# Quantum Sheaf Cohomology and Brute Force Techniques 

Josh Guffin

Banff $(0,2)$ Conference - 8 March 2010

- A Kähler manifold $X$
- A hermetian holomorphic bundle $\mathcal{E}$ satisfying
- $\mathrm{ch}_{2}(\mathcal{E})=\mathrm{ch}_{2}\left(T_{X}\right)$
- $\operatorname{det} \mathcal{E}^{\vee} \cong \omega_{X}$
- rk $\mathcal{E} \leq 8$ (if $\mathcal{E}$ is not a deformation of $T_{X}$

- A Kähler manifold $X$
- A hermetian holomorphic bundle $\mathcal{E}$ satisfying
- $\mathrm{ch}_{2}(\mathcal{E})=\mathrm{ch}_{2}\left(T_{X}\right)$
- $\operatorname{det} \mathcal{E}^{\vee} \cong \omega_{X}$
- $\mathrm{rk} \mathcal{E} \leq 8$ (if $\mathcal{E}$ is not a deformation of $T_{X}$
- Quantum Sheaf Cohomology

$$
Q H(X, \mathcal{E})=\bigoplus_{p, q} H^{p}\left(X, \Lambda^{q} \mathcal{E}^{\vee}\right)
$$

along with a "quantum product"

- Comes from a subset of operators in the $g=0$ twisted NLSM
- The $(0,2)$ chiral ring or $(0,2)$ topological ring.
- Comes from a subset of operators in the $g=0$ twisted NLSM
- The $(0,2)$ chiral ring or $(0,2)$ topological ring.
- Arises in analogy with the $(2,2)$ chiral ring
- Use the arguments of [ADE06]


## - $(2,2)$ NLSM, topologically A-twisted (an SCFT)

- $(2,2)$ NLSM, topologically A-twisted (an SCFT)
- Two scalar supersymmetry charges $Q, \bar{Q}$
- BPS bounds on operators: for $\mathcal{O}$ of conformal weight $(h, \bar{h})$,
- $(2,2)$ NLSM, topologically A-twisted (an SCFT)
- Two scalar supersymmetry charges $Q, \bar{Q}$
- BPS bounds on operators: for $\mathcal{O}$ of conformal weight $(h, \bar{h})$,

$$
\begin{aligned}
& h \geq 0 \\
& \bar{h} \geq 0
\end{aligned}
$$

- Saturated when $\mathcal{O}$ is in the kernel of $Q$ or $\bar{Q}$

- $(2,2)$ NLSM, topologically A-twisted (an SCFT)
- Two scalar supersymmetry charges $Q, \bar{Q}$
- BPS bounds on operators: for $\mathcal{O}$ of conformal weight $(h, \bar{h})$,

$$
\begin{aligned}
& h \geq 0 \\
& \bar{h} \geq 0
\end{aligned}
$$

- Saturated when $\mathcal{O}$ is in the kernel of $Q$ or $\bar{Q}$ :

$$
\begin{array}{rlll}
Q \mathcal{O} & =0 & \Leftrightarrow & h=0 \\
\bar{Q} \mathcal{O} & =0 & \Leftrightarrow & \bar{h}=0
\end{array}
$$

# - An operator $\mathcal{O}$ is chiral if $\mathcal{O} \in \operatorname{ker} Q \cap \operatorname{ker} \bar{Q}$ 

$Q$ and $\bar{Q}$ are linear and obey Liebniz
Operator Product Expansion: in a basis for all operators


- An operator $\mathcal{O}$ is chiral if $\mathcal{O} \in \operatorname{ker} Q \cap \operatorname{ker} \bar{Q}$
- $Q$ and $\bar{Q}$ are linear and obey Liebniz
- Operator Product Expansion: in a basis for all operators

- An operator $\mathcal{O}$ is chiral if $\mathcal{O} \in \operatorname{ker} Q \cap \operatorname{ker} \bar{Q}$
- $Q$ and $\bar{Q}$ are linear and obey Liebniz
- Operator Product Expansion: in a basis for all operators

$$
\mathcal{O}_{a}(z) \mathcal{O}_{b}(0)=\sum_{c} f_{a b c} z^{h_{c}-h_{a}-h_{b}} \mathcal{O}_{c}(0)
$$



- An operator $\mathcal{O}$ is chiral if $\mathcal{O} \in \operatorname{ker} Q \cap \operatorname{ker} \bar{Q}$
- $Q$ and $\bar{Q}$ are linear and obey Liebniz
- Operator Product Expansion: in a basis for all operators

$$
\mathcal{O}_{a}(z) \mathcal{O}_{b}(0)=\sum_{c} f_{a b c} z^{h_{c}-h_{a}-h_{b}} \mathcal{O}_{c}(0)
$$

- $\mathcal{O}_{a}, \mathcal{O}_{b}$ chiral $\Rightarrow \mathcal{O}_{a}(z) \mathcal{O}_{b}(0)=\sum_{c} f_{a b c} \mathcal{O}_{c}(0)$
- Independent of $z \Rightarrow$ the chiral ring is topological
- Equivalently, $\bar{Q}$-closed with $h=0$.

- An operator $\mathcal{O}$ is chiral if $\mathcal{O} \in \operatorname{ker} Q \cap \operatorname{ker} \bar{Q}$
- $Q$ and $\bar{Q}$ are linear and obey Liebniz
- Operator Product Expansion: in a basis for all operators

$$
\mathcal{O}_{a}(z) \mathcal{O}_{b}(0)=\sum_{c} f_{a b c} z^{h_{c}-h_{a}-h_{b}} \mathcal{O}_{c}(0)
$$

- $\mathcal{O}_{a}, \mathcal{O}_{b}$ chiral $\Rightarrow \mathcal{O}_{a}(z) \mathcal{O}_{b}(0)=\sum_{c} f_{a b c} \mathcal{O}_{c}(0)$
- Independent of $z \Rightarrow$ the chiral ring is topological
- An operator $\mathcal{O}$ is chiral if $\mathcal{O} \in \operatorname{ker} Q \cap \operatorname{ker} \bar{Q}$
- $Q$ and $\bar{Q}$ are linear and obey Liebniz
- Operator Product Expansion: in a basis for all operators

$$
\mathcal{O}_{a}(z) \mathcal{O}_{b}(0)=\sum_{c} f_{a b c} z^{h_{c}-h_{a}-h_{b}} \mathcal{O}_{c}(0)
$$

- $\mathcal{O}_{a}, \mathcal{O}_{b}$ chiral $\Rightarrow \mathcal{O}_{a}(z) \mathcal{O}_{b}(0)=\sum_{c} f_{a b c} \mathcal{O}_{c}(0)$
- Independent of $z \Rightarrow$ the chiral ring is topological
- Equivalently, $\bar{Q}$-closed with $h=0$.
- $(0,2)$ NLSM, topologically $\frac{A}{2}$-twisted (an SCFT)
- $(0,2)$ NLSM, topologically $\frac{A}{2}$-twisted (an SCFT)
- One scalar supersymmetry charge, $\bar{Q}$

Right-moving BPS bound on operators


- $(0,2)$ NLSM, topologically $\frac{A}{2}$-twisted (an SCFT)
- One scalar supersymmetry charge, $\bar{Q}$
- Right-moving BPS bound on operators

$$
\bar{h} \geq 0
$$

- Saturated when $\mathcal{O}$ is in the kernel of $\bar{Q}$ :
- $(0,2)$ NLSM, topologically $\frac{A}{2}$-twisted (an SCFT)
- One scalar supersymmetry charge, $\bar{Q}$
- Right-moving BPS bound on operators

$$
\bar{h} \geq 0
$$

- Saturated when $\mathcal{O}$ is in the kernel of $\bar{Q}$ :

$$
\bar{Q} \mathcal{O}=0 \quad \Leftrightarrow \quad \bar{h}=0
$$

- $(0,2)$ NLSM, topologically $\frac{A}{2}$-twisted (an SCFT)
- One scalar supersymmetry charge, $\bar{Q}$
- Right-moving BPS bound on operators

$$
\bar{h} \geq 0
$$

- Saturated when $\mathcal{O}$ is in the kernel of $\bar{Q}$ :

$$
\bar{Q} \mathcal{O}=0 \quad \Leftrightarrow \quad \bar{h}=0
$$

- Such operators are half-chiral
- No left-moving supersymmetry, but we can restrict to $h=0$

For half-chiral $h=0$ operators


## On a compact Riemann surface, only problems come from

 $h_{-}<0$. We can forhid these onerators with very mild constraints

- No left-moving supersymmetry, but we can restrict to $h=0$
- For half-chiral $h=0$ operators,

$$
\mathcal{O}_{a}(z) \mathcal{O}_{b}(0)=\sum_{c} f_{a b c} z^{h_{c}} \mathcal{O}_{c}(0)
$$

## On a compact Riemann surface, only problems come from $h_{-}<0$. We can forhid these onerators with very mild

 constraints.

- No left-moving supersymmetry, but we can restrict to $h=0$
- For half-chiral $h=0$ operators,

$$
\mathcal{O}_{a}(z) \mathcal{O}_{b}(0)=\sum_{c} f_{a b c} z^{h_{c}} \mathcal{O}_{c}(0)
$$

- On a compact Riemann surface, only problems come from $h_{c}<0$. We can forbid these operators with very mild constraints.


## - $(0,2)$ NLSMs from deformations of $T_{X}$



- $(0,2)$ NLSMs from deformations of $T_{X}$
- Family of half-chiral rings
- Parametrize the family by $\underline{\alpha}$ with $\underline{\alpha}=0$ the $(2,2)$ point.

$$
\underline{\alpha} \rightarrow 0 \Rightarrow \mathcal{E}(\underline{\alpha}) \rightarrow T_{X}
$$

- $(0,2)$ NLSMs from deformations of $T_{X}$
- Family of half-chiral rings
- Parametrize the family by $\underline{\alpha}$ with $\underline{\alpha}=0$ the $(2,2)$ point.

$$
\underline{\alpha} \rightarrow 0 \Rightarrow \mathcal{E}(\underline{\alpha}) \rightarrow T_{X}
$$

- Half-chiral operator in the $(0,2)$ NLSM $\mathcal{O}(\underline{\alpha})$
- All $(0,2)$ NLSMs in the family conformal $\Rightarrow$ spin quantization
- Conformal weights satisfy $h(\underline{\alpha})-\bar{h}(\underline{\alpha})=s \in \mathbb{Z}$

$$
\left.\begin{array}{c}
\left.\begin{array}{c}
\bar{h}(\alpha)=0 \\
h(\alpha)<0
\end{array}\right\} h(\underline{\alpha})-\bar{h}(\underline{\alpha})=1<0 \\
\theta(0)<\theta(\alpha) \\
0 \quad \underline{\alpha} \\
\bar{h}(0)=0 \\
h(0)-\bar{h}(0)=1<0
\end{array}\right\} \Rightarrow \begin{gathered}
0 \\
\begin{array}{l}
\text { VIOLATES }
\end{array} \\
h(0)<0 \\
\text { BPS Bound }
\end{gathered}
$$



- All $(0,2)$ NLSMs in the family conformal $\Rightarrow$ spin quantization
- Conformal weights satisfy $h(\underline{\alpha})-\bar{h}(\underline{\alpha})=s \in \mathbb{Z}$

$$
\begin{gathered}
\left.\begin{array}{c}
\bar{h}(\alpha)=0 \\
h(\alpha)<0
\end{array}\right\} h(\underline{\alpha})-\bar{h}(\underline{\alpha})=1<0 \\
\theta(0)<\quad \theta(\alpha) \\
0 \\
\left.\begin{array}{l}
h(0)=0 \\
h(0)-\bar{h}(0)=1<0
\end{array}\right\} \Rightarrow \begin{array}{l}
\underline{\alpha} \\
\begin{array}{l}
\text { VIOLATES BPS BOUND }
\end{array} \\
h(0)<0
\end{array}
\end{gathered}
$$

- Half-chiral ring is topological for deformations of $T_{X}$

- A unitary $(0,2)$ SCFT with a left-moving $U(1)$ symmetry $\left(\operatorname{det} \mathcal{E}^{\vee} \cong K_{X}\right)$

- A unitary $(0,2)$ SCFT with a left-moving $U(1)$ symmetry $\left(\operatorname{det} \mathcal{E}^{\vee} \cong K_{X}\right)$
- CFT facts imply that $h \geq-\frac{r}{8}$

- A unitary $(0,2)$ SCFT with a left-moving $U(1)$ symmetry $\left(\operatorname{det} \mathcal{E}^{\vee} \cong K_{X}\right)$
- CFT facts imply that $h \geq-\frac{r}{8}$
- If $r<8, h \geq 0$ and the topological ring exists.
- A Kähler manifold X
- A bundle $\mathcal{E}$ satisfying
- $\mathrm{ch}_{2}(\mathcal{E})=\mathrm{ch}_{2}\left(T_{X}\right)$
- $\operatorname{det} \mathcal{E}^{\vee} \cong \omega_{X}$
- rk $\mathcal{E} \leq 8$ (if $\mathcal{E}$ is not a deformation of $T_{X}$ )
- Set of $h=0$ operators in $\operatorname{ker} \bar{Q}$ as a vector space is

$$
\bigoplus_{p, q} H^{p}\left(X, \Lambda^{q} \mathcal{E}^{\vee}\right)
$$

with product structure coming from the QFT

- Would like to describe $(0,2)$ topological rings
- Techniques exist only for $X$ a toric variety or subvariety

$\qquad$
- Would like to describe $(0,2)$ topological rings
- Techniques exist only for $X$ a toric variety or subvariety
- Brute-force method
- Toric varieties
- Bundle must be a deformation of the tangent bundle

- Would like to describe $(0,2)$ topological rings
- Techniques exist only for $X$ a toric variety or subvariety
- Brute-force method
- Toric varieties
- Bundle must be a deformation of the tangent bundle
- GLSM method
- Subvarieties of a toric variety
- Bundle is a deformation or the cohomology of a monad/kernel/cokernel
- Goal: write down generators and find relations in

$$
\bigoplus_{0 . a} H^{p}\left(X, \Lambda^{q} \mathcal{E}^{\vee}\right)
$$

## - Compute correlation functions and deduce relations from them

- Goal: write down generators and find relations in

$$
\bigoplus_{p, q} H^{p}\left(X, \Lambda^{q} \mathcal{E}^{\vee}\right)
$$

- Compute correlation functions and deduce relations from them

$$
\left\langle\mathcal{O}_{1} \cdots \mathcal{O}_{s}\right\rangle=\sum_{\beta \in H_{2}(X, \mathbb{Z})}\left\langle\mathcal{O}_{1} \cdots \mathcal{O}_{s}\right\rangle_{\beta} q^{\beta} \quad q^{\beta}:=e^{i \int_{\beta} \omega}
$$



- Compute $\left\langle\mathcal{O}_{1} \cdots \mathcal{O}_{s}\right\rangle_{\beta}$ by

$$
\begin{aligned}
& H^{p}\left(X, \Lambda^{q} \mathcal{E}^{\vee}\right) \rightarrow H^{p}\left(\bar{M}_{\beta}, \Lambda^{q} \mathcal{F}^{\vee}\right) \quad \text { (Eric's map) } \\
& H^{p_{1}}\left(\overline{\mathcal{M}}_{\beta}, \Lambda^{q_{1}} \mathcal{F}_{\beta}^{\vee}\right) \otimes \cdots \otimes H^{p_{s}}\left(\overline{\mathcal{M}}_{\beta}, \Lambda^{q_{s}} \mathcal{F}_{\beta}^{\vee}\right) \stackrel{\bullet}{\longrightarrow} H^{n_{\beta}}\left(\overline{\mathcal{M}}_{\beta}, \Lambda^{n_{\beta}} \mathcal{F}_{\beta}^{\vee}\right)
\end{aligned}
$$

- Here $n_{\beta}=\operatorname{dim} \overline{\mathcal{M}}_{\beta}, \mathcal{F}_{\beta}$ is the induced sheaf on $\overline{\mathcal{M}}_{\beta}$, and

$$
H^{n_{\beta}}\left(\overline{\mathcal{M}}_{\beta}, \Lambda^{n_{\beta}} \mathcal{F}_{\beta}^{\vee}\right) \cong H^{n_{\beta}}\left(\overline{\mathcal{M}}_{\beta}, \omega_{\overline{\mathcal{M}}_{\beta}}\right) \cong \mathbb{C}
$$

"The trace"


- We require:
explicit cohomology theory generators $\mathcal{O}_{a} \in H^{*}\left(X, \wedge^{*} \mathcal{E}^{\vee}\right)$ $\overline{\mathcal{M}}_{\beta}$
$\mathcal{F}_{\beta}$
images $\widetilde{\mathcal{O}}_{a} \in H^{p}\left(\overline{\mathcal{M}}_{\beta}, \Lambda^{q} \mathcal{F}_{\beta}^{\vee}\right)$
- /trace

- To find generators, we appeal to the GLSM description

- We require:
explicit cohomology theory generators $\mathcal{O}_{a} \in H^{*}\left(X, \wedge^{*} \mathcal{E}^{\vee}\right)$ $\overline{\mathcal{M}}_{\beta}$
$\mathcal{F}_{\beta}$
images $\widetilde{\mathcal{O}}_{a} \in H^{p}\left(\overline{\mathcal{M}}_{\beta}, \wedge^{q} \mathcal{F}_{\beta}^{\vee}\right)$
- /trace
$\rightarrow$ Čech complex
$\rightarrow$ Euler sequence on $X$
$\rightarrow$ Morrison/Plesser[MRP95]
$\rightarrow$ Katz/Sharpe [KS06]
$\rightarrow$ Euler sequence on $\overline{\mathcal{M}}_{\beta}$
$\rightarrow$ Lots of computer time
- We require:
explicit cohomology theory generators $\mathcal{O}_{a} \in H^{*}\left(X, \wedge^{*} \mathcal{E}^{\vee}\right)$ $\overline{\mathcal{M}}_{\beta}$
$\mathcal{F}_{\beta}$
images $\widetilde{\mathcal{O}}_{a} \in H^{p}\left(\overline{\mathcal{M}}_{\beta}, \wedge^{q} \mathcal{F}_{\beta}^{\vee}\right)$
- /trace
$\rightarrow$ Čech complex
$\rightarrow$ Euler sequence on $X$
$\rightarrow$ Morrison/Plesser[MRP95]
$\rightarrow$ Katz/Sharpe [KS06]
$\rightarrow$ Euler sequence on $\overline{\mathcal{M}}_{\beta}$
$\rightarrow$ Lots of computer time
- To find generators, we appeal to the GLSM description

- We require:
explicit cohomology theory generators $\mathcal{O}_{a} \in H^{*}\left(X, \wedge^{*} \mathcal{E}^{\vee}\right)$ $\overline{\mathcal{M}}_{\beta}$
$\mathcal{F}_{\beta}$
images $\widetilde{\mathcal{O}}_{a} \in H^{p}\left(\overline{\mathcal{M}}_{\beta}, \wedge^{q} \mathcal{F}_{\beta}^{\vee}\right)$
- /trace
$\rightarrow$ Čech complex
$\rightarrow$ Euler sequence on $X$
$\rightarrow$ Morrison/Plesser[MRP95]
$\rightarrow$ Katz/Sharpe [KS06]
$\rightarrow$ Euler sequence on $\overline{\mathcal{M}}_{\beta}$
$\rightarrow$ Lots of computer time
- To find generators, we appeal to the GLSM description
- $(0,2) \mathrm{GLSM} \rightarrow \sigma \rightarrow H^{1}\left(X, \mathcal{E}^{\vee}\right)$
- For every toric variety $X$, the Euler sequence

$$
0 \longrightarrow \mathcal{O}_{X}^{r} \xrightarrow{E_{0}} \bigoplus_{\rho} \mathcal{O}_{X}\left(D_{\rho}\right) \longrightarrow T_{X} \longrightarrow 0
$$

induces unobstructed deformations as

$$
0 \longrightarrow \mathcal{O}_{X}^{r} \xrightarrow{E} \bigoplus_{\rho} \mathcal{O}_{X}\left(D_{\rho}\right) \longrightarrow \mathcal{E} \longrightarrow 0
$$

- Dualizing,

$$
0 \longrightarrow \mathcal{E}^{\vee} \longrightarrow \bigoplus_{\rho} \mathcal{O}_{X}\left(-D_{\rho}\right) \xrightarrow{E^{t}} \mathcal{O}_{X}^{r} \longrightarrow 0
$$

induces the long exact sequence containing

$$
\begin{array}{r}
\cdots \longrightarrow H^{0}\left(X, \bigoplus_{\rho} \mathcal{O}_{X}\left(-D_{\rho}\right)\right) \longrightarrow H^{0}\left(X, \mathcal{O}_{X}^{r}\right) \\
\longrightarrow H^{1}\left(X, \mathcal{E}^{\vee}\right) \longrightarrow H^{1}\left(X, \bigoplus_{\rho} \mathcal{O}_{X}\left(-D_{\rho}\right)\right) \longrightarrow \cdots
\end{array}
$$

and when $\operatorname{dim} X \geq 2$,

$$
H^{1}\left(X, \mathcal{E}^{\vee}\right) \cong H^{0}\left(X, \mathcal{O}_{X}^{r}\right) \cong \mathbb{C}^{r} \cong H^{1}\left(X, \Omega_{X}^{1}\right)
$$

- To find $\widetilde{\mathcal{O}_{a}} \in H^{1}\left(\overline{\mathcal{M}}_{\beta}, \mathcal{F}^{\vee}\right)$,

$$
0 \longrightarrow \mathcal{F}^{\vee} \longrightarrow \bigoplus_{\widetilde{\rho}} \mathcal{O}_{\overline{\mathcal{M}}_{\beta}}\left(-D_{\widetilde{\rho}}\right) \xrightarrow{F^{t}} \mathcal{O}_{\overline{\mathcal{M}}_{\beta}}^{r} \longrightarrow 0
$$

leading via the induced long-exact sequence to

$$
H^{1}\left(\overline{\mathcal{M}}_{\beta}, \mathcal{F}^{\vee}\right) \cong H^{0}\left(\overline{\mathcal{M}}_{\beta}, \mathcal{O}_{\overline{\mathcal{M}}_{\beta}}^{r}\right) \cong \mathbb{C}^{r}
$$

so compute by constructing the isomorphism on Čech cochains

$$
H^{1}\left(\overline{\mathcal{M}}_{\beta}, \mathcal{F}^{\vee}\right) \cong \mathbb{C}^{r} \cong H^{1}\left(X, \mathcal{E}^{\vee}\right)
$$



- Explicitly construct generators as Čech cochains for each $\overline{\mathcal{M}}_{\beta}$
- Teach a computer to cup/wedge and trace

$$
\begin{array}{r}
H^{p_{1}}\left(\overline{\mathcal{M}}_{\beta}, \Lambda^{q_{1}} \mathcal{F}_{\beta}^{\vee}\right) \otimes \cdots \otimes H^{p_{s}}\left(\overline{\mathcal{M}}_{\beta}, \Lambda^{q_{s}} \mathcal{F}_{\beta}^{\vee}\right) \xrightarrow{\bullet} H^{n_{\beta}}\left(\overline{\mathcal{M}}_{\beta}, \Lambda^{n_{\beta}} \mathcal{F}_{\beta}^{\vee}\right) \\
\downarrow \cong \\
H^{n_{\beta}}\left(\overline{\mathcal{M}}_{\beta}, \omega_{\overline{\mathcal{M}}_{\beta}}\right) \\
\downarrow \cong \\
\downarrow
\end{array}
$$



- Simplest example, $X=\mathbb{P}^{1} \times \mathbb{P}^{1}$

$$
0 \longrightarrow \mathcal{O}_{X}^{2} \xrightarrow{E} \mathcal{O}_{X}(1,0)^{2} \oplus \mathcal{O}_{X}(0,1)^{2} \longrightarrow T_{X} \longrightarrow 0
$$

where

$$
E=\left(\begin{array}{cc}
x_{0} & 0 \\
x_{1} & 0 \\
0 & y_{0} \\
0 & y_{1}
\end{array}\right)
$$

- $X=\mathbb{P}^{1} \times \mathbb{P}^{1}$ unobstructed: parametrize the 6-dimensional family of deformations as

$$
0 \longrightarrow \mathcal{O}_{X}^{2} \xrightarrow{E} \mathcal{O}_{X}(1,0)^{2} \oplus \mathcal{O}_{X}(0,1)^{2} \longrightarrow \mathcal{E} \longrightarrow 0
$$

where

$$
E=\left(\begin{array}{cc}
x_{0} & \epsilon_{1} x_{0}+\epsilon_{2} x_{1} \\
x_{1} & \epsilon_{3} x_{0} \\
\gamma_{1} y_{0}+\gamma_{2} y_{1} & y_{0} \\
\gamma_{3} y_{0} & y_{1}
\end{array}\right)
$$



# - $H^{1}\left(\mathbb{P}^{1} \times \mathbb{P}^{1}, \mathcal{E}^{\vee}\right) \cong \mathbb{C}^{2}$, find Čech reps of $\binom{1}{0}$ and $\binom{0}{1}: \psi, \widetilde{\psi}$ 



- $H^{1}\left(\mathbb{P}^{1} \times \mathbb{P}^{1}, \mathcal{E}^{\vee}\right) \cong \mathbb{C}^{2}$, find Čech reps of $\binom{1}{0}$ and $\binom{0}{1}: \psi, \widetilde{\psi}$
- Compute two-point functions in degree $(0,0)$ sector

$$
\begin{aligned}
\langle\psi \psi\rangle_{0,0} & =\frac{1}{\phi}\left(\epsilon_{1}+\gamma_{1} \epsilon_{2} \epsilon_{3}\right) \\
\langle\psi \widetilde{\psi}\rangle_{0,0} & =\frac{1}{\phi}\left(\gamma_{2} \gamma_{3} \epsilon_{2} \epsilon_{3}-1\right) \\
\langle\widetilde{\psi} \widetilde{\psi}\rangle_{0,0} & =\frac{1}{\phi}\left(\gamma_{1}+\epsilon_{1} \gamma_{2} \gamma_{3}\right)
\end{aligned}
$$

Here

$$
\phi=\left(\gamma_{1}+\gamma_{2} \gamma_{3} \epsilon_{1}\right)\left(\epsilon_{1}+\gamma_{1} \epsilon_{2} \epsilon_{3}\right)-\left(\gamma_{2} \gamma_{3} \epsilon_{2} \epsilon_{3}-1\right)^{2}
$$

- $H^{1}\left(\mathbb{P}^{1} \times \mathbb{P}^{1}, \mathcal{E}^{\vee}\right) \cong \mathbb{C}^{2}$, find Čech reps of $\binom{1}{0}$ and $\binom{0}{1}: \psi, \widetilde{\psi}$
- Compute two-point functions in degree $(0,0)$ sector

$$
\begin{aligned}
\langle\psi \psi\rangle & =\langle\psi \psi\rangle_{0,0}
\end{aligned}=\frac{1}{\phi}\left(\epsilon_{1}+\gamma_{1} \epsilon_{2} \epsilon_{3}\right), ~ \begin{aligned}
& \langle\psi \widetilde{\psi}\rangle=\langle\psi \widetilde{\psi}\rangle_{0,0}=\frac{1}{\phi}\left(\gamma_{2} \gamma_{3} \epsilon_{2} \epsilon_{3}-1\right) \\
& \langle\widetilde{\psi} \widetilde{\psi}\rangle=\langle\widetilde{\psi} \widetilde{\psi}\rangle_{0,0}=\frac{1}{\phi}\left(\gamma_{1}+\epsilon_{1} \gamma_{2} \gamma_{3}\right)
\end{aligned}
$$

Here

$$
\phi=\left(\gamma_{1}+\gamma_{2} \gamma_{3} \epsilon_{1}\right)\left(\epsilon_{1}+\gamma_{1} \epsilon_{2} \epsilon_{3}\right)-\left(\gamma_{2} \gamma_{3} \epsilon_{2} \epsilon_{3}-1\right)^{2}
$$

- No other instanton sectors contribute
- Moduli space: $\overline{\mathcal{M}}_{i, j}=\mathbb{P}^{2 i+1} \times \mathbb{P}^{2 j+1}$

$$
\text { Four-point functions arise from total degree } 1
$$

- Moduli space: $\overline{\mathcal{M}}_{i, j}=\mathbb{P}^{2 i+1} \times \mathbb{P}^{2 j+1}$
- On each $\overline{\mathcal{M}}_{i, j}$, find Čech reps of image of $\psi, \widetilde{\psi}$ in $H^{1}\left(\overline{\mathcal{M}}_{i, j}, \mathcal{F}^{\vee}\right)$.
- Four-point functions arise from total degree 1
- Moduli space: $\overline{\mathcal{M}}_{i, j}=\mathbb{P}^{2 i+1} \times \mathbb{P}^{2 j+1}$
- On each $\overline{\mathcal{M}}_{i, j}$, find Čech reps of image of $\psi, \widetilde{\psi}$ in $H^{1}\left(\overline{\mathcal{M}}_{i, j}, \mathcal{F}^{\vee}\right)$.
- Four-point functions arise from total degree 1 ;

$$
\langle\psi \psi \psi \psi\rangle=\langle\psi \psi \psi \psi\rangle_{1,0} q+\langle\psi \psi \psi \psi\rangle_{0,1} \widetilde{q}
$$

$$
\begin{aligned}
&\langle\psi \psi \psi \psi\rangle_{1,0}=\frac{1}{\phi^{2}}\left(\epsilon_{1}+\gamma_{1} \epsilon_{2} \epsilon_{3}\right)\left[\gamma_{1}\left(\epsilon_{1}+\gamma_{1} \epsilon_{2} \epsilon_{3}\right)+2\left(\gamma_{2} \gamma_{3} \epsilon_{2} \epsilon_{3}-1\right)\right] \\
&\langle\psi \psi \psi \widetilde{\psi}\rangle_{1,0}=\frac{1}{\phi^{2}}\left[\left(\gamma_{2} \gamma_{3} \epsilon_{2} \epsilon_{3}-1\right)^{2}+\gamma_{2} \gamma_{3}\left(\epsilon_{1}+\gamma_{1} \epsilon_{2} \epsilon_{3}\right)^{2}\right] \\
&\langle\psi \psi \widetilde{\psi} \widetilde{\psi}\rangle_{1,0}=\frac{1}{\phi^{2}}\left(\gamma_{2} \gamma_{3} \epsilon_{2} \epsilon_{3}-1\right)\left[2\left(\gamma_{1}+\gamma_{2} \gamma_{3} \epsilon_{1}\right)-\gamma_{1}\left(1-\gamma_{2} \gamma_{3} \epsilon_{2} \epsilon_{3}\right)\right] \\
&\langle\psi \widetilde{\psi} \widetilde{\psi} \widetilde{\psi}\rangle_{1,0}= \frac{1}{\phi^{2}}\left[\left(\gamma_{1}+\gamma_{2} \gamma_{3} \epsilon_{1}\right)^{2}+\gamma_{2} \gamma_{3}\left(\gamma_{2} \gamma_{3} \epsilon_{2} \epsilon_{3}-1\right)^{2}\right] \\
&\langle\widetilde{\psi} \widetilde{\psi} \widetilde{\psi} \widetilde{\psi}\rangle_{1,0}=\frac{-1}{\phi^{2}}\left(\gamma_{1}+\epsilon_{1} \gamma_{2} \gamma_{3}\right)\left[\gamma_{1}\left(\gamma_{1}+\gamma_{2} \gamma_{3} \epsilon_{1}\right)\right. \\
&\left.-2 \gamma_{2} \gamma_{3}\left(\gamma_{2} \gamma_{3} \epsilon_{2} \epsilon_{3}-1\right)\right]
\end{aligned}
$$

## - Compute up to total degree 3

## - Compare with $(2,2)$ Relations

- Compute up to total degree 3
- Deduce relations:

$$
\begin{aligned}
& \psi * \psi+\epsilon_{1}(\psi * \widetilde{\psi})-\epsilon_{2} \epsilon_{3}(\widetilde{\psi} * \widetilde{\psi})=q \\
& \widetilde{\psi} * \widetilde{\psi}+\gamma_{1}(\psi * \widetilde{\psi})-\gamma_{2} \gamma_{3}(\psi * \psi)=\widetilde{q} .
\end{aligned}
$$

- Compare with $(2,2)$ Relations
- Compute up to total degree 3
- Deduce relations:

$$
\begin{aligned}
& \psi * \psi+\epsilon_{1}(\psi * \widetilde{\psi})-\epsilon_{2} \epsilon_{3}(\widetilde{\psi} * \widetilde{\psi})=q \\
& \widetilde{\psi} * \widetilde{\psi}+\gamma_{1}(\psi * \widetilde{\psi})-\gamma_{2} \gamma_{3}(\psi * \psi)=\widetilde{q} .
\end{aligned}
$$

- Compare with $(2,2)$ Relations

$$
\begin{aligned}
& \psi * \psi=q \\
& \widetilde{\psi} * \widetilde{\psi}=\widetilde{q} .
\end{aligned}
$$



## - Compare with $\mathrm{ABS}[\mathrm{ABS} 04]$ relations

$$
\begin{array}{r}
\psi * \psi+\epsilon_{1}(\psi * \widetilde{\psi})-\epsilon_{2} \epsilon_{3}(\widetilde{\psi} * \widetilde{\psi})=q \\
\widetilde{\psi} * \widetilde{\psi}+\gamma_{1}(\psi * \widetilde{\psi})-\gamma_{2} \gamma_{3}(\psi * \psi)=\widetilde{q} \\
\psi * \psi-\left(\epsilon_{1}-\epsilon_{2}\right) \psi * \widetilde{\psi}=e^{i t_{1}} \\
\widetilde{\psi} * \widetilde{\psi}=e^{i t_{2}}
\end{array}
$$

- Consider a projective variety $X, \operatorname{dim}_{\mathbb{C}} X=3$, with a $\mathcal{E}$ a generic deformation of $T_{X}$.


## deformation parameters of the low-energy superpotential $W$

- Consider a projective variety $X, \operatorname{dim}_{\mathbb{C}} X=3$, with a $\mathcal{E}$ a generic deformation of $T_{X}$.
- $\left\langle\mathcal{O}_{1} \mathcal{O}_{2} \mathcal{O}_{3}\right\rangle_{\text {twisted }}$ gives the holomorphic dependence on bundle deformation parameters of the low-energy superpotential $W$
- Consider a projective variety $X, \operatorname{dim}_{\mathbb{C}} X=3$, with a $\mathcal{E}$ a generic deformation of $T_{X}$.
- $\left\langle\mathcal{O}_{1} \mathcal{O}_{2} \mathcal{O}_{3}\right\rangle_{\text {twisted }}$ gives the holomorphic dependence on bundle deformation parameters of the low-energy superpotential $W$
- $\left\langle\mathcal{O}_{1} \mathcal{O}_{2} \mathcal{O}_{3}\right\rangle_{[\ell]}$ gives dependence of $W$ linear in $q$
- Consider a projective variety $X, \operatorname{dim}_{\mathbb{C}} X=3$, with a $\mathcal{E}$ a generic deformation of $T_{X}$.
- $\left\langle\mathcal{O}_{1} \mathcal{O}_{2} \mathcal{O}_{3}\right\rangle_{\text {twisted }}$ gives the holomorphic dependence on bundle deformation parameters of the low-energy superpotential $W$
- $\left\langle\mathcal{O}_{1} \mathcal{O}_{2} \mathcal{O}_{3}\right\rangle_{[\ell]}$ gives dependence of $W$ linear in $q$
- If lines in $X$ are rigid $\left\langle\mathcal{O}_{1} \mathcal{O}_{2} \mathcal{O}_{3}\right\rangle_{[\ell]}=0$
- Consider a generic quintic hypersurface $X \subset \mathbb{P}^{4}$


## For all 2875 lines $\ell \subset X$, a generic deformation $\mathcal{E}$ has balanced splitting type:

## - The sheaf $\mathcal{F}$ on $\overline{\mathcal{M}}_{0,3}(X,[\ell])$ has no cohomology

- Consider a generic quintic hypersurface $X \subset \mathbb{P}^{4}$
- For all 2875 lines $\ell \subset X$, a generic deformation $\mathcal{E}$ has balanced splitting type:

$$
\left.\mathcal{E}\right|_{\ell} \cong \mathcal{O}_{X}^{\oplus r}
$$

- The sheaf $\mathcal{F}$ on $\overline{\mathcal{M}}_{0,3}(X,[\ell])$ has no cohomology

- Consider a generic quintic hypersurface $X \subset \mathbb{P}^{4}$
- For all 2875 lines $\ell \subset X$, a generic deformation $\mathcal{E}$ has balanced splitting type:

$$
\left.\mathcal{E}\right|_{\ell} \cong \mathcal{O}_{X}^{\oplus r}
$$

- The sheaf $\mathcal{F}$ on $\overline{\mathcal{M}}_{0,3}(X,[\ell])$ has no cohomology
$\square$

- Consider a generic quintic hypersurface $X \subset \mathbb{P}^{4}$
- For all 2875 lines $\ell \subset X$, a generic deformation $\mathcal{E}$ has balanced splitting type:

$$
\left.\mathcal{E}\right|_{\ell} \cong \mathcal{O}_{X}^{\oplus r}
$$

- The sheaf $\mathcal{F}$ on $\overline{\mathcal{M}}_{0,3}(X,[\ell])$ has no cohomology
- $\left\langle\mathcal{O}_{1} \mathcal{O}_{2} \mathcal{O}_{3}\right\rangle_{[\ell]}=0$ on an open subset of the family of deformations, but is non-zero at the $(2,2)$ point $\left(\mathcal{E}=T_{X}\right)$


# Quantum Sheaf Cohomology <br> Brute force computations 

## FIN

Quantum Sheaf Cohomology and Brute Force Techniques
Josh Guffin
$29 / 30$

Allan Adams，Anirban Basu，and Savdeep Sethi． $(0,2)$ duality．
Adv．Theor．Math．Phys．，7：865－950，2004，hep－th／0309226．
國 Allan Adams，Jacques Distler，and Morten Ernebjerg．
Topological heterotic rings．
Adv．Theor．Math．Phys．，10：657－682，2006，hep－th／0506263．
围 Sheldon H．Katz and Eric Sharpe．
Notes on certain $(0,2)$ correlation functions．
Commun．Math．Phys．，262：611－644，2006，hep－th／0406226．
围 David R．Morrison and M．Ronen Plesser．
Summing the instantons：Quantum cohomology and mirrow symmetry in toric varieties．
Nucl．Phys．，B440：279－354，1995，hep－th／9412236．


