A Comparison Study of Extreme Precipitation from Six Regional Climate Models via Spatial Hierarchical Modeling

Dan Cooley Department of Statistics Colorado State University

Joint work with: Erin Schliep, CSU Steve Sain, NCAR

Acknowledgements: data provided by NARCCAP (NSF grants ATM-0502977 & ATM-0534173); DC funded by NSF-DMS-0905315; ES supported by the Weather and Climate Impact Assessment Program; SS funded by DMS-0707069; NCAR is supported by the NSF.

Goal: To compare the extreme precipitation from six RCM's for North America.

Primary question: Are these RCM's telling the same story?

Relation to Impacts?

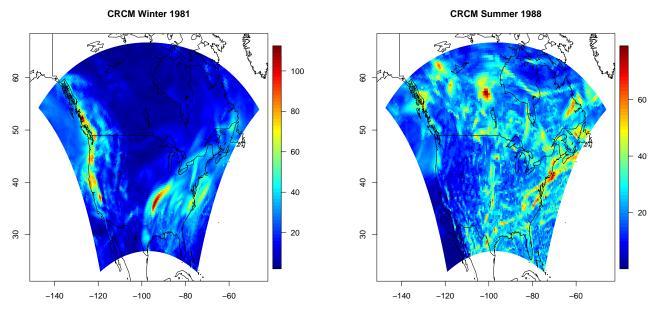
- A primary aim for developing RCM's is to model climate on a scale that is relevant for determining local impacts.
- Extreme precipitation events can have tremendous human and economic impact.

Audience for this work: Atmospheric scientists, particularly climate modelers, and statisticians.

NARCCAP is a program which is producing a suite of highresolution climate model runs for North America.

Abbr.	Model Name	Modeling Group
CRCM	Canadian Regional Climate Model	OURANOS / UQAM
ECPC	Experimental Climate Prediction Center	UC San Diego / Scripps
HRM3	Hadley Regional Model 3	Hadley Centre
MM5I	MM5 - PSU/NCAR mesoscale model	Iowa State University
RCM3	Regional Climate Model version 3	UC Santa Cruz
WRFP	Weather Research & Forecasting model	Pacific Northwest Nat'l Lab

Phase I : RCM's driven by NCEP reanalysis data. *Phase II*: RCM's driven by a suite of AOGCM's. For each season (winter: DJF; summer: JJA), we fit a statistical model to the annual maxima for that season.



For each RCM, we have 20 fields of annual maxima for each season (1981-2002): data (model output) are spatially rich, temporally poor. Fields are $120 \times 98 = 11760$.

Basic idea: Assume there is a latent spatial process that characterizes the behavior of the data over the study region.

Why bother? Latent process too complex to capture with fixed effects; covariates not rich enough.

Bayesian formulation, three levels.

Data level: Likelihood which characterizes the distribution of the observed data *given the parameters at the process level.* Often there is an assumption of *conditional independence*.

Process level: Where the latent process gets modeled by assuming a spatial model *for the data level parameters*.

Prior level: Ties up loose ends. Uses apriori information to put prior distributions on the parameters introduced in the process level.

Data level: GEV-based

Let Z_{ijt} be the max precip from RCM *i*, grid cell *j*, year *t*. We assume

$$\mathbb{P}(Z_{ijt} \leq z) = \exp\left[-\left(1 + \xi_{ij} \frac{z - \mu_{ij}}{\sigma_{ij}}\right)^{-1/\xi_{ij}}\right],$$

and further assume conditional independence.

To stabilize ξ , we add a penalty (Martins & Stedinger 2000).

Our data level is comprised of the likelihood

$$\pi[z_{i}|\mu_{i},\sigma_{i},\xi_{i}] = K \prod_{j=1}^{d} \prod_{t=1}^{20} \exp\left\{-\left[1+\xi_{ij}\left(\frac{z_{ijt}-\mu_{ij}}{\sigma_{ij}}\right)\right]^{-1/\xi_{ij}}\right\}$$
$$\times \frac{1}{\sigma_{ij}} \left[1+\xi_{ij}\left(\frac{z_{ijt}-\mu_{ij}}{\sigma_{ij}}\right)\right]^{-1/\xi_{ij}-1} \frac{\Gamma(15)}{\Gamma(9)\Gamma(6)} (.5+\xi_{ij})^{8} (.5-\xi_{ij})^{5}.$$

We assume

$$\mu_{ij} \sim N(\boldsymbol{X}_{j}^{T}\boldsymbol{\beta}_{i\mu} + U_{ij\mu}, 1/\tau_{\mu}^{2})$$

$$\log(\sigma_{ij}) \sim N(\boldsymbol{X}_{j}^{T}\boldsymbol{\beta}_{i\sigma} + U_{ij\sigma}, 1/\tau_{\sigma}^{2})$$

$$\xi_{ij} \sim N(\boldsymbol{X}_{j}^{T}\boldsymbol{\beta}_{i\xi} + U_{ij\xi}, 1/\tau_{\xi}^{2}),$$

where τ_{\cdot} is a fixed precision.

Spatial model for $U_i = (U_{i\mu}, U_{i\sigma}, U_{i\xi})$: IAR, an improper GMRF.

- U_i has length $3 \times 11760 = 35280$.
- IAR defined by precision matrix Q. We assume $Q = T \otimes Q_1$, $T : 3 \times 3$, $Q_1 : 11760 \times 11760$; Q_1 based on a 1st-order neighborhood structure, very sparse.
- IAR is a simple, computationally-feasible spatial model that enables borrowing strength across locations.

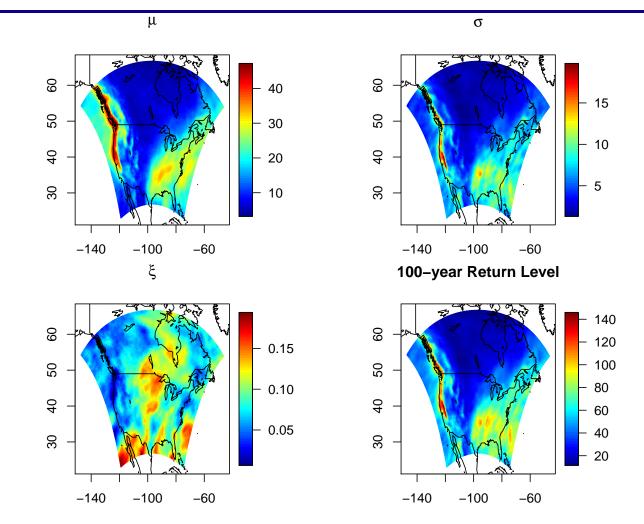
Conjugate priors:

- $T\sim$ Wishart prior
- $\beta \sim$ independent normal priors

Implementation

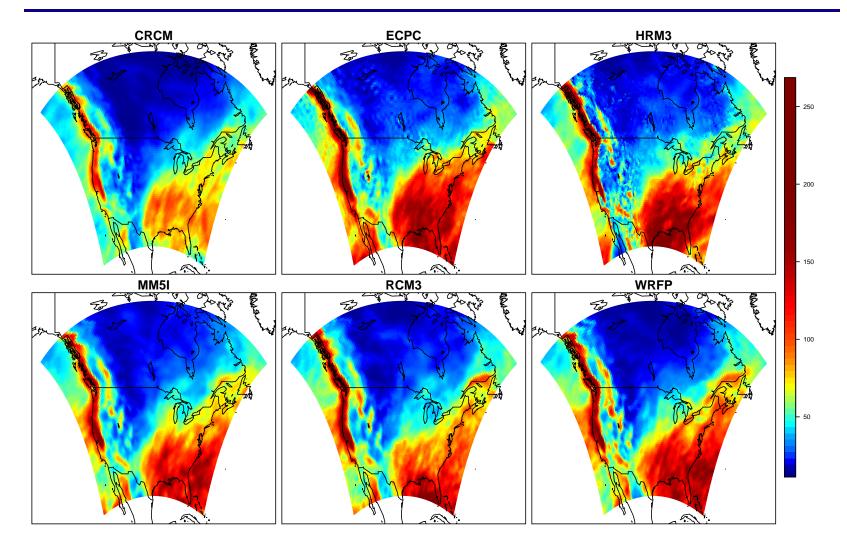
- \bullet 70569 non-indep parameters; effective number \approx 10100
- MCMC via a Gibbs sampler
- $(\mu_{r,i}, \sigma_{r,i}, \xi_{r,i})$ updated cell-by-cell via Metropolis Hastings.
- All other parameters drawn directly.
- Take advantage of separability of Q and sparseness of Q_1 .
- MCMC run of 6,000 iterations takes approx. 12 hrs.
- Four parallel chains for each RCM-convergence assessed.

Winter Parameter Estimates: CRCM

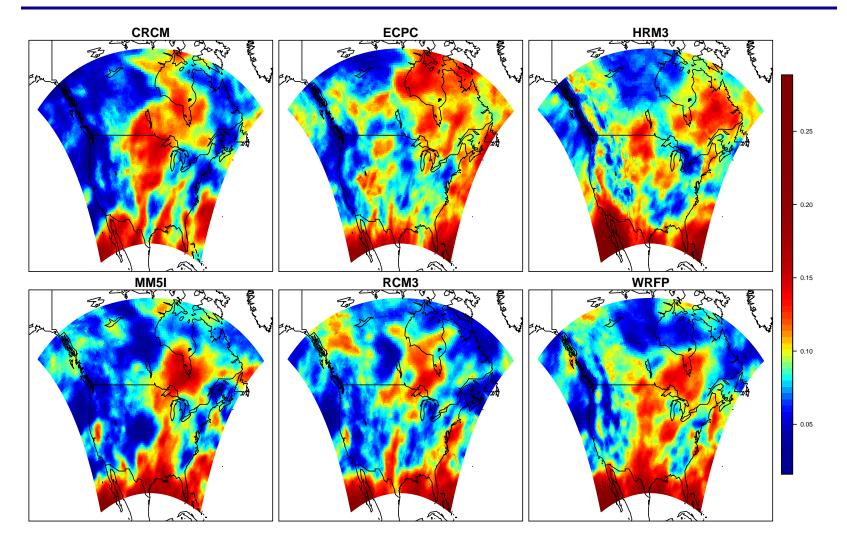


Note: estimation of *any* high quantile is straightforward.

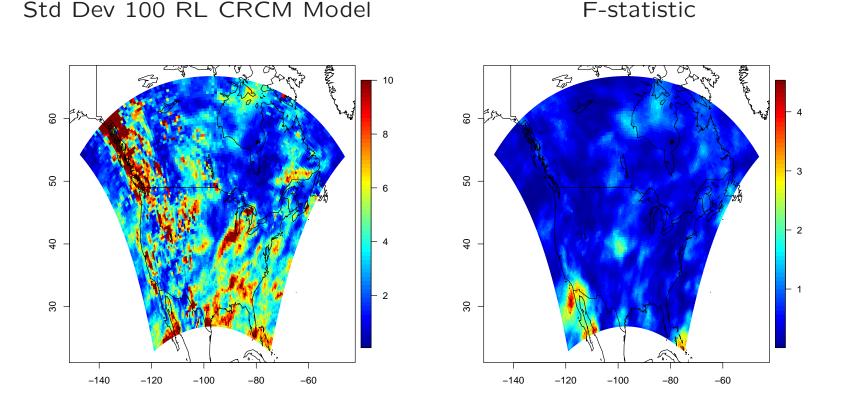
Comparison of Winter 100-year Return Levels



Examining ξ (Winter)

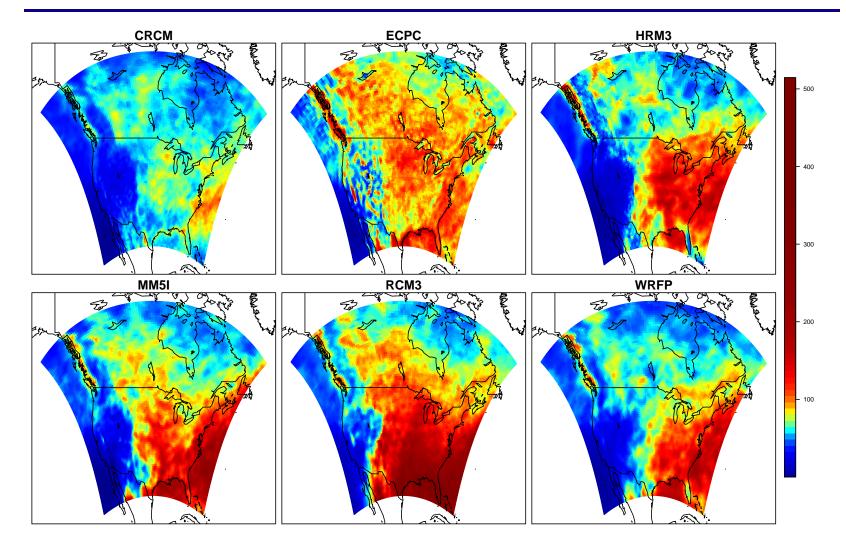


Significance (Winter)

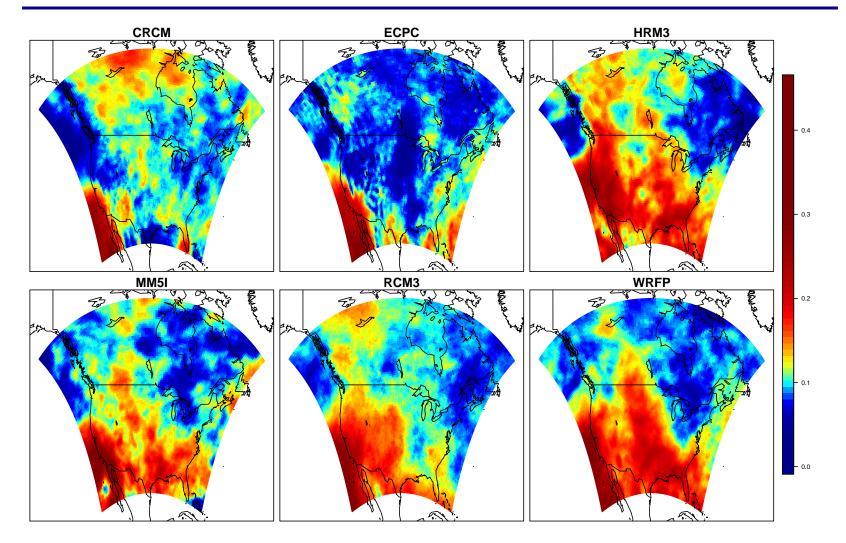


F-test for equality of means, significance level: 2.22 (disregards spatial dependence and multiple testing issues)

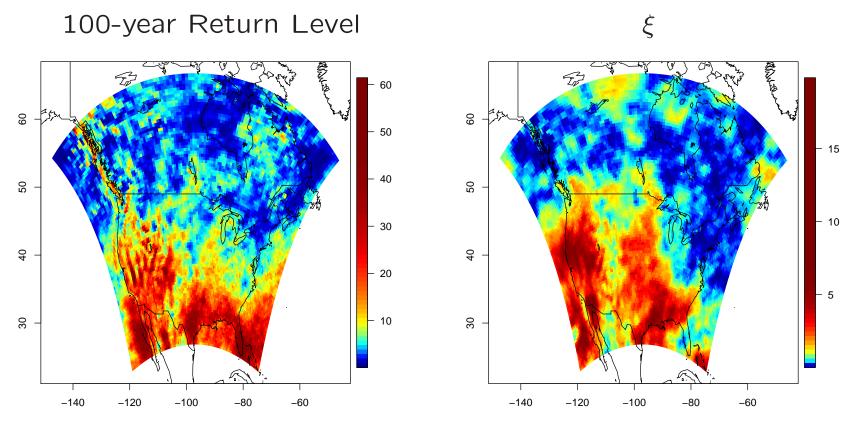
Comparison of Summer 100-year Return Levels



Examining ξ (Summer)



Significance (Summer)



F-test for equality of means, significance level: 2.22

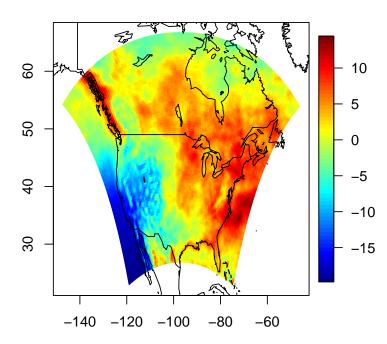
Comparison to Ground Station (Summer)

Summer Estimates for Fort Collins, CO			
95% credible intervals			
	ξ	100-yr RL	
Weather Station ¹	(0.097, 0.144)	(9.01, 12.12)	
CRCM	(0.040, 0.158)	(3.91, 5.63)	
ECPC	(0.029, 0.145)	(6.70, 10.18)	
HRM3	(0.080, 0.199)	(5.22, 8.40)	
MM5I	(0.102, 0.224)	(6.76, 10.61)	
RCM3	(0.100, 0.207)	(10.19, 15.52)	
WRFP	(0.130, 0.240)	(3.54, 5.66)	

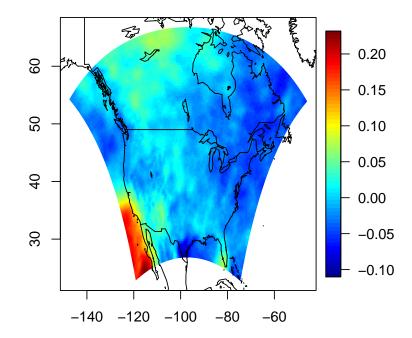
 1 Weather station estimates from Cooley et al. (2007).

Is the spatial hierarchical model necessary?

CRCM, Summer



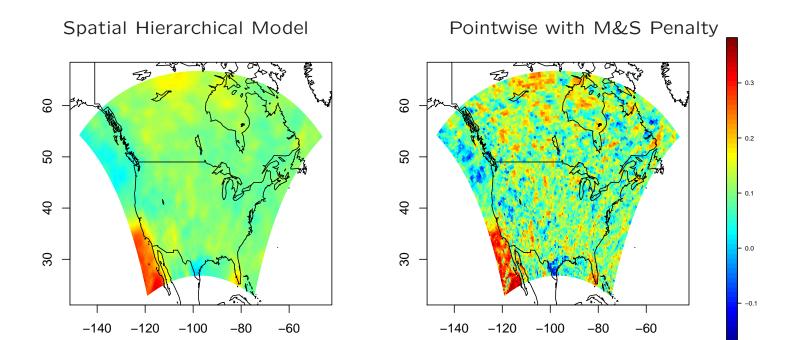
 U_{μ}



Uξ

What is the benefit of the spatial hierarchical model?

Estimates for ξ , CRCM Model, Summer



References

- Cooley, D., Nychka, D., and Naveau, P. (2007). Bayesian spatial modeling of extreme precipitation return levels. *Journal of the American Statistical Association*, 102:824–840.
- Cooley, D. and Sain, S. R. (2008). Spatial hierarchical modeling of precipiation extremes from a regional climate model. *accepted by JABES*. http://www.stat.colostate.edu/~cooleyd/Papers/rcmPaper.pdf.
- Martins, E. and Stedinger, J. (2000). Generalized maximum-likelihood generalized extreme-value quantile estimators for hydrologic data. *Water Resources Research*, 36:737–744.
- Schliep, E., Cooley, D., Sain, S. R., and Hoeting, J. A. (2010). A comparison study of extreme precipitation from six different regional climate models via spatial hierarchical modeling. *Extremes*, 13:219–239.