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The notion of ”universality”

”Definition”

For a dynamical system/statistical system the notion of ”universal behavior” means

that a behavior occurs in a certain scaling regime and independently of the solution, or

stable under perturbations.

The notion of universality is akin to the Central limit theorem in statistics:∑N
1 Xj − NXj

σ
√

N
→ N(0, 1) (1)

where Xj are IID random variables (with finite second moment < (Xj − Xj)
2 >= σ2)

Note the scaling and the scale of the fluctuations (i.e.
√

N). We start with an

example of the Korteweg-deVries equation.
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The small–dispersion KdV equation (after Dubrovin and Claeys-Grava)

The KdV equation

ut = uux + ε
2uxxx , u(x, 0) = u0(x) rapidly decaying (2)

For ε = 0 we have Burger’s equation ut = uux, solved by the hodograph method

(characteristics), locally

f(u) = x + u t f(u) = u−1
0 (3)

It shocks at t0 = 1
max u′

0(x) .

Near the point of gradient catastrophe (x0, t0) its behavior is described in terms

of a generalization of the Painlevé I equation with critical scale ε
6
7 ;

Near the trailing edge (after the time t0) it is described by the Hastings-McLeod

solution of the Painlevé II equation y ′′(s) = sy(s) + 2y3(s) with critical scale ε
2
3 ;

Near the leading edge the behavior is described in terms of elementary function

(superposition of soliton solutions) with scale ε lnε.
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KdV-small dispersion KdV-zero dispersion = Burgers
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Focusing Nonlinear Schrödinger (NLS) equation

The focusing Nonlinear Schrödinger (NLS) equation,

iε∂tq = −ε2∂2
xq − 2|q|2q (4)

q(x, 0,ε) = A(x)eiΦ(x)/ε (5)

models self-focusing and self-modulation (optical fibers). It is integrable by inverse

scattering methods (Zakharov–Shabat). We study ε→ 0; in different regions of

spacetime, there are different asymptotic behaviors (phases) separated by breaking
curves (or nonlinear caustics).
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Figure: The case A(x) = e−x2
,Φ ′(x) = tanh x and ε = 0.03
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The tip-point of the braking curves is called a point of gradient catastrophe, or

elliptic umbilical singularity [Dubrovin-Grava-Klein].

Main goal

Leading order asymptotic q(x, t,ε) on and around the gradient catastrophe point

(x0, t0).

The behavior in the bulk is described in terms of slow

modulation of exact quasi-periodic solutions (genus
2), while outside by slow modulation equations for

the amplitude. There are (generically) two types of

transitional regions

A strip region of scale O(ε lnε) around the

breaking curves (nonlinear caustics);

a circular region of scale O(ε
4
5 ) around the

gradient catastrophe point.

O(ε
4
5)

O(ε)

Umbilical grad catastrophe

O(ε)

O(ε ln(ε))

Figure: A(x) = e−x2
,Φ′(x) = tanh x

and ε = 0.03
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Common features of transitional regions

The scale of the quasi-periodic structure in the oscillatory region is O(ε) while in the

transitional regions a different (longer) scale is typically involved; the critical
exponent of this scale depends on the region.

Around the breaking curve

“Universal” expression for the behavior of the first oscillations as we egress from the

genus zero region into the genus two one; does not depend upon the details of the

initial data, or rather, it depends on it only through a few parameters that are

explicitly computable.

The first oscillations have nonzero amplitude (ε→ 0);

they are periodic of period O(ε) in the tangential direction to the breaking

curve;

the relative correction to the amplitude is O(1) only at (discrete) distances in the

transversal direction with separation of order O(ε| lnε|)
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The gradient catastrophe point

Separating amplitude and phase

q(x, t) = b(x, t)e
i
εΦ(x,t) , U := |q|2, V =Φx (6)

the equation is recast

Ut + (UV)x = 0 , Vt + VVx − Ux +
ε2

2

(
1
2

U2
x

U2 −
Uxx

U

)
x
= 0 (7)

Neglecting the green term yields an elliptic system, with a finite lifespan; they develop

singularities in the derivatives at (x0, t0).

What is the behavior in the vicinity of (x0, t0)?
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Conjecture (Dubrovin-Grava-Klein (2007); Theorem in B.-Tovbis (2010))

Let x = x0 + ε
4
5 X , t = t0 + ε

4
5 T; then ( α := −2V + i

√
U)

U + i
√

U0V = U0 + i
√

U0V0 + ε
2
5

4ib0

C
y(v) +O(ε

3
5 ) (8)

where

v = −i

√
2i
√

U0

C

(
X + 2(i

√
U0 − 4V0)T

)
(1 +O(ε

1
5 )) (9)

and y(v) is the tritronquée solution of the Painlevé II equation

y ′′ = 6y2 − v (10) 9 / 30



The Tritronquée solution

y ′′ = 6y2 − v (11)

Theorem (Kapaev (2004))

There exists a unique solution y(v) with the
asymptotics

y =

√
e−iπ

6
v +O(v−2) , v→∞,

arg(v) ∈
[
−

6π
5

+ 0,
2π
5

− 0
]

. (12)

Such a solution has no poles for |v| large
enough in the above sector (or –equivalently–
has at most a finite number of poles within
said sector).

O(ε
1
5)

8π
5

2π
5
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Discussion

The conjecture was formulated in the genus-zero region;

Question

How far into the oscillatory region can the conjecture be pushed?
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Discussion

The conjecture was formulated in the genus-zero region;

The function y(v) has double poles in a region of the v–plane (conjecturally) contained

within a sector of with 2π
5 ; this region corresponds to the oscillatory region near the

grad. cat.

y(v) = −
1

(v − v0)2 +O(v − v0)
2 (13)

Since the correction is O(ε
2
5 y(v)) we see that

The “correction term” becomes a leading order term as v − v0 = O(ε
1
5 )

Therefore

The asymptotics is different in a region O(ε
1
5 ) around the pole in the v–plane = O(ε)

in the physical plane around a spike
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Zooming in on a peak

If we scale by ε around each peak we find the Peregrine breather

q(x, t, e) = e
i
εΦ(xp,tp)Qbr

(
x − xp,j

ε
,

t − tp,j

ε

)
(1 +O(ε

1
5 )), (14)

where the rational breather

Qbr(ξ,η) = e−2i(aξ+(2a2−b2)η)b
(

1 − 4
1 + 4ib2η

1 + 4b2(ξ+ 4aη)2 + 16b4η2

)
(15)

i∂ηQbr + ∂
2
ξQbr + 2|Qbr|

2Qbr = 0 (16)

O(ε
1
5)

8π
5

2π
5
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In our case it is obtained from the “stationary” breather

Q0
br(ξ,η) = e2iη

(
1 − 4

1 + 4iη
1 + 4ξ2 + 16η2

)
(17)

by applying the transformations (mapping solutions into solutions)

Q̃(ξ,η) = λQ(λξ,λ2η), Q̂(ξ,η) = ei(kx−k2η)Q(ξ− 2kη,η). (18)
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Ideally these peaks will get very “ sparse” near the gradient catastrophe:

Figure: A mock-up of what would happen for very small ε (location of peaks modeled
after numerics for the poles of the tritronquée)
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Summarizing: B.-Tovbis (2010)

1 poles of tritronquée ⇔ spikes of amplitude of q; can be used to find location in

spacetime of the peaks after the grad. cat.;

v(x, t, e) =
e−iπ/4

ε
4
5

√
2b
C

[δx + 2(2a + ib)δt]
(

1 +O(ε
2
5 )
)

(19)
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t0 = 0.25
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|q(0, tpeak)| ∼ 3.9256

|q(0, t0)| ∼ 1.3137

Figure: q(x, 0) = 1
cosh(x) and ε = 1

33 ; note that 3|q0| = 3.9411. In this case µ = 0 and t0 = 1
4 . The time

of the first peak (numerically 0.2800) matches the prediction from the Tritronquée (0.2791260482)

2 Height of each spike = 3|q0(x0, t0)|+O(ε1/5);

3 Universal shape

q(x, t, e) = e
i
εΦ(xp,tp)Qbr

(
x − xp,j

ε
,

t − tp,j

ε

)
(1 +O(ε

1
5 )), (20)

The two “roots” and the maximum are synchronous.

4 Away from the spikes

q(x, t, e) =
(

b − 2ε
2
5 =
(

y(v)
C

)
+O(ε

3
5 )
)
×

exp 2i
ε

[
1
2Φ(x0, t0) −

(
aδx − (2a2 − b2)δt

)
+ ε

6
5 <

(√
2i
Cb HI(v)

)]
(21)

HI =
1
2 (y ′(v))2 + vy(v) − 2y3(v). Equation (21) is consistent with the

conjecture.
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Some details on the proof

Uses inverse scattering plus nonlinear steepest descent;

Involves some new analysis for Painlevé I near a pole, following Masoero (2009);

Shows clearly that higher breaks involve the PI hierarchy.
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The g–function and the geometry of the breaking curve

The exact evolution

Initial data q(x, 0,ε) Spectral transform−→ Spectral data r(z,ε) = e−
i

2ε f0(z)

fNLS ↓ ↓ spacetime evolution

q(x, t,ε) RHP←− r(z, x, t,ε) = e−
i

2ε f(z,x,t)

f(z, x, t) := f0(z) − xz − 2tz2
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The g–function and the geometry of the breaking curve

The approximate evolution

Initial data q(x, 0,ε) Spectral transform−→ Spectral data r(z,ε) = e−
i

2ε f0(z)

fNLS ↓ ↓ spacetime evolution

q(x, t,ε) RHP←− r(z, x, t,ε) = e−
i

2ε f(z;x,t)

↓ ↓ g–function

Approx q̃(x, t,ε) Deift–Zhou nonlin. steep.st dsnt←− e
i

2ε (2g−f)

h(z; x, t) := 2g(z; x, t) − f0(z) + xz + 2tz2 (22)

The g–function then is obtained as solution of a scalar RHP on a free boundary with

the jump f(z)
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(Nonlinear) Steepest descent contour

[In the lower half plane symmetric statements]

The contour(s) of the RHP must be homologic to a contour γ = γm ∪γc where

g+(z) + g−(z) = f(z; x, t) for z ∈ γm (blue contour);

g(z) is analytic off γm;

h(z; x, t) := 2g(z; x, t) − f(z; x, t) is such that =h < 0 on both sides of γm;

=h(z) > 0 on γc (black contour).
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Singularity Theory

Generically in (x, t) we have

h(z; x, t) = C0(x, t)(z −α)
3
2 + C1(x, t)(z −α)

5
2 + . . . (23)

C0 =

√
α−α

3π

∮
f ′(ζ)dζ

(ζ−α)(R(ζ)+
(24)

At the g.c. point (x0, t0) we have C0 = 0;

h(z; x, t) = (z −α)
5
2 (C1(x, t) + . . .) (25)

C1 =
2
√
α−α

15π

∮
f ′′(ζ)dζ

(ζ−α)(R(ζ)+
(26)

In a neighborhood of (x0, t0) C0 is a deformation (unfolding) of the critical point.
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Theorem

We can find a conformal change of coordinate and an analytic function τ of C0 s.t.

i
ε

h(z; x, t) =
4
5
ζ

5
2 + τ(x, t)ζ

3
2 (27)

v :=
3
8
τ2(x, t;ε) = −i

√
α0 −α0

5

√
4

5C1

(
δx + 2(α0 + a0)δt

ε
4
5

)
(1 +Oε

2
5 ) (28)

C1 =
2
√
α−α

15π

∮
f ′′(ζ)dζ

(ζ−α)(R(ζ)+
(29)

This expression travel its way to the phase of the PI ψ function
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Parametrix with poles

Using the nonlinear steepest descent:
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Parametrix with poles

Using the nonlinear steepest descent:

α

[
0 1
−1 0

]
[

1 −e−
2i
ε

h

0 1

]

[
1 −e−

2i
ε

h

0 1

][
1 0

−e
2i
ε

h 1

]
1

Figure: The jumps for the RHP for Y. The shaded region is where =h < 0 (the “sea”).
The blue contour is the main arc, the black contour is the complementary arc.

Near the point α we need to solve the RHP in exact form (−→ Painlevé I)
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The Painlevé I Riemann–Hilbert problem.

Problem (Painlevé 1 RHP (Kapaev))

The matrix P(ξ; v) is locally bounded,
admits boundary values on the rays shown
in Fig. 5 and satisfies

P+ = P−M,

P(ξ) =
ξσ3/4
√

2

[
1 −i
1 i

](
I +

HIσ3√
ξ

+ . . .
)

,

HI =
1
2
(y ′)2 + v y − 2y3 =

∫
y(v)dv

[
1 0

β2e−2ϑ 1

]

3

2

1

0
-1

-2

[
0 −1
1 0

]

[
1 0

β−2e−2ϑ 1

]

[
1 β1e2ϑ

0 1

]

[
1 0

β0e−2ϑ 1

]

[
1 β−1e2ϑ

0 1

]

Figure: ϑ := ϑ(ξ; v) := 4
5ξ

5
2 − vξ

1
2 .

1 +β0β1 = −β−2, 1 +β0β−1 = −β2, 1 +β−2β−1 = β1, (30)

For exceptional values of v the RHP has no solution ; these values correspond to

(double) poles of y(v)
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Tritronqées solutions

They correspond to (cyclic permutations of)

β−1 = 0 = β0 β1 = 1 = −β2 = −β−2 (31)

3

2

1

0
-1

-2

[
0 −1
1 0

]
[

1 0
−e−2ϑ 1

]

[
1 0

−e−2ϑ 1

]

[
1 e2ϑ

0 1

]

α

[
0 1
−1 0

]
[

1 −e−
2i
ε

h

0 1

]

[
1 −e−

2i
ε

h

0 1

][
1 0

−e
2i
ε

h 1

]
1

Figure: ϑ := ϑ(ξ; v) := 4
5ξ

5
2 − vξ

1
2 .
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Painlevé I near a pole

For exceptional values of v the RHP has no solution , i.e. P(ξ; v) has a pole; these

values correspond to (double) poles of y(v).

In a neighborhood of v = v0 a pole of y(v) (Masoero (2009))

P̂(ξ; v) := G(ξ; v)P(ξ; v), (32)

G(ξ; v) :=

[
0 1

1 − 1
2

(
y ′ + 1

2(ξ−y)

) ]
(ξ− y)σ3/2.

has no pole!
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We need some information of how the solution P becomes P̂, i.e. some asymptotics

valid for both ξ and y large;

Theorem (B.-Tovbis 2010)

P̂(ξ, v) = ξ−
3
4σ3

1√
2

[1 i
1 −i

]
+O

ξ− 1
2 , y−4, e

−p2
|y|5/2

|ξ0|
5/2

( √ξ+
√y√

ξ− y

)σ3

The blue term is crucial: if ξ, y are of the same order then it is not the identity

matrix; it forces modifications of the model-parametrix.

The exponent − 3
4σ3 is responsible for the amplitude at the top of the peak; the three

comes from the shearing of the ODE (Cubic Schrödinger)

f ′′(ξ) −
(

2ξ3 − v0ξ− 14β
)

f(ξ) = 0 (33)
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Modified Model parametrix

To match the behavior of the parametrix

P̂(ξ, v) = ξ−
3
4σ3

1√
2

[
1 i
1 −i

]
(1 + . . .) (34)

we need a different Model problem because of the exponent 3
4

Schlesinger chain

ΨK(z) :=
1
2

[
−i −1
1 i

](
z −α
z −α

)( 1
4 −K)σ3

[
i 1

−1 −i

]
, K ∈ Z, (35)

are related by a left-multiplication by a rational matrix

ΨK(z) = RK(z)Ψ0(z), (36)
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Modified Model parametrix

Schlesinger chain

ΨK(z) :=
1
2

[
−i −1
1 i

](
z −α
z −α

)( 1
4 −K)σ3

[
i 1

−1 −i

]
, K ∈ Z, (34)

1 K = 0 ↔ Airy Parametrix/PI(1) away from pole;

2 K = 1 ↔ PI(1) at the pole (− 3
4σ3);

3 K = −1 ↔ PI(2) at the pole ( 5
4σ3);

4 K = 2 ↔ PI(3) at the pole (− 7
4σ3);

5 K = −2 ↔ PI(4) at the pole ( 9
4σ3);

6 etc.
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Approximation and Error

P1;α(z) =
1√

2

[
1 −1
i i

]
ζ

3
4σ3 P̂

(
ζ+

τ

2
;

3
8
τ2
)[

0 1
−1 0

]
e(

i
ε h−ϑ)σ3 , (35)

Y(z) =


E(z)Ψ1(z) for z outside of the disks Dα,Dα,

E(z)Ψ1(z)P1;α(z) for z inside of the disk Dα,

E(z)Ψ1(z)P1;α(z) for z inside of the disk Dα.

(36)

The jump of E(z) on the boundary is (leading term)

E+ = E−Ψ1

( √
1 − ζ/y

1 +
√
ζ/y

)σ3

Ψ−1
1 (37)
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The jump of E(z) on the boundary is (leading term)

E+ = E−Ψ1

( √
1 − ζ/y

1 +
√
ζ/y

)σ3

Ψ−1
1 (38)

On the boundary |ζ| = O(ε
2
5 ) (from Thm. 4)

If ζ/y > 1 then the local parametrix has a singularity within the local disk ⇒
”standard” PI needed;

if |ζ/y| << 1 (e.g. y = ∞) then we are at the pole: the jump is identity and Ψ1

is a good approx (see later)

if 1 > ζ/y = O(1) then the jump is not small! Luckily this RHP is exactly
solvable and the solution affects the model parametrix (and yields the shape in

the end).
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1 +
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The amplitude of the peak: y = ∞

For y = ∞ (i.e. exactly on a pole of the tritronqée) Ψ1 is a good approx for the

solution (α = a + ib)

Ψ1(z) =
1
2

[
−i −1
1 i

](
z −α
z −α

) 3
4σ3

[
i 1

−1 −i

]
, K ∈ Z, (39)

Ψ1(z) =

(
1 +

3
2

b
z

[
0 1
−1 0

]
+O(z−2)

)
. (40)

q(x, t, e) = −2e
i
εΦ(x,t) lim

z→∞ z(Ψ1)12 = −3e
i
εΦ(x,t)b(x, t) (41)
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Conjectures and outlook

1 The method applies to higher breaks; necessity of analysis near a pole of the PI

hierarchy;

2 For poles of PI(k) we have Schrödinger equations with polynomials of degree

2k + 1; the shearing yields amplitudes (and alternating phases).

3 The phenomenon of ”poles in the local parametrix that disappear in the

solution” should be general to problems with conjugate Riemann invariants;

4 Two-humps: what happens at the crossroad of two breaking curves?
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