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Talk summary

e overview of certain aspects of quantum information theory:
paradigms, concepts, notation

e additivity/multiplicativity problems

e an approach to those problems via tools of geometric functional
analysis, notably Dvoretzky's theorem
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Quantum information theory

(from the geometric functional analysis angle)

e A complex Hilbert space H, usually 7 = C9, and
the C*-algebra B(H), B(CY) = M,

e The real space M?7 of d x d Hermitian matrices
e The positive semi-definite cone PSD C M$

e The base of PSD consisting of density matrices:
D(H) := PSD N {tr(-) =1} ~ the states of B(H) = the positive
face of the unit ball in the trace class (1-Schatten) norm

e Completely positive (CP) maps ® : B(H1) — B(Hz2), usually also
required to be trace preserving (TP)



More context and more notation

Unit vector ¢ € H = C9 (or
with d levels
d =2 — qubits

1)) : “state” of a quantum system

p =T = ) (4| : the corresponding rank one projection, or
e a pure state of B(H), an element of B(H)* via duality

(A, p) := tr(Apl) or

e an element of the projective space CPP9~!

Mixed states: p =" pa [Va) (V] with >~ po =1

The set of mixed states coincides with D(H) = PSD N {tr(-) = 1}



Measurements

(1e) 2 = (el (Wley) = (efloley) = tr(plep) )
the probability of jth outcome under measurement

“in the basis (g;)" for p = |¢)(1)|,or general p

More general measurements schemes (POVM):
Given P; € PSD with ). P; = Id, the probability of
the ith outcome is tr(pP;)

In general, P;'s do not need to be projections



Bi- or multipartite systems, entanglement

m systems (or particles) : K =H1 @ Ho @ ... 2 Hpm
Example: our apparatus and environment K = H ® &£
Pure separable state (product vector): ) = £ @1
General separable states:

S={>, PalYa)(¥al : ¥a product vectors}
Entangled states: D\ S

conv(— D UD) = the unit ball of trace class

conv (— SU S) = the unit ball of the projective tensor product of

trace class spaces on respective subsystems



Partial transpose, Peres-Horodecki criterion

Bipartite system: K = Hj ® H»
Partial transpose B(K) 1 B(K): Ta(p1® p2) = p1 @ ps etc.
Easy: p separable = T,(p) separable = Ty(p) € PSD
Criterion: Ty(p) € PSD = p entangled
“<" only for 2 x 2 and 2 x 3 systems
(Stgrmer-Woronowicz)
PPT states: PP7 :=DnN T, (D)

Entangled PPT states: example of undistillable entanglement
(not defined)



Quantum vs. classical correlations, Tsirelson bound

X1,X2,..., Y1, Yo, ... random variables; || Xj|/oc, || Yk||co <1
Covariance matrix: (EXJ Yk)j,k
Possible covariance matrices: C := conv{(éj'r]k)jlk D Oj, K = 1}

C - a polytope; faces ~ Bell inequalities

Quantum covariance matrices:
Q= {(tr(p(U; ® V&))< p € D(H1® Ha), | Ujlloos [ Vil < 1}

Tsirelson: Q = conv{((uj|vk>)j LU, vie € Ho gl v < 13

In particular, C ¢ O C KZC



Quantum operations, channels
Evolution of a (closed) system in discrete time :
Y = [¢) input, Uyp = U|1)) output, U unitary (or an isometry)

In the language of states : [1))(v)| — U (1| UT

Quantum operation (channel) p — ®(p) = UpUT
(valid also for mixed states)

These are examples of “elementary” completely positive maps.
For open systems, quantum formalism allows also other CP maps
as quantum operations. However, by Stinespring-Kraus-Choi
theorem all such maps can be “reduced” to elementary ones

p— &(p) =3; BipB]



Quantum operations via partial trace

K =H®E (e.g., our apparatus and environment)
Accessible part of a product state £ ® 7 is just £

Accessible part of ¢ is tre(|p)(p|), where tre is the partial trace
induced by trg(o @ 7) = tr(7)o,and similarly for general states

Let V:H — K ="H®E an isometry, |¢)) — V)

Consider the following quantum operation :

() (W]) = tre(V]) (] V1) = tra(V]0) (4] V1) and, generally,
®(p) = tre(VpVT) = tra(VpVT)

Equivalent to Stinespring-Kraus-Choi representation
d(p)=>,; B,-,oB,-T 'V =), Bi ® €, so this is the general case



Channels as subspaces

Quantum operations on H = C? are really
d-dimensional subspaces W = V/(C9) c C? » Ck

The isometry V is not important: corresponds to fixing a basis of W

Examples:
e k=1 or, more generally, V(§) =& @ (fixed n) =

(1) (¢]) = tra(l€ @ M€ @nl) = [E) & tr(In)(n]) = 1€)(E], or
& = |y

sVid

o V() =n®E& = Vp o(p)=|n)Hn|

o V=k12 Zf'(:l U; ® e;, Uj'si.i.d. random unitaries
If instead of U;'s we had i.i.d. Gaussian matrices, the range of V
would be a Haar-random subspace of C¢ @ Ck

®(p) = k1Y, UppU]



Range of a channel and the Schmidt decomposition

W associated to ¢

For a pure state ¢ = V4 € W, the accessible part tra(|p)(¢|) of

@, or ®(|1)(1|), is simply encoded in its “Schmidt decomposition”
P =2SiUQVY

(u;), (v;) are orthonormal sequences in C? and C*

This is more or less SVD of the matrix

A=325siluj) (vl
that can be identified with ¢



The image of a pure state [¢))(¢)| under ®
O(|¢)(W]) = tra(l) (e 252\% {uj]

Verification:
wa(lo)el) = w(|Ysuewndyuevl)
i J
= > sisj lui) (g tr(|vi) (1)
ij
2
= )7 ) {ul
J
Morale: important to understand the patterns of singular numbers

of A as A varies over an m-dimensional subspace W of the space
of d x k matrices



For future reference

If A=73"sj|uj)(vj| is the matrix identified with ¢, then

tra(]¢) (¢]) Zs ;) (uj| = AAT



Quantum channels, capacities and such

“One-shot” capacity of ® (for transmitting classical information)
X(®) = max S( (Z papa) = PaS(®(pa)

where S(p) = —tr(plog p) is the von Neumann entropy
(= >_;qjlog(1/q)), if gj's are eigenvalues of p)

The “true” capacity is

1
X2 (P) = im =~ (CD @®®...0®) (nfold product)



Additivity problems

Is x°°(-) additive? l.e., is x> (P @ W)=x(P) + x> (V)?

This would follow if x(-) was additive or even (Shor 2004 and
others) if the following much simpler quantity was additive

Smin ®) = i S(o
(®) L (®(p))

Shuin is called the “minimum output entropy”



Rényi entropy and multiplicativity problems

Additivity of the minimum output entropy would follow from
additivity of the minimum output p-Rényi entropy

Sp(P) == i, Sp(®(p))
for p > 1, where S,(0) := 1T1p log(tra®) = 25 log|lo|[p,
p/2)1/

where ||7, = (tr('7) " is the Schatten p-norm.

(Let p— 1))

Modulo normalizing factors and logarithmic change of variables,
Sy (@) is equivalent to max,cp(cmy [[P(p)[p, or [[®f|1—p.

Additivity of S{"(®) is equivalent to multiplicativity of [|®[|1—. .



Additivity /multiplicativity problems - recapitulation

For completely positive (trace preserving) maps
Smin(q) & W) e Smin(cb) + Smin(w)
?
[®@W[1mp = [[®fl1-pl[Wl1ep (p>1)

The mins and the norms are attained on pure states, so all these
quantities depend on the patterns of eigenvalues of ®(|¢)(1]).

In view of prior remarks, this is equivalent to understanding the
patterns of singular numbers of matrices varying over
m-dimensional subspaces W of the space of d x k matrices.

“No" and " No" (Hayden-Winter 2008, Hastings 2009)



Focus on || ®]1—,

Let WV be the m-dimensional subspace of C? @ Ck
(or Myxk) associated with ¢

[®]l1-p = maxpew, g1 ltr2([0) (]l
If o =>_;sj uj ® vj,this becomes
152552 L) (willlo = (55;57°) % = 4113, = 1AAT] .
where A =3 s;|uj)(vj| is the d x k matrix identified with ¢
In other words

A
|9]]72, = maxacyy 1




Milman's version of Dvoretzky's theorem

Consider the n-dimensional Euclidean space (over R or C)
endowed with the Euclidean norm |- | and some other norm || - ||
such that, for some b >0, || - || < b|-|. Denote M = E||X||, where
X is a random variable uniformly distributed on the unit Euclidean
sphere. Let ¢ > 0 and let m < ce?(M/b)?n, where ¢ > 0 is an
appropriate (computable) universal constant. Then, for most
m-dimensional subspaces E we have

Wx€E, (1—2)Mix| < Ix| < (1 +)MIx.

A similar statement holds for Lipschitz functions in place of norms.



Dvoretzky's theorem for Schatten classes (FLM ‘77)

For the Schatten norm || - || with g =2p > 2, k = d and & = 3

we get b =1 and M ~ d'/9-1/2 hence if
m o~ M2d2 ~ (dl/q71/2>2d2 = git+2/a = gl+1/p,
then for a generic m-dimensional subspace W of My

VACW  dVTI2AlL < Al < Cde 12 A,
Accordingly, for the associated fran om) channel ¢

H' ‘H2P ? 1/q-1/2 2 2 41/p—
) —p — m < (Cd+'9 / = C°d /p—1
” Hl P (AE% ||AH2 ( )

which is < 1 for large d and nearly as small as it can be:
&1, > d¥/P~1 always.

So it is clear that we are up to something.



Why M ~ d/9-1/27

fg=00 | llo=1l"llop. so ElX]op~2d?
(2 is the same as in the Wigner semi-circle law)
Obviously E[X|2=1

For g € (2,00) we interpolate (Holder inequality)



The counterexample to multiplicativity

Need [[® @ W1p > [[P[l1-p|V]l1-p

V=907 V=29 (independent copy)?

What works is W = ®!

Fact 1: If & : B(C™) — B(CH) is associated to an m-dimensional
subspace of C? @ C¥, then there is an input state

o € D(C™ @ C™) such that (® @ ®)(c) has an eigenvalue > 7,
hence [|[® @ ®|[1, > /&

. 1+1
In our setting 77 ~ d ;2/” — di/P1 5o
”q> & 6”l~>p 2 Cdl/p_l
while

= 2 —1\2 —
1P]l1—p - [®llip = ([Dl1—p)" < (C?d*P7H)" < cd™/P?



The counterexample to additivity

of Smin(+) is more subtle. The analysis of a single random channel
is based on two facts

Fact 2: Yo € D(CY) S(0) > S (4) —d [|o — 1|2 .
Consequently V& : M, — My
1d||?
Smin(®) > log(d) — d - (p) — —
(0)> tog(e) —d - max o(0)~ 5|

This reduces the study of the somewhat involved quantity Smin(-)

to upper-bounding Ho — %1 }HS for o in the range of ¢



Fact 3: If k ~ d?>, m ~ d?, then, for a typical m-dimensional

subspace W C Mgx«.,
C/
S R
Hs  d

Id
AAT — —
d

max
AEW, [ Allns=1

Recall: AAT = &(|1))(¢)|), where 1 is the unit vector corresponding
to A and @ is the channel associated to W.

Combining the estimates

Smin(®) > log(d) — d <d/>2 ~ log(d) — 0 <C11>

On the other hand, the “large eigenvalue” argument gives for the
composite channel

Smin((b@ &)) < |Og(d2) _Q (lOid)




Payback to geometric functional analysis

Fact 3 essentially says that W, when endowed with the Schatten
4-norm, is 1+ O()-Euclidean.

On the other hand, applying directly Dvoretzky's theorem for
that choice of parameters gives only 1 + O(%)



Is this good or bad?

An affirmative answer would greatly simplify the theory: BAD

On the other hand, a negative answer means that entanglement
allows using quantum channels more efficiently than previously
thought: GOOD

But to exploit this opportunity one would need explicit maps for
reasonable values of the parameters m, d



