The interface between quantum information theory and functional analysis. Additivity conjectures and Dvoretzky's theorem.

Stanislaw Szarek
Paris 6/Case Western Reserve

BIRS, June 28, 2010

Collaborators:

G. Aubrun, E. Werner

J. Math. Phys. 51, 022102 (2010); arxiv:1003.4925 http://www.math.jussieu.fr/~szarek/

Talk summary

- overview of certain aspects of quantum information theory: paradigms, concepts, notation
- additivity/multiplicativity problems
- an approach to those problems via tools of geometric functional analysis, notably Dvoretzky's theorem

Conference "Perspectives in High Dimensions"

Cleveland, August 2 until August 6, 2010

http://www.case.edu/artsci/math/perspectivesInHighDimensions/

Quantum information theory

(from the geometric functional analysis angle)

- A complex Hilbert space \mathcal{H} , usually $\mathcal{H} = \mathbb{C}^d$, and the C^* -algebra $\mathcal{B}(\mathcal{H})$, $\mathcal{B}(\mathbb{C}^d) = \mathcal{M}_d$
- The real space \mathcal{M}_d^{sa} of $d \times d$ Hermitian matrices
- ullet The positive semi-definite cone $\mathcal{PSD}\subset\mathcal{M}_d^{\mathit{sa}}$
- The base of \mathcal{PSD} consisting of density matrices: $\mathcal{D}(\mathcal{H}) := \mathcal{PSD} \cap \{\mathsf{tr}(\cdot) = 1\}$ \sim the states of $\mathcal{B}(\mathcal{H}) = \mathsf{the}$ positive face of the unit ball in the trace class (1-Schatten) norm
- Completely positive (CP) maps $\Phi : \mathcal{B}(\mathcal{H}_1) \to \mathcal{B}(\mathcal{H}_2)$, usually also required to be trace preserving (TP)

More context and more notation

Unit vector $\psi \in \mathcal{H} = \mathbb{C}^d$ (or $|\psi\rangle$) : "state" of a quantum system with d levels

$$d = 2 \rightarrow qubits$$

$$ho=\psi\psi^\dagger=|\psi
angle\langle\psi|$$
 : the corresponding rank one projection, or

- a pure state of $\mathcal{B}(\mathcal{H})$, an element of $\mathcal{B}(\mathcal{H})^*$ via duality $(A, \rho) := \operatorname{tr}(A\rho^{\dagger})$ or
- ullet an element of the projective space \mathbb{CP}^{d-1}

Mixed states:
$$\rho = \sum_{\alpha} p_{\alpha} |\psi_{\alpha}\rangle \langle \psi_{\alpha}|$$
 with $\sum_{\alpha} p_{\alpha} = 1$

The set of mixed states coincides with $\mathcal{D}(\mathcal{H}) = \mathcal{PSD} \cap \{\mathsf{tr}(\cdot) = 1\}$

Measurements

$$|\langle \psi | e_j \rangle|^2 = \langle e_j | \psi \rangle \langle \psi | e_j \rangle = \langle e_j | \rho | e_j \rangle = \text{tr} \Big(\rho | e_j \rangle \langle e_j | \Big) :$$

the probability of jth outcome under measurement "in the basis (e_j) " for $\rho=|\psi\rangle\langle\psi|$,or general ρ

More general measurements schemes (POVM):

Given $P_i \in \mathcal{PSD}$ with $\sum_i P_i = \text{Id}$, the probability of the *i*th outcome is $\text{tr}(\rho P_i)$

In general, P_i 's do not need to be projections

Bi- or multipartite systems, entanglement

m systems (or particles) : $\mathcal{K} = \mathcal{H}_1 \otimes \mathcal{H}_2 \otimes \ldots \otimes \mathcal{H}_m$ Example: our apparatus and environment $\mathcal{K} = \mathcal{H} \otimes \mathcal{E}$ Pure separable state (product vector): $\psi = \xi \otimes \eta$ General separable states: $\mathcal{S} = \{ \sum_{\alpha} p_{\alpha} | \psi_{\alpha} \rangle \langle \psi_{\alpha} | : \psi_{\alpha} \text{ product vectors} \}$ Entangled states: $\mathcal{D} \setminus \mathcal{S}$ $\operatorname{conv}(-\mathcal{D} \cup \mathcal{D}) = \text{the unit ball of trace class}$ $\operatorname{conv}\left(-\mathcal{S}\cup\mathcal{S}\right)$ = the unit ball of the projective tensor product of trace class spaces on respective subsystems

Partial transpose, Peres-Horodecki criterion

```
Bipartite system: \mathcal{K} = \mathcal{H}_1 \otimes \mathcal{H}_2
Partial transpose \mathcal{B}(\mathcal{K}) \stackrel{T_2}{\to} \mathcal{B}(\mathcal{K}): T_2(\rho_1 \otimes \rho_2) = \rho_1 \otimes \rho_2^t etc.
Easy: \rho separable \Rightarrow T_2(\rho) separable \Rightarrow T_2(\rho) \in \mathcal{PSD}
Criterion: T_2(\rho) \notin \mathcal{PSD} \Rightarrow \rho entangled
                  "\Leftrightarrow" only for 2 × 2 and 2 × 3 systems
                  (Størmer-Woronowicz)
PPT states: \mathcal{PPT} := \mathcal{D} \cap T_2^{-1}(\mathcal{D})
```

Entangled PPT states: example of undistillable entanglement (not defined)

Quantum vs. classical correlations, Tsirelson bound

$$X_1, X_2, \ldots, Y_1, Y_2, \ldots$$
 random variables; $\|X_j\|_{\infty}, \|Y_k\|_{\infty} \leq 1$
Covariance matrix: $(\mathbb{E}X_jY_k)_{j,k}$

Possible covariance matrices:
$$\mathcal{C} := \mathrm{conv} ig\{ ig(\delta_j \eta_k ig)_{j,k} \; : \; \delta_j, \eta_k = \pm 1 ig\}$$

 ${\cal C}$ - a polytope; faces \sim Bell inequalities

Quantum covariance matrices:

$$\mathcal{Q} := \left\{ \left(\operatorname{tr} \left(\rho(U_j \otimes V_k) \right) \right)_{j,k} : \rho \in \mathcal{D}(\mathcal{H}_1 \otimes \mathcal{H}_2), \|U_j\|_{\infty}, \|V_k\|_{\infty} \leq 1 \right\}$$

Tsirelson:
$$Q = \operatorname{conv}\{(\langle u_j|v_k\rangle)_{i,k} : u_j, v_k \in \mathcal{H}, |u_j|, |v_k| \leq 1\}$$

In particular, $\mathcal{C} \subsetneq \mathcal{Q} \subset \mathcal{K}_G^{\mathbb{R}} \mathcal{C}$

Quantum operations, channels

Evolution of a (closed) system in discrete time : $\psi = |\psi\rangle$ input, $U\psi = U|\psi\rangle$ output, U unitary (or an isometry)

In the language of states : $|\psi
angle\langle\psi| o U|\psi
angle\langle\psi|U^\dagger$

Quantum operation (channel) $\rho \to \Phi(\rho) = U\rho U^{\dagger}$ (valid also for mixed states)

These are examples of "elementary" completely positive maps. For open systems, quantum formalism allows also other CP maps as quantum operations. However, by Stinespring-Kraus-Choi theorem all such maps can be "reduced" to elementary ones

$$ho
ightarrow \Phi(
ho) = \sum_j B_j
ho B_j^{\dagger}$$

Quantum operations via partial trace

 $\mathcal{K} = \mathcal{H} \otimes \mathcal{E}$ (e.g., our apparatus and environment)

Accessible part of a product state $\xi \otimes \eta$ is just ξ

Accessible part of φ is $\operatorname{tr}_{\mathcal{E}}(|\varphi\rangle\langle\varphi|)$, where $\operatorname{tr}_{\mathcal{E}}$ is the partial trace induced by $\operatorname{tr}_{\mathcal{E}}(\sigma\otimes\tau)=\operatorname{tr}(\tau)\sigma$, and similarly for general states

Let
$$V:\mathcal{H} o \mathcal{K} = \mathcal{H} \otimes \mathcal{E}$$
 an isometry, $|\psi
angle o V |\psi
angle$

Consider the following quantum operation :

$$\begin{split} &\Phi(|\psi\rangle\langle\psi|)=\mathrm{tr}_{\mathcal{E}}\big(V|\psi\rangle\langle\psi|V^{\dagger}\big)=\mathrm{tr}_{2}\big(V|\psi\rangle\langle\psi|V^{\dagger}\big) \text{ and, generally,} \\ &\Phi(\rho)=\mathrm{tr}_{\mathcal{E}}\big(V\rho V^{\dagger}\big)=\mathrm{tr}_{2}\big(V\rho V^{\dagger}\big) \end{split}$$

Equivalent to Stinespring-Kraus-Choi representation $\Phi(\rho) = \sum_i B_i \rho B_i^{\dagger}$: $V = \sum_i B_i \otimes e_i$, so this is the general case

Channels as subspaces

Quantum operations on $\mathcal{H}=\mathbb{C}^d$ are really d-dimensional subspaces $\mathcal{W}=V(\mathbb{C}^d)\subset\mathbb{C}^d\otimes\mathbb{C}^k$

The isometry V is not important: corresponds to fixing a basis of ${\mathcal W}$

Examples:

- k=1 or, more generally, $V(\xi)=\xi\otimes\eta$ (fixed η) \Rightarrow $\Phi(|\xi\rangle\langle\xi|)=\mathrm{tr}_2(|\xi\otimes\eta\rangle\langle\xi\otimes\eta|)=|\xi\rangle\langle\xi|\,\mathrm{tr}(|\eta\rangle\langle\eta|)=|\xi\rangle\langle\xi|$, or $\Phi=I_{\mathcal{M}_d}$
- $V(\xi) = \eta \otimes \xi \Rightarrow \forall \rho \ \Phi(\rho) = |\eta\rangle\langle\eta|$
- $V = k^{-1/2} \sum_{i=1}^k U_i \otimes e_i$, U_i 's i.i.d. random unitaries If instead of U_i 's we had i.i.d. Gaussian matrices, the range of V would be a Haar-random subspace of $\mathbb{C}^d \otimes \mathbb{C}^k$ $\Phi(\rho) = k^{-1} \sum_i U_i \rho U_i^{\dagger}$

Range of a channel and the Schmidt decomposition

 \mathcal{W} associated to Φ

For a pure state $\varphi = V\psi \in \mathcal{W}$, the accessible part $\operatorname{tr}_2(|\varphi\rangle\langle\varphi|)$ of φ , or $\Phi(|\psi\rangle\langle\psi|)$, is simply encoded in its "Schmidt decomposition"

$$\varphi = \sum_{j} s_{j} u_{j} \otimes v_{j}$$

 $(u_j),(v_j)$ are orthonormal sequences in \mathbb{C}^d and \mathbb{C}^k

This is more or less SVD of the matrix

$$A = \sum_{j} s_{j} |u_{j}\rangle\langle v_{j}|$$

that can be identified with φ

The image of a pure state $|\psi\rangle\langle\psi|$ under Φ

$$\Phi(|\psi\rangle\langle\psi|) = \operatorname{tr}_2(|\varphi\rangle\langle\varphi|) = \sum_j s_j^2 |u_j\rangle\langle u_j|$$

Verification:

$$\begin{array}{rcl} \operatorname{tr}_2(|\varphi\rangle\langle\varphi|) & = & \operatorname{tr}_2\Big(|\sum_i s_i \, u_i \otimes v_i\rangle\langle\sum_j s_j \, u_j \otimes v_j|\Big) \\ \\ & = & \sum_{i,j} s_i s_j \, |u_i\rangle\langle u_j| \operatorname{tr}(|v_i\rangle\langle v_j|) \\ \\ & = & \sum_i s_j^2 \, |u_j\rangle\langle u_j| \end{array}$$

Morale: important to understand the patterns of singular numbers of A as A varies over an m-dimensional subspace $\mathcal W$ of the space of $d\times k$ matrices

For future reference

If $A = \sum_{i} s_{j} |u_{j}\rangle\langle v_{j}|$ is the matrix identified with φ , then

$$\mathrm{tr}_2(|arphi
angle\langlearphi|) = \sum_j s_j^2 |u_j
angle\langle u_j| = A A^\dagger$$

Quantum channels, capacities and such

"One-shot" capacity of Φ (for transmitting classical information)

$$\chi(\Phi) := \max_{p_{\alpha}, \rho_{\alpha}} S(\Phi\left(\sum_{\alpha} p_{\alpha} \rho_{\alpha}\right)) - \sum_{\alpha} p_{\alpha} S(\Phi(\rho_{\alpha}))$$

where $S(\rho) = -\text{tr}(\rho \log \rho)$ is the von Neumann entropy $(=\sum_j q_j \log(1/q_j))$, if q_j 's are eigenvalues of ρ)

The "true" capacity is

$$\chi^{\infty}(\Phi) := \lim_{n \to \infty} \frac{1}{n} \chi(\Phi \otimes \Phi \otimes \ldots \otimes \Phi) \quad (n \text{ fold product})$$

Additivity problems

Is
$$\chi^{\infty}(\cdot)$$
 additive? I.e., is $\chi^{\infty}(\Phi \otimes \Psi) = \chi^{\infty}(\Phi) + \chi^{\infty}(\Psi)$?

This would follow if $\chi(\cdot)$ was additive or even (Shor 2004 and others) if the following much simpler quantity was additive

$$S_{\min}(\Phi) := \min_{\rho \in \mathcal{D}(\mathbb{C}^m)} S(\Phi(\rho))$$

 S_{\min} is called the "minimum output entropy"

Rényi entropy and multiplicativity problems

Additivity of the minimum output entropy would follow from additivity of the minimum output p-Rényi entropy

$$S_p^{\min}(\Phi) := \min_{\rho \in \mathcal{D}(\mathbb{C}^m)} S_p(\Phi(\rho))$$

for p>1, where $S_p(\sigma):=\frac{1}{1-p}\log(\mathrm{tr}\sigma^p)=\frac{p}{1-p}\log\|\sigma\|_p$, where $\|\tau\|_p=\left(\mathrm{tr}\big(\tau^\dagger\tau\big)^{p/2}\big)^{1/p}$ is the Schatten p-norm. (Let $p\to 1$.)

Modulo normalizing factors and logarithmic change of variables, $S_p^{\min}(\Phi)$ is equivalent to $\max_{\rho \in \mathcal{D}(\mathbb{C}^m)} \|\Phi(\rho)\|_p$, or $\|\Phi\|_{1 \to p}$.

Additivity of $S_p^{\min}(\Phi)$ is equivalent to multiplicativity of $\|\Phi\|_{1\to p}$.

Additivity/multiplicativity problems - recapitulation

For completely positive (trace preserving) maps

$$S_{\min}(\Phi \otimes \Psi) \stackrel{?}{=} S_{\min}(\Phi) + S_{\min}(\Psi)$$

$$\|\Phi \otimes \Psi\|_{1 \to p} \stackrel{?}{=} \|\Phi\|_{1 \to p} \|\Psi\|_{1 \to p} \quad (p > 1)$$

The mins and the norms are attained on pure states, so all these quantities depend on the patterns of eigenvalues of $\Phi(|\psi\rangle\langle\psi|)$.

In view of prior remarks, this is equivalent to understanding the patterns of singular numbers of matrices varying over m-dimensional subspaces $\mathcal W$ of the space of $d\times k$ matrices.

"No" and "No" (Hayden-Winter 2008, Hastings 2009)

Focus on $\|\Phi\|_{1\to p}$

Let $\mathcal W$ be the m-dimensional subspace of $\mathbb C^d\otimes\mathbb C^k$ (or $\mathcal M_{d\times k}$) associated with Φ

$$\|\Phi\|_{1\to p} = \mathsf{max}_{\varphi\in\mathcal{W}, \, |\varphi|=1} \, \|\mathrm{tr}_2(|\varphi\rangle\langle\varphi|)\|_p$$

If $\varphi = \sum_{j} s_{j} u_{j} \otimes v_{j}$, this becomes

$$\|\sum_{j} s_{j}^{2} |u_{j}\rangle\langle u_{j}|\|_{\rho} = \left(\sum_{j} s_{j}^{2\rho}\right)^{1/\rho} = \|A\|_{2\rho}^{2} = \|AA^{\dagger}\|_{\rho},$$

where $A = \sum_{i} s_{i} |u_{i}\rangle\langle v_{i}|$ is the $d \times k$ matrix identified with φ .

In other words

$$\|\Phi\|_{1\to p}^{1/2} = \max_{A\in\mathcal{W}} \frac{\|A\|_{2p}}{\|A\|_2}$$

Milman's version of Dvoretzky's theorem

Consider the *n*-dimensional Euclidean space (over \mathbb{R} or \mathbb{C}) endowed with the Euclidean norm $|\cdot|$ and some other norm $|\cdot|$ such that, for some b>0, $||\cdot||\leq b|\cdot|$. Denote $M=\mathbb{E}||X||$, where X is a random variable uniformly distributed on the unit Euclidean sphere. Let $\varepsilon>0$ and let $m\leq c\varepsilon^2(M/b)^2n$, where c>0 is an appropriate (computable) universal constant. Then, for most m-dimensional subspaces E we have

$$\forall x \in E$$
, $(1-\varepsilon)M|x| \le ||x|| \le (1+\varepsilon)M|x|$.

A similar statement holds for Lipschitz functions in place of norms.

Dvoretzky's theorem for Schatten classes (FLM '77)

For the Schatten norm $\|\cdot\|_q$ with q=2p>2, k=d and $\varepsilon=\frac{1}{2}$ we get b=1 and $M\sim d^{1/q-1/2}$, hence if

$$m \sim M^2 d^2 \sim (d^{1/q-1/2})^2 d^2 = d^{1+2/q} = d^{1+1/p},$$

then for a generic m-dimensional subspace ${\mathcal W}$ of ${\mathcal M}_d$

 $\forall \textit{A} \in \mathcal{W} \quad \textit{d}^{1/q-1/2} \|\textit{A}\|_2 \leq \|\textit{A}\|_q \leq \textit{Cd}^{1/q-1/2} \|\textit{A}\|_2 \\ \text{Accordingly, for the associated (random) channel } \Phi$

$$\|\Phi\|_{1\to p} = \left(\max_{A\in\mathcal{W}} \frac{\|A\|_{2p}}{\|A\|_2}\right)^2 \le \left(Cd^{1/q-1/2}\right)^2 = C^2d^{1/p-1}$$

which is $\ll 1$ for large d and nearly as small as it can be: $\|\Phi\|_{1\to p} \geq d^{1/p-1}$ always.

So it is clear that we are up to something.

Why $M \sim d^{1/q-1/2}$?

If
$$q = \infty$$
, $\|\cdot\|_{\infty} = \|\cdot\|_{op}$, so $\mathbb{E}\|X\|_{op} \sim 2d^{-1/2}$

(2 is the same as in the Wigner semi-circle law)

Obviously
$$\mathbb{E}||X||_2 = 1$$

For $q \in (2, \infty)$ we interpolate (Hölder inequality)

The counterexample to multiplicativity

Need
$$\|\Phi \otimes \Psi\|_{1 \to p} > \|\Phi\|_{1 \to p} \|\Psi\|_{1 \to p}$$

$$\Psi = \Phi$$
? $\Psi = \Phi'$ (independent copy)?

What works is $\Psi = \overline{\Phi}!$

Fact 1: If $\Phi: \mathcal{B}(\mathbb{C}^m) \to \mathcal{B}(\mathbb{C}^d)$ is associated to an m-dimensional subspace of $\mathbb{C}^d \otimes \mathbb{C}^k$, then there is an input state $\sigma \in \mathcal{D}(\mathbb{C}^m \otimes \mathbb{C}^m)$ such that $(\Phi \otimes \overline{\Phi})(\sigma)$ has an eigenvalue $\geq \frac{m}{kd}$, hence $\|\Phi \otimes \overline{\Phi}\|_{1 \to p} \geq \frac{m}{kd}$

In our setting
$$rac{m}{kd}\simrac{d^{1+1/p}}{d^2}=d^{1/p-1}$$
, so
$$\|\Phi\otimes\overline{\Phi}\|_{1\to p}\geq cd^{1/p-1}$$

while

$$\|\Phi\|_{1\to p} \cdot \|\overline{\Phi}\|_{1\to p} = (\|\Phi\|_{1\to p})^2 \le (C^2 d^{1/p-1})^2 \ll c d^{1/p-1}$$

The counterexample to additivity

of $S_{\min}(\cdot)$ is more subtle. The analysis of a single random channel is based on two facts

Fact 2:
$$\forall \sigma \in \mathcal{D}(\mathbb{C}^d) \ S(\sigma) \geq S\left(\frac{\mathrm{Id}}{d}\right) - d \left\|\sigma - \frac{\mathrm{Id}}{d}\right\|_{HS}^2$$

Consequently $\forall \Phi : \mathcal{M}_m o \mathcal{M}_d$

$$S_{\mathsf{min}}(\Phi) \geq \log(d) - d \cdot \max_{
ho \in \mathcal{D}(\mathbb{C}^d)} \left\| \Phi(
ho) - \frac{\operatorname{Id}}{d} \right\|_{HS}^2$$

This reduces the study of the somewhat involved quantity $S_{\min}(\cdot)$ to upper-bounding $\|\sigma - \frac{\mathrm{Id}}{d}\|_{HS}$ for σ in the range of Φ

Fact 3: If $k \sim d^2$, $m \sim d^2$, then, for a typical m-dimensional subspace $\mathcal{W} \subset \mathcal{M}_{d \times k}$,

$$\max_{A \in \mathcal{W}, \|A\|_{HS} = 1} \left\| AA^{\dagger} - \frac{\operatorname{Id}}{d} \right\|_{HS} \le \frac{C'}{d}$$

Recall: $AA^{\dagger} = \Phi(|\psi\rangle\langle\psi|)$, where ψ is the unit vector corresponding to A and Φ is the channel associated to W.

Combining the estimates

$$S_{\min}(\Phi) \ge \log(d) - d\left(\frac{C'}{d}\right)^2 = \log(d) - O\left(\frac{1}{d}\right)^2$$

On the other hand, the "large eigenvalue" argument gives for the composite channel

$$S_{\min}(\Phi \otimes \bar{\Phi}) \leq \log(d^2) - \Omega\left(\frac{\log d}{d}\right)$$

Payback to geometric functional analysis

Fact 3 essentially says that W, when endowed with the Schatten 4-norm, is $1 + O(\frac{1}{d^2})$ -Euclidean.

On the other hand, applying directly Dvoretzky's theorem for that choice of parameters gives only $1 + O\left(\frac{1}{\sqrt{d}}\right)$

Is this good or bad?

An affirmative answer would greatly simplify the theory: BAD

On the other hand, a negative answer means that entanglement allows using quantum channels more efficiently than previously thought: GOOD

But to exploit this opportunity one would need *explicit* maps for reasonable values of the parameters m, d