

o Semi-classical analysis arbitrarily good
Two methods:

o % Higgs Branch: Summing gauge
instantons

o % Coulomb branch: 1-loop potential
How does this change for (0,2)?

Jock McOrist

A/2-Twisted V-Model: An Easy Route to Correlators

For (0,2) theories, can do A/2-twist
o  Qr =Q, BRST operator
o Cohomology elements are still o

o Theory not topological. Invariant under
rescalings of the worldsheet metric =>
observables RG invariant

Localization still applies
Do the two methods still apply?

o & Higgs Branch
o % Coulomb Branch

If so, some more questions:
o Where are correlators singular?
o What is their moduli dependence?
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Review: Summing Gauge Instantons on (2,2)

First technique: » Higgs phase (¢) #0
General considerations imply correlator given by sum over gauge instantons

<01 . 05> = Z—»<O’1 . Us)ﬁ (j’ﬁ'<’ Kahler parameters
T

Compute term-by-term in the instanton expansion. Correlators reduce to
integration over zero modes

I < Straightforward to compute usin
(01...05)7 = fMﬁ‘ (01 05xn) - toricgeometry " °

o, map to (1,1)-classes on M, the space of zero modes
Matter fields ¢’ : > — Vv are holomorphic maps of degree d; = >, Qinq

Moduli space of maps is a toric variety: Af. — C[g—]f

Euler class for obstruction bundle  xi = 1,4, < det(0aQ§) ' %
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A/2 V-Model: Summing Gauge Instantons on (0,2)

For (0,2) theories story is much the same

Sum over instanton sectors, and answer reduces to an integral over zero
modes. In instanton sector n:

(Ul . 0'3>ﬁ — qu (51 . 58%&») <« Now “sheafy” type objects. Hard?

o For (2,2) theories, operators mapped to forms on the moduli space. Moduli space
is toric & correlators reduce to toric intersection computations

o For (0,2) theories, moduli space is unchanged. Operators now map to 1-forms
valued in the bundle. What is the analogue of intersection theory in H*(V,£*) ?

GLSM naturally generates toric like structures. Are there toric-like methods
to compute this integral?
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(0,2) Toric Intersection Theory

Inspired by the (0,2) GLSM, conjecture “toric” methods for (0,2) theories

Define some objects familiar to (2,2)/toric intersection theory:

o T; — Grassmannian object with bundle indices
Q na — basis for H'(V, £*)
0 & =m. EY  (analogous to & = Q9n. in (2,2) models)

Analogue of Stanley-Resiner relations [, & =0 hold if 7« = 7a
Normalisation of cup product: [(2,2) theories #(51--~5m)—fvél/\-~/\5sd ]
#(g;l e ‘gid) - #(;ﬁal T ﬁad) #(le T 7'Tjat) Ea?llljl T Eaicizjd

where
(5%1 ) gzd) — deth
17.jd+1 Erajn

2
(’ﬂ'jl .. -’]Tjd)|p = ‘deth‘ €j1"'jdjd+1"'jn [€i1"'idid+1"‘in] E iar1 ... o

Extra fermion zero modes can result in a factor of

X = [ija, <o det (@) 177
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(0,2) Toric Intersection Theory

End result:
(Oay -+ 0ay) = Z #(May *** Nay Xn) M., H G
nekcy a=1
Checks:

o Recover (2,2) result

a  #(Ma, -+ May) match the g, — 0 (classical) limit of Coulomb branch analysis
o Works in a number of non-trivial examples

Thus, we have conjectured generalisation of toric interesection theory.

o Is there a mathematical proof?

o Mathematical consequences?

Jock McOrist
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A /2 V-Model: Coulomb Branch

Second technique: x Coulomb Branch
Simple algebraic technique. Instantons are summed automatically
¢ fields get massive and can be integrated out
Dynamics completely determined by 1-loop superpotential
Lo = [dOFT,J* +he. with J® = log [T, (det M) ¥ /q°]
‘t Hooft anomaly matching and holomorphy implies 1-loop result is exact

Vacua are discrete and located at points where
T, (detMa)) %™ = qq

Correlators may be evaluated by localization

" —1
<O‘1 ce O'S> = ZU* 01...05 [det(Ja,b)Ha det M(a)]

N N/

sum over Goulomb vacua (0,2) parameters

Reproduces answer computed on Higgs branch

Jock McOrist
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Example: R@SO]V@d IEDZ1’1,1,2,2,2

Compute by Coulomb branch technique and gauge instanton sum

For example: Get instanton expansion by expanding

1 in powers of g2
3 — -
(Ul 0-2> - D2 ’ /
<O’ 03> _ 6% + 6263(1 — 261) -+ (661 — 12¢e9€3 + 1)q2 - 4q3
e D2D, ’
€; are E-deformation Dy = 4g; —1 g = e 2mr2tif2
parameters Dy = 14261 —4degeg

Interesting singularity structure:

o Dy =0 Kahler singularity. Familiar from (2,2)

o D, =0 Bundle singularity. Visible even when q -> 0 (large radius limit)
In (0,2) parameter space -> find a new branch (mixed Coulomb-Higgs)
Example of new structures present in the Heterotic bundle moduli space
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M-Model: Hypersurfaces & Calabi-Yau’s

To construct a Calabi-Yau, we add two additional multiple(®°,T°) . Then
turn on a superpotential term:

S, = / Pyd0 T T (@) + hec.
M
J; ~ % for (2,2)

Vacua:
o D-terms => matter fields ®* parameterize V
o F-terms => Imply constraints (e.g. P = 0). Defines a hypersurface McV
J functions give second type of (0,2)-deformations:
d i LA
Ji = a;v — Ji = g‘;‘f + 3 i’ ¢ oF !
(2.2) (0,2) " J-deformations (quintic)

o J-deformations correspond geometrically to wiggling the hypersurface bundle
To summarize (0,2)-deformations in M-model:

o E-deformations from V
o J-deformations from hypersurface
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A-Twist of M-Model (CY Hypersurface)

With (2,2)-supersymmetry the M-model admits an A-twist

Similar to V-Model (toric variety):

2 Qr cohomology given by o < H'!'(M) pullbacks of H*!(V)

o Localization still works: correlators reduce to an integration over moduli space
Some important twists:

o Selection rule implies compute 3-point functions which are 27° Yukawa’s

o Vacuum equations are those of the V-model with additional constraints e.g. P=0

o Defines a locus M,,.;p C M,,. Tricky to compute gauge instantons on M,,.p (as
opposed to M,, which is toric)

o Looks hard to compute correlators in conformal models...

All is not lost! Superpotential is @+ exact. Correlators independent of details
of the hypersurface (i.e. complex structure moduli)

Implies M-model correlators (hard) may be related to V-model correlators
(easy). Made precise by the Quantum Restriction Formula:

—K
<<Ua1 e 'aad—1>>M = (0a, *- “Oag 1 - K

v —K = Z?:l Qi oa

Computations now simple! Does this work for (0,2) theories?
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M-Model: Quantum Restriction Formula for (0,2)

Some a priori considerations:
= (0,2) Supersymmetry => only .J, BRST exact.
Are correlators independent of all J-parameters? (e.g. may be holomorphic J dependence?)

= Does the Quantum Restriction Formula still apply?
(M-model correlators reduce to V-model correlators?)

We show it does work for (0,2)

By integrating out (®°,I'?) fields

(<0a1 e Uad—1>>ﬁ - _/D[ﬁeldS]V;Mne_Sv G_UDP}O[(_K)l_dO + g(‘L F)]O-al " 0ag_qs

= P is BRST exact => does not formally affect correlators. Can take the limit P — 0 which
implies ¢g(J, P) — 0

= As the moduli space & worldsheet are compact, this will not affect large field asymptotics

Summing over instantons gives (0,2) Quantum Restriction Formula

—K
<<Ua1 o 'aad—1>>M - (Jal "t O0ay_y 1 — K>V —K = Z?:l Q?UCL

Important feature: J dropped out => A/2-twisted theory is independent of
complex structure and J-deformations
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M-Model: Quantum Restriction Formula

Additional comments:

a

a
a
a

Related a M-model correlator (hard) to a V-model correlator (easy)
This gives rise to unnormalized Yukawa couplings in the SCFT
Can be extended to Complete Intersection Calabi-Yau’s (CICY)

Independence of J-deformations important for any mirror symmetry
considerations

Let’s compute an example....
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M-Model Example: CY Hypersurface in resolved Pi 2.

Same example consider previously. Hypersurface defined using a
superpotential W. On the (2,2) locus W is:

W =®,P(®y,...,P5), P = (d}+ 5)P; + &3+ &7+ &2

Applying our V-model techniques and Quantum Restriction we get 27°

. 8 A(1 — 28q1)
Yukawas: (o) = 5 (efor) = 5t
(ot — ATme e h 101 + 2606 — 1)
(1 46]2)D6

where D, = (1 —2%q1)? — 2%8q3qs + 2e1(1 — 23q1) — 4ege3 = 0
Interesting features:
o Kahler and bundle moduli mixing -> treated on the same footing
o Large volume limit g -> 0 -- still can get bundle moduli singularities
o Easy to parameterize locus of points where SCFT is singular:

(]. — 28(]1)2 — 218q%q2 = O — (1 — 28q1)2 — 218(]%(]2 + 261(1 — 28q1) — 46263 = O
(2,2) (0,2)
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B/2-Twisted M-Model (CY Hypersurface)

M-Model admits a B/2-twist

On (2,2)-locus the B-Model has the following features:

o BRST invariance => independent of Kahler parameters & no quantum corrections
o Correlators depend holomorphically on complex structure moduli

o Observables correspond to monomials in the superpotential e.g. O = ¢°(¢*)®

o Correlators compute 27° Yukawa couplings

We show these features persist for a large class of (0,2)-models:
o Fermion zero mode analysis => most models have no quantum corrections
o In addition, if there is a Landau-Ginzburg phase (eg. quintic and P%,l’z,z,z):
Correlators do not depend E-deformations
Reduce to a Landau-Ginzberg computation, exactly as on the (2,2)-locus
o Some models can not be ruled out from having instanton corrections
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B/2-Twisted Model: Quantum Corrections?

An example of a smooth M-model that is not ruled out by the zero-mode
analysis. Charge matrix
1 100 1 1
Q:(o 01 1 -1 —1>

with polynomial P = ¢ + ¢3 + (45 + ¢ + $307) s + (95 + 1) ¢
Further work is needed.

o Possible resolution (inspired by E. Sharpe 2006): zero mode analysis not good
enough; but path integral reduces to an exact form on a compact moduli space

Jock McOrist
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B/2-Twisted M-Model: Hypersurface in Resolved Pi; 22

Do an example. This will be illustrative of how things work in general
M-model for Resolved P}, ,,,. Is independent of quantum corrections.
Landau-Ginzburg phase: 72 <0 and 2r; +7 <0

Consider {010,03) 1 Wwhere O, =¢°f., e.9. O = ¢°¢t < 27° Yukawa couplings
Take r2 ~ —M? and 2r; +7r; ~ —M? <& Expanding Larsyv deep in the LG phase

Performing some field redefinitions, we show
(010203)arsm = (fifafs)La—or
In particular, the E-parameters drop out of the correlator!
Thus, the B/2- theory depends only on complex structure and J-deformations

Further worked needed:

o When is there a LG phase? Reformulation of this condition, as well as selection rules
in terms of combinatorial data i.e. polytopes would be a good, useful start.

o Better understanding of analogue of residue techniques for B/2-twisted models
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A /2-Twisted and B/2-Twisted Models: Mirrors?

On the (2,2)-locus there is a well-developed notion of mirror symmetry. In the
language of the GLSM it is quite pretty:

A-twisted M-model <==> B-twisted W-model

o Mand W are mirror Calabi-Yaus. Can be easily constructed via toric geometry
(Batyrev, 1993, Borisov 1994)

Kéahler moduli of M <==> complex structure moduli of W

o Inthe GLSM this is the ‘monomial-divisor mirror-map’

The results we've obtained here are suggestive of a natural generalization to
(0,2) theories:
A/2-twisted M-model <—=> B/2-twisted W-model

Kahler + E-deformations <=—=> Complex structure + J-deformations

|s there a mirror map? For plain reflexive polytopes, this looks to be the case
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Summary and Future Work

We've explored some aspects of (0,2)-theories using half-twists

Compute Yukawa couplings in a range of models via:
o 27" Quantum Restriction Formula via A/2-twist
a 27 Classical Intersection Theory via B/2-twist

We find the moduli space splits in a nice way:
o (Ké&hler + E-deformations) < (Complex Structure + J-deformations)
o Interesting bundle singularities

Many future directions
o Understanding GLSM mirror map? How do cohomology rings map?

o Kahler potential for the matter and moduli fields (normalize couplings). Is there a
generalization of special geometry?

o The most phenomenologically interesting vacua are rank 4 and rank 5 bundles.
Does our analysis extend to these theories?

Jock McOrist



N B H K K K

Outline

Motivation: How much do we know about the Heterotic String?
(0,2) GLSMs

A/2-Twist V-Model (toric varieties — a good warm-up)
A/2-Twist M-Model (Calabi-Yau’s — Yukawa couplings)
B/2-Twist M-Model (LG theories)

Summary & Conclusion

Jock McOrist

32



