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Quantum Sheaf Cohomology
Brute force computations

Relation to physical correlators

Data
(2,2) topological rings
(0,2) topological rings
Summary

A Kähler manifold X

A hermetian holomorphic bundle E satisfying

ch2(E) = ch2(TX )
det E∨ ∼= ωX

rk E ≤ 8 (if E is not a deformation of TX

Quantum Sheaf Cohomology

QH(X , E) =
⊕
p,q

Hp(X ,ΛqE∨)

along with a “quantum product”
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Quantum Sheaf Cohomology
Brute force computations

Relation to physical correlators

Data
(2,2) topological rings
(0,2) topological rings
Summary

Comes from a subset of operators in the g = 0 twisted NLSM

The (0,2) chiral ring or (0,2) topological ring.

Arises in analogy with the (2,2) chiral ring

Use the arguments of [ADE06]
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Brute force computations

Relation to physical correlators

Data
(2,2) topological rings
(0,2) topological rings
Summary

(2,2) NLSM, topologically A-twisted (an SCFT)

Two scalar supersymmetry charges Q,Q

BPS bounds on operators: for O of conformal weight (h, h),

h ≥ 0

h ≥ 0

Saturated when O is in the kernel of Q or Q:

QO = 0 ⇔ h = 0

QO = 0 ⇔ h = 0
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Quantum Sheaf Cohomology
Brute force computations

Relation to physical correlators

Data
(2,2) topological rings
(0,2) topological rings
Summary

An operator O is chiral if O ∈ ker Q ∩ ker Q

Q and Q are linear and obey Liebniz

Operator Product Expansion: in a basis for all operators

Oa(z)Ob(0) =
∑

c

fabcz
hc−ha−hbOc(0)

Oa,Ob chiral ⇒ Oa(z)Ob(0) =
∑

c

fabcOc(0)

Independent of z ⇒ the chiral ring is topological

Equivalently, Q-closed with h = 0.
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Quantum Sheaf Cohomology
Brute force computations

Relation to physical correlators

Data
(2,2) topological rings
(0,2) topological rings
Summary

(0,2) NLSM, topologically A
2 -twisted (an SCFT)

One scalar supersymmetry charge, Q

Right-moving BPS bound on operators

h ≥ 0

Saturated when O is in the kernel of Q:

QO = 0 ⇔ h = 0

Such operators are half-chiral
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Quantum Sheaf Cohomology
Brute force computations

Relation to physical correlators

Data
(2,2) topological rings
(0,2) topological rings
Summary

No left-moving supersymmetry, but we can restrict to h = 0

For half-chiral h = 0 operators,

Oa(z)Ob(0) =
∑

c

fabcz
hcOc(0)

On a compact Riemann surface, only problems come from
hc < 0. We can forbid these operators with very mild
constraints.
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Quantum Sheaf Cohomology
Brute force computations

Relation to physical correlators

Data
(2,2) topological rings
(0,2) topological rings
Summary

(0,2) NLSMs from deformations of TX

Family of half-chiral rings

Parametrize the family by α with α = 0 the (2,2) point.

α→ 0⇒ E(α)→ TX

Half-chiral operator in the (0,2) NLSM O(α)
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Quantum Sheaf Cohomology
Brute force computations

Relation to physical correlators

Data
(2,2) topological rings
(0,2) topological rings
Summary

All (0,2) NLSMs in the family conformal ⇒ spin quantization

Conformal weights satisfy h(α)− h(α) = s ∈ Z

Half-chiral ring is topological for deformations of TX
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Quantum Sheaf Cohomology
Brute force computations

Relation to physical correlators

Data
(2,2) topological rings
(0,2) topological rings
Summary

A unitary (0,2) SCFT with a left-moving U(1) symmetry
(det E∨ ∼= KX )

CFT facts imply that h ≥ − r

8
If r < 8, h ≥ 0 and the topological ring exists.
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Quantum Sheaf Cohomology
Brute force computations

Relation to physical correlators

Data
(2,2) topological rings
(0,2) topological rings
Summary

A Kähler manifold X

A bundle E satisfying

ch2(E) = ch2(TX )
det E∨ ∼= ωX

rk E ≤ 8 (if E is not a deformation of TX )

Set of h = 0 operators in ker Q as a vector space is⊕
p,q

Hp(X ,ΛqE∨)

with product structure coming from the QFT
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Quantum Sheaf Cohomology
Brute force computations

Relation to physical correlators

Idea
Toric simplifications
Example – P1 × P1

Would like to describe (0,2) topological rings

Techniques exist only for X a toric variety or subvariety

Brute-force method

Toric varieties
Bundle must be a deformation of the tangent bundle

GLSM method

Subvarieties of a toric variety
Bundle is a deformation or the cohomology of a
monad/kernel/cokernel
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Quantum Sheaf Cohomology
Brute force computations

Relation to physical correlators

Idea
Toric simplifications
Example – P1 × P1

Goal: write down generators and find relations in⊕
p,q

Hp(X ,ΛqE∨)

Compute correlation functions and deduce relations from them

〈O1 · · · Os〉 =
∑

β∈H2(X ,Z)

〈O1 · · · Os〉βqβ qβ := e i
R

β ω
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Quantum Sheaf Cohomology
Brute force computations

Relation to physical correlators

Idea
Toric simplifications
Example – P1 × P1

Compute 〈O1 · · · Os〉β by

Hp(X ,ΛqE∨)→ Hp(Mβ,Λ
qF∨) (Eric’s map)

Hp1(Mβ,Λ
q1F∨β )⊗ · · · ⊗ Hps (Mβ,Λ

qsF∨β )
•−→Hnβ (Mβ,Λ

nβF∨β )

Here nβ = dimMβ, Fβ is the induced sheaf on Mβ, and

Hnβ (Mβ,Λ
nβF∨β ) ∼= Hnβ (Mβ, ωMβ

) ∼= C

“The trace”

Quantum Sheaf Cohomology and Brute Force Techniques Josh Guffin 14/30



Quantum Sheaf Cohomology
Brute force computations

Relation to physical correlators

Idea
Toric simplifications
Example – P1 × P1

We require:

explicit cohomology theory → Čech complex
generators Oa ∈ H∗(X ,Λ∗E∨) → Euler sequence on X
Mβ → Morrison/Plesser[MRP95]
Fβ → Katz/Sharpe [KS06]

images Õa ∈ Hp(Mβ,Λ
qF∨β ) → Euler sequence on Mβ

•/trace → Lots of computer time

To find generators, we appeal to the GLSM description

(0,2) GLSM → σ → H1(X , E∨)
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Quantum Sheaf Cohomology
Brute force computations

Relation to physical correlators

Idea
Toric simplifications
Example – P1 × P1

For every toric variety X , the Euler sequence

0 −→ Or
X

E0−→
⊕
ρ

OX (Dρ) −→ TX −→ 0

induces unobstructed deformations as

0 −→ Or
X

E−→
⊕
ρ

OX (Dρ) −→ E −→ 0

Quantum Sheaf Cohomology and Brute Force Techniques Josh Guffin 16/30



Quantum Sheaf Cohomology
Brute force computations

Relation to physical correlators

Idea
Toric simplifications
Example – P1 × P1

Dualizing,

0 −→ E∨ −→
⊕
ρ

OX (−Dρ)
E t

−→Or
X −→ 0

induces the long exact sequence containing

· · · −→ H0(X ,
⊕
ρ

OX (−Dρ)) −→ H0(X ,Or
X )

−→ H1(X , E∨) −→ H1(X ,
⊕
ρ

OX (−Dρ)) −→ · · ·

and when dim X ≥ 2,

H1(X , E∨) ∼= H0(X ,Or
X ) ∼= Cr ∼= H1(X ,Ω1

X )

Quantum Sheaf Cohomology and Brute Force Techniques Josh Guffin 17/30



Quantum Sheaf Cohomology
Brute force computations

Relation to physical correlators

Idea
Toric simplifications
Example – P1 × P1

To find Õa ∈ H1(Mβ,F∨),

0 −→ F∨ −→
⊕

eρ OMβ
(−Deρ)

F t

−→Or
Mβ
−→ 0

leading via the induced long-exact sequence to

H1(Mβ,F∨) ∼= H0(Mβ,Or
Mβ

) ∼= Cr

so compute by constructing the isomorphism on Čech cochains

H1(Mβ,F∨) ∼= Cr ∼= H1(X , E∨)

Quantum Sheaf Cohomology and Brute Force Techniques Josh Guffin 18/30



Quantum Sheaf Cohomology
Brute force computations

Relation to physical correlators

Idea
Toric simplifications
Example – P1 × P1

Explicitly construct generators as Čech cochains for each Mβ

Teach a computer to cup/wedge and trace

Hp1(Mβ,Λ
q1F∨β )⊗ · · · ⊗ Hps (Mβ,Λ

qsF∨β ) • // Hnβ (Mβ,Λ
nβF∨β )

∼=
��

Hnβ (Mβ, ωMβ
)

∼=
��

C

Quantum Sheaf Cohomology and Brute Force Techniques Josh Guffin 19/30



Quantum Sheaf Cohomology
Brute force computations

Relation to physical correlators

Idea
Toric simplifications
Example – P1 × P1

Simplest example, X = P1 × P1

0 −→ O2
X

E−→OX (1, 0)2 ⊕OX (0, 1)2 −→ TX −→ 0

where

E =


x0 0
x1 0
0 y0

0 y1
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Quantum Sheaf Cohomology
Brute force computations

Relation to physical correlators

Idea
Toric simplifications
Example – P1 × P1

X = P1 × P1 unobstructed: parametrize the 6-dimensional
family of deformations as

0 −→ O2
X

E−→OX (1, 0)2 ⊕OX (0, 1)2 −→ E −→ 0

where

E =


x0 ε1x0 + ε2x1

x1 ε3x0

γ1y0 + γ2y1 y0

γ3y0 y1
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Quantum Sheaf Cohomology
Brute force computations

Relation to physical correlators

Idea
Toric simplifications
Example – P1 × P1

H1(P1 × P1, E∨) ∼= C2, find Čech reps of
(1
0

)
and

(0
1

)
: ψ, ψ̃

Compute two-point functions in degree (0,0) sector

〈ψψ〉 = 〈ψψ〉0,0 =
1

φ
(ε1 + γ1ε2ε3)

〈ψψ̃〉 = 〈ψψ̃〉0,0 =
1

φ
(γ2γ3ε2ε3 − 1)

〈ψ̃ψ̃〉 = 〈ψ̃ψ̃〉0,0 =
1

φ
(γ1 + ε1γ2γ3)

Here
φ = (γ1 + γ2γ3ε1) (ε1 + γ1ε2ε3)− (γ2γ3ε2ε3 − 1)2

No other instanton sectors contribute

Quantum Sheaf Cohomology and Brute Force Techniques Josh Guffin 22/30
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(1
0

)
and

(0
1

)
: ψ, ψ̃

Compute two-point functions in degree (0,0) sector

〈ψψ〉 = 〈ψψ〉0,0 =
1

φ
(ε1 + γ1ε2ε3)

〈ψψ̃〉 = 〈ψψ̃〉0,0 =
1

φ
(γ2γ3ε2ε3 − 1)

〈ψ̃ψ̃〉 = 〈ψ̃ψ̃〉0,0 =
1

φ
(γ1 + ε1γ2γ3)

Here
φ = (γ1 + γ2γ3ε1) (ε1 + γ1ε2ε3)− (γ2γ3ε2ε3 − 1)2

No other instanton sectors contribute
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Idea
Toric simplifications
Example – P1 × P1

Moduli space: Mi ,j = P2i+1 × P2j+1

On each Mi ,j , find Čech reps of image of ψ, ψ̃ in
H1(Mi ,j ,F∨).

Four-point functions arise from total degree 1;

〈ψψψψ〉 = 〈ψψψψ〉1,0q + 〈ψψψψ〉0,1q̃
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Idea
Toric simplifications
Example – P1 × P1

〈ψψψψ〉1,0 =
1

φ2
(ε1 + γ1ε2ε3) [γ1(ε1 + γ1ε2ε3) + 2(γ2γ3ε2ε3 − 1)]

〈ψψψψ̃〉1,0 =
1

φ2

[
(γ2γ3ε2ε3 − 1)2 + γ2γ3 (ε1 + γ1ε2ε3)2

]
〈ψψψ̃ψ̃〉1,0 =

1

φ2
(γ2γ3ε2ε3 − 1) [2 (γ1 + γ2γ3ε1)− γ1 (1− γ2γ3ε2ε3)]

〈ψψ̃ψ̃ψ̃〉1,0 =
1

φ2

[
(γ1 + γ2γ3ε1)2 + γ2γ3 (γ2γ3ε2ε3 − 1)2

]
〈ψ̃ψ̃ψ̃ψ̃〉1,0 =

−1

φ2
(γ1 + ε1γ2γ3)

[
γ1 (γ1 + γ2γ3ε1)

− 2γ2γ3 (γ2γ3ε2ε3 − 1)
]
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Idea
Toric simplifications
Example – P1 × P1

Compute up to total degree 3

Deduce relations:

ψ ∗ ψ + ε1(ψ ∗ ψ̃) − ε2ε3 (ψ̃ ∗ ψ̃) = q

ψ̃ ∗ ψ̃ + γ1(ψ ∗ ψ̃)− γ2γ3(ψ ∗ ψ) = q̃.

Compare with (2,2) Relations

ψ ∗ ψ = q

ψ̃ ∗ ψ̃ = q̃.
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Idea
Toric simplifications
Example – P1 × P1

Compare with ABS[ABS04] relations

ψ ∗ ψ + ε1(ψ ∗ ψ̃)− ε2ε3(ψ̃ ∗ ψ̃) = q

ψ̃ ∗ ψ̃ + γ1(ψ ∗ ψ̃)− γ2γ3(ψ ∗ ψ) = q̃.

ψ ∗ ψ − (ε1 − ε2)ψ ∗ ψ̃ = e it1

ψ̃ ∗ ψ̃ = e it2 .
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Consider a projective variety X , dimC X = 3, with a E a
generic deformation of TX .

〈O1O2O3〉twisted gives the holomorphic dependence on bundle
deformation parameters of the low-energy superpotential W

〈O1O2O3〉[`] gives dependence of W linear in q

If lines in X are rigid 〈O1O2O3〉[`] = 0
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Consider a generic quintic hypersurface X ⊂ P4

For all 2875 lines ` ⊂ X , a generic deformation E has
balanced splitting type:

E|` ∼= O⊕r
X

The sheaf F on M0,3(X , [`]) has no cohomology

〈O1O2O3〉[`] = 0 on an open subset of the family of
deformations, but is non-zero at the (2,2) point (E = TX )
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