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Let (X, 3, 1) be a probability space. An operator T" on Lo (X, >, p)
is called Markov if T is a positive contraction, T'(1) = 1 (T*(1) = 1)
and [T fdp= [ fdu, forall f € Loo(X, %, ). Then T extends to a
positive contraction on L,(X, ¥, ), forall p > 1.

Theorem (Rota, 1961):
(a) (T™(T™*)"),>1 admits a dilation in terms of a martingale.

(b) (T™(T*)")(f) converges a.s., for all f € L,(X,2, ), p> 1.

Idea of proof: On some probability space (€2, F,v), construct a
Markov process associated with 7. Imagine a particle located at x( €
X at time t = 0, where Prob(zy € Ay) = pu(Ag). At t = 1 the particle
jumps to a new location z1 € X, with Prob(x; € Ay) = T'(xa,) (o).
From zq, the particle jumps at t = 2 to x9 € X, with probability that
only depends on x1, not on xy. And so on.

Model: Q := XN path (trajectory) space, F = product o-algebra on
(), v = Markov measure on F. For n > 0, X,, is a random variable
given by (z,)n>0 € 2 — x, € X. Time evolution S is the shift
operator on €. Define Fo = {Ag x X x X x ... Ay € X} and for
n>1,F, ={Xx...xXx8:5¢€F}. Clearly

gfn+1gfnggf1gf():f

Let ¢ : 0 — X be defined by ¢(xg, x1,...) := xg. Then ¢ extends to
an isomorphism ¢ : L, (2, Fo,v) = L,(X, 2, p), and we get

(o (T"(T*)") 0 )(f) = E(En(f), n=>1

for all f € L,(Q, Fo,v), where B, .= E(-|F,), E = E(-|F).

2



Definition (Anantharaman-Delaroche, 2004):

Let (M, ¢) and (N, 1) be von Neumann algebras with normal, faithful
states ¢, ©. A linear map T: M — N is called (¢, ¥)-Markov map if

e ' is completely positive
o I'(1y) =1y

e Yol =¢
oToaf:affoT, teR.

If (M,®) = (N,v), then T is called a ¢-Markov map on M.

Remark: A (¢, v)-Markov map T: M — N has an adjoint (¢, ¢)-
Markov map T™: N — M, uniquely determined by

V(yT(z)) =o(T"(y)x), x€M,yeN.

A noncommutative Kolmogorov-Daniell construction

Given a ¢-Markov map T on (M, ¢), find a von Neumann algebra P
with a n. f. state x, a time evolution endomorphism 5 : P — P and
a normal, injective *-homomorphism Jy : M — P such that

B is x — Markov , Jy is (¢, x) — Markov (1)

and, if £,; and [}, are the conditional expectations on P, and P,
respectively, where P = \/,_ Ju(M), B, = V-, Ji(M) and
Jy. = 8% o Jy, then (P, 3, Jo, () )n>0) is a quantum Markov process
satistying for all n > 0
Epjoldy = JuoT"", q=n (2)
EpoJy = Jyo(T7)". (3)
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Note: Such a construction for a unital completely positive map on a
unital C*-algebra M satisfying (2) has been carried out by Sauvageot
(1986). However, condition (1) does not appear to be satisfied. Also,
here we insist on (3) being satisfied, as well, since then we obtain

J() oT" o (T*)n = ]EO] O E[n O J() .
Further, since Jj = J; Lo [Eq) , this implies that
T"o(IT")" = JyoEody, n>1.

A similar reasoning as in the proof of the classical theorem of Rota (us-

ing noncommmutative versions of martingale inequalities) yields con-
vergence of (T o (T%)")(x) "a.s.” v € L,(M , ).

C. Anantharaman-Delaroche (2004) proved that a noncommutative
Kolmogorov-Daniell construction satisfying all conditions (1) — (3) is
possible if and only if the ¢-Markov map T : M — M is factorizable.

Definition (Anantharaman-Delaroche, 2004):

A (¢,v)-Markov map T: M — N is called factorizable if there exists

a von Neumann algebra P with a normal, faithful state y and injective
x-homomorphisms a: M — P and : N — P such that

a is (¢, x) — Markov, (is (1, x) — Markov and T'= " o «.

M—t—N
N

P Note that 5* = 87! o Eg(y .

Remark: By (2), EgoJ; = JyoT', which implies that T' = Jj o J; .
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Remark: The set of factorizable ¢-Markov maps on M is convex, and
it is closed under composition and taking adjoints.

It can be shown that every Markov map between abelian von Neumann

algebras is factorizable.

Problem (Anantharaman-Delaroche, 2004):

[s every Markov map factorizable?

Markov maps on (M,(C),,))

Here 7, is the normalized trace on M,(C).

Let T: M,(C) — M,(C) be a (M,(C),1,)-Markov map, ie., T is
completely positive, T'(1) = 1 and 7, o T = 7;,. By a result of Choi
(1973), T is completely positive if and only if

d
T = Zafzai, x € M,(C)

i=1
where aq , ... ,aqy € M,(C) can be chosen to be linearly independent.
Then, the condition 7(1) = 1 is equivalent to > ¢

1=1"
the condition 7,, o T' = 7, is equivalent to Zle a;a; = 1.

a‘a; = 1, while

Result (Kiimmerer, 1983): Every (My(C), 5)-Markov map lies in
conv(Aut(My(C))), hence it is factorizable.



Theorem 1 (Haagerup-M.):

Let T : M, (C) = M,(C) be a (M,(C), 1,)-Markov map, written in
the form

d
Tx = Z a;xa;, x € M,(C), (4)
i=1

where ay , ... ,aq € M,(C) are linearly independent.

The following are equivalent:

1) T is factorizable

2) There exists a finite von Neumann algebra N with a normal faithful
tracial state 7y and a unitary u € M,,(N) such that

Tr = (idy,c) @ 7v) (v (z ® Lu), o€ M,(C).

3) There exists a finite von Neumann algebra N with a normal faithful
tracial state 7y and vy ,... ,v4 € N such that u: = ijl a; X v;
is a unitary operator in M,(C) ® N and

T (vivg) =65, 1<d,j<d.

Corollary 1:

Let T: M,(C) — M,(C) be a (M,(C), 7,)-Markov map of the form
(4), where ay ... ,aq € M,(C). If d > 2 and the set

{aja; 1 <4,j <d}

is linearly independent, then 7" is not factorizable.



Proof of Corollary 1:

Assume that T is factorizable. By Theorem 1, there exists a finite
von Neumann algebra N with a normal faithful tracial state 7y and
Vi,...,vg € N such that u: = 2?21 a; ® v; is unitary. Since
Zle afa; = 1, it follows that

d d
Z afa; @ (viv; — d;ly) = u'u — <Z a;-kal-) ®1y=0.
ij=1 i=1
By the linear independence of the set {aja; : 1 <4,7 < d},
viv; — 01y =0, 1<4,5<d.
Since d > 2, it follows in particular that
vivy = vy =1, wjvg =0.

Since N is finite, v1 and vy are unitary operators, which gives rise to a
contradiction. This proves that 1" is not factorizable.



Example 1 (Haagerup-M.): Set

L {000 {00
ai=— |00 -1], aa=—=[ 0 00
V2 01 o V2 100
0 —1 0
1
a3=— 11 0 0
ZAVEN

Then Z?:1 afa; = Z,‘Z’:l a;af = 1. Hence the operator T defined by

7

3
Tr: = Za;‘azai, x € M;3(C)

1=1

is a (M3(C) , 73)-Markov map. The set
{aja;:1<4,j <3}
is linearly independent. Hence, by Corollary 1, 7" is not factorizable.

Remark: Let FM(M,(C)) be the set of factorizable (M, (C),7,)-
Markov maps. Since all automorphisms of M, (C) are inner,

conv(Aut(M,(C))) € FM(M,(C),1,). (5)

Question: Is the inclusion (5) strict?



Proposition 1 (Haagerup-M.):

Let T : M,(C) — M,(C) be a (M,(C), 7,)-Markov map written in
the form

d
Tz = Za;ka:ai, x e M,(C),
i=1
where ay ;... ,aq € M,(C) are linearly independent. Then the follow-

ing conditions are equivalent:
(@) T € conv(Aut(M,(C)).
(b) T satisfies condition 2) of Theorem 1 with N abelian.
(¢) T satisfies condition 3) of Theorem 1 with NV abelian.

Corollary 2:
Let T: M,(C) — M, (C) be a (M,(C), 1,,)-Markov map of the form

d
T = Zaf:mi, x e M,(C),
i=1
where ay , ... ,aq € M,(C) are self-adjoint, Zle a? = 1 and satisfy

a;a; = aja;, 1 <1i,7 < d. Then the following hold:
(a) T is factorizable.

(b) Ifd > 3and theset {a;a; : 1 <1i < j < d}islinearly independent,
then T ¢ conv(Aut(M,(C))).



Schur multipliers

It B = (bi;); ;=1 is a positive semi-definite matrix, then the map
Tp(x): = (bijzijh<ij<n, = (2y)— € Mn(C)

is called the Schur multiplier associated to the matrix B. Note that

T’ is completely positive. If, moreover,

b11:b22:...:b7m:1,
then Tp(1) = 1 and 7, 0 T = 7,. Hence Ty is (M,,(C) , ,,)-Markov.
There exist lin. independent n X n diagonal matrices aq , . . . ag so that
d

Tp(z) = Za;kxai, x € M,(C).

=1

If the entries of B are real, then a; = a; and Z@ ,a; = 1. By Corol-
lary 2, T is factorizable. (This is a result of Ricard, 2007.)

Example 2 (Haagerup-M.): Let 8 = 1/4/5 and set

(1 8 B B B B
B 1 B -8 -8 f
B.o_ |8 B 1 B -8B P
B -8 B8 1 B -
B-B-8 B8 1 8

\B B B -8 B 1 )

Then Tp satisfies the hypotheses of Corollary 2, hence Tp is a factor-
izable Markov map on Mg(C), but T ¢ conv(Aut(Mg(C))) .
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Example 3 (Haagerup-M.): Let 0 < s < 1 and set

1 /5 /5 5 0000

s s s S 01 wuw
Bls): = g s s S =) 0w 1 w |’

Vs s s s 0 ww 1

where w = €?™/3 = —1/2 4 i1/3/2 and @ is its complex conjugate.
Then B(s) is positive semi-definite matrix of rank 2 (cf. Christensen
and Vesterstrgm). Moreover,

2
Tpis)(x) = Z a;(s) za;(s), x € MyC),
i=1
where a;(s) = diag(1,4/s,/s,1/$), as(s) =1 — sdiag(0,1,w,®).
The set {aja; : 1,7 = 1,2} is linearly independent, hence Ty is not

factorizable, by Corollary 1.

Furthermore, set

0 1 1 1
;_dBs)  _1f1 0 3-iV33+iv3
ds ., 2| 13+i/3 0 3—iV3

1 3—iv3 3+iv3 0

Then

N(t) = (B_Lijt)gz’jgzl , 120

is a semigroup of positive definite matrices having 1 on the diagonal.
Hence



is a semigroup of Schur multipliers which are (My(C), 74)-Markov maps.
For t > 0, N(t) has rank 4, and therefore Corollary 1 cannot be
applied. Using a different method we can obtain from Theorem 1

that there exists ty > 0 such that T'(¢) is not factorizable, for any
0<t<ty.

Remarks:

By a result of Kiimmerer and Maassen (1987), it follows that if
Tt): =e ™, t>0
is a one-parameter semigroup of (M, (C), 7,,)-Markov maps satisfying
Tt =T(t), t>0,
then T'(t) € conv(Aut(M,(C))), for all £ > 0. In particular,
T'(t) is factorizable, t>0.
In very recent work, Junge, Ricard and Shlyakhtenko have general-
ized the result of Kiimmerer and Maassen, by showing that if (73);>¢
is a strongly continuous one-parameter semigroup of (M, 737)-Markov

maps (with Ty = idys) on an arbitrary finite von Neumann algebra M
with a faithful, normal tracial state 73, satisfying

Ty =1(t), t=0,

then T'(¢) is factorizable, for all ¢ > 0. This result has been obtained
independently (by different methods) by Yoann Dabrowski.
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Further related results

Dykema and Jushenko (2009) considered the following sets for n > 1:

F, = U {B = (bij) c Mn(C) : bij = Tk(uzU*) y ULy e vy Up € M(Mk(c))}

J
k>1

G, = {B = (bij) € M(C) : bj = Tar(usu}) ,u, ..., u, € U(M), for

some (M , 7p7) von Neumann algebra with n.f. tracial state TM}

By results of Kirchberg (1993), Connes’ embedding conjecture holds if
and only if

Fo=G,, foralln>1.
Consider further the set
© = {B = (b;;) € M,(C) : B positive semidefinite, b; =1,1 <¢ <n}.

It is clear that
FnCG6,C0,, n>1.

Question: Is it true that F, = 6,,, for alln > 17

Dykema and Jushenko proved that the answer is NO if n > 4. More
precisely, in the case n = 4, they proved that G, has no extreme
points of rank 2, while there are extreme points of rank 2 in ©,. Hence

G4 # Oy

Connection with factorizability

As a consequence of Theorem 1,

G, ={B € 0, : Ty is factorizable } , n > 1.
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On the connection between Anantharaman-Delaroche’s
work and Kiimmerer’s work (Communicated by Claus Koestler,

May 2008)

Definition (Kiimmerer, JFA 1985):

Let (M, ¢) be a von Neumann algebra with a normal, faithful state ¢ .
A ¢-Markov map T": M — M has a dilation if there exists

e (N,v) von Neumann algebra with a normal faithful state ¢
e i: M — N (¢,9)-Markov injective s-homomorphism
e o € Aut(N, )

such that T" =i oa" o, forallmn > 1.

n

N——N
bk

Combining results from Anantharaman-Delaroche (2004) with results
from Kiimmerer’s unpublished Habilitationsschrift (1986), one gets the
following

Theorem (Anantharaman-Delaroche, 2004 + Kiimmerer, 1986):
Let T': M — M be a ¢-Markov map. The following are equivalent:

(1) T is factorizable.
(2) T has a dilation.
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Proof:
The implication (2) = (1) is elementary, because if (2) holds, then

T=1i"0o(axoi),

where both a0 i and 7 are (¢, 1)-Markov injective x-homomorphisms
of M into N.

We now show that (1) = (2).

Anantharaman-Delaroche (2004) proved that if T is factorizable, then
there exists (N, ) a von Neumann algebra N with a normal, faithful
state ¢, an injective x-homomorphism i: M — N which is (¢, 1))-
Markov, and a (1, ¢)-Markov injective x-homomorphism 5 : N — N
such that

T"=i"0ofB"0i, n>1.

However, using a result of Kimmerer from his Habilitationsschrift
(1986), one can extend S to a w-preserving automorphism « on a
larger von Neumann algebra N, namely

(N, 1)) = inductive limit of (N ,¢) —= (N, 1)) A

B
such that ¢ : M — N C N becomes a (¢, 1))-Markov injective -
homomorphism and

T" = (i)*oa"oi, n>1.

Hence T has a dilation.
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In his Habilitationsschrift (1986), Kiimmerer constructs examples of
T,-Markov maps on M,,(C) having no dilation. His examples are simi-
lar to our examples 1 and 3, but he does not consider the one-parameter
semigroup case.

Proposition (Kiimmerer, 1986):

(1) Let T': M3(C) — M;5(C) be the m3-Markov map
3
Tr: = Zafxai, x € M5(C)
i=1
where

Then T has no dilation.

(2) Let n >4 and T': M,,(C) — M, (C) be the 7,,-Markov map
2
Tx: = Zafzai, r e M,(C)
i=1
where

a 1a , , s Uygoo, , a 1a, 5 5 P .
1 g f \/7 2 1 \/,

Then T' is a Schur multiplier which has no dilation.

DO
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The noncommutative Rota dilation property

Definition (Junge, Le Merdy, Xu, 2006):

Let (M, T) be a (finite) von Neumann algebra with a normal, faithful
tracial state 7. A 7-Markov map T': M — M has the Rota dilation
property if there exists

e NV von Neumann algebra with a normal faithful tracial state 7y
® (N, )n>1 decreasing sequence of von Neumann subalgebras of N

e i: M — N trace-preserving embedding

such that for alln > 1, T" = i* o E}y, o4, where Ey, is the trace-
preserving conditional expectation of N onto N, .

M = M
N Ee S
N2 N,

Remark: If T: M — M has the Rota dilation property, then T' is
positive (as an operator on Lo(M, 7)) and it is factorizable, since

T=i"oEyoi=(ENoi)o(EyNo0i).

The following is an example of a factorizable trace-preserving Markov
map on Ms(C) which does not have the Rota dilation property. Set

T<:U— (3311 3312)) _ ( L11 —3312> . 2 € MyC).

o1 T99 —x21  X22
Then T € Aut(Ms(C)), and hence it is factorizable, but T is not
positive (as an operator on Lo(My(C) |, 13)).
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Theorem (Anantharaman-Delaroche, 2004):

If T: M — M is a factorizable Markov map and 7% = T', then 77
has the Rota dilation property:.

Remark: If M is abelian, then any Markov map 7" on M is factor-
izable. If, moreover, T' = T*, then the Rota dilation for 72 in above
theorem can be chosen such that N is abelian. This is the classical
Rota dilation theorem.

Theorem 2 (Haagerup-M.):

For some large n € N there exists a Markov map T on (M, (C),7,)
such that T* = T, but T? is not factorizable. In particular, 77 does
not have the Rota dilation property.

Remark: By the result of Junge, Ricard, Shlyakhtenko/ Dabrowski,
if (T})¢>0 is a strongly cont. semigr. of self-adj. (M, 757)-Markov maps
on (M, 7ar), then T; = (T;/2)? has Rota dilation property for all ¢ > 0.

Theorem 3 (Haagerup-M.):

Let M be a finite von Neumann algebra with normal faithful tracial
state 7, and let S: M — M be a 7-Markov map on M . TFAE:

(1) S has the Rota dilation property
(2) S has a Rota dilation of order 1

(3) S = T*T, where T: M — N is a factorizable (7, 7x)-Markov
map, for some vN alg. N with a normal faithful tracial state 7y .
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Key Lemma in the proof of Theorem 2:

Let n,d € N with d > 5 and set

Tr: = Za;‘xai, r e M,(C),
i=1
where ay , ... , a5 € M,(C) satisfy:

1)a¢=aﬁ‘ 1<Z§d

(

(2)

(3) aQaJ—a] 2 1<4,5<d

(4) A: ={aa; : 1 <i,7 <d} is linearly independent
(5)

B: =UY | B; is lincarly independent, where

By: ={aajara; i #j #Fk #1}, B2 ={aaai i #j#k#k},
By: ={ajaj i #j}, By: ={aa} i #j}, Bs: ={aja; i <j},
Bs: ={a}:1<i<d}.

Then T is a (M, (C), 7,,)-Markov map, but 77 is not factorizable. In
particular, 7% does not have the Rota dilation property.

Remark: Operators ay , ... , aq satisfying conditions (1) — (5) can be
realized in Lo (ST YRL(Zo * ... x Zy) as

a;,=bu;, 1<1:<d
where by , . .. , by are the coordinate functions on S9! (the unit sphere
in RY) and w; , ... ,uq € L(Zy*...%Zy) are the self-adjoint unitaries
corresponding to the generators gy ,... , gq of Zso* ... * Zsy. Using the

fact that this group is residually finite, it is possible to get examples of
n X n matrices ay , ... ,aq satistying (1) — (5) for large values of n.
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Further results

Recall the noncommutative little Grothendieck inequality (cb-version):

Theorem (Pisier—Shlyakhtenko, 2002, Haagerup-M, 2008):

Let A be a C*-algebra. If T': A — OH(I) is a completely bounded
linear map, then there exist states f;, fo on A such that

IT@)| < V2Tl frlzz) fo(a"e) ",z € A

Problem: What is the best constant Cy in the inequality
IT(@)]| < ClITllenfr(az™) " fola™a) ",z € A, (6)
for all choices of A and T.

Note: 1 < Cy < V2.

Theorem 4 (Haagerup-M): Cp > 1.

More precisely,

(1) There exists T: M3(C) — OH({1,2,3}) such that (6) does not
hold with C' = 1, for any choice of states fi, fo.

(2) There exists T': 1,0{1,2,3,4} — OH({1,2}) such that (6) does
not hold with C' = 1, for any choice of states fi, fs.
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Key Lemma in the proof of Theorem 2:

Let (A, 7) be a finite dimensional C*-algebra with a faithful tracial
state 7. Let d € N, d > 2, and consider a; ,...,ay € A satisfying
S ata; =00 aal = dI T(ata;) = 6, for all 1 < i,j < d and,

i=1"

moreover, the sets {aja;,1 <1i,j < d} and {a;a},1 < 4,5 < d} are
linearly independent. Define T': A — OH(d) by

Te: = (7(ajz),... ,7(agx)), x€A.
Then ||T||cp < 1, while the best constant in the inequality

| Tl < K fi(za") fola™a)t, z e A
(for all choices of states f1 fo € A)is K = 1.

Proof of Theorem 4: Use above Key Lemma with

(1)d=3,T:Tg,A=M3(C),
00 0 0 01
ar=4/5( 00 1|, a=y/5| 000
01 0 -1 00

0
as = — 1
0

o O

(2) d =2, A=1-({1,23,4}), 7(c) = 1(c1 + ... + c4), for all

(Cl,... 6@4

(A )

where w? = 1.

21



On the asymptotic quantum Birkhoff conjecture

Classical Birkhoff theorem (Birkhoff, 1946):

Every doubly stochastic matrix is a convex combination of permuta-
tion matrices.

Consider the abelian von Neumann algebra D = [({1,2,... ,n})
with trace given by 7({¢}) = 1/n, 1 < ¢ < n. The positive unital
trace-preserving maps on D are the linear operators on D which are
given by doubly stochastic n X n matrices. Note that every automor-
phism of D is given by a permutation of {1,2,... ,n}.

The quantum Birkhoff conjecture:

Does every completely positive unital trace-preserving map
T: (M,(C),1,) = (M,(C),7,), n>1

lie in conv(Aut(M,(C))?

This turns out to be false for n > 3 (see, e.g, Example 1). For the case
n > 4, this was first shown by Kiimmerer and Maasen (1987), while
the case n = 3 was settled by Landau-Streater (1993).

The asymptotic quantum Birkhoff conjecture (A. Winter,
2005):

Let T: M,(C) — M,(C) be a 7,-Markov map, n > 1. Then

kl;nolo det (é T, COHV(Aut(éMn(C)))> =0. (7)

1=1
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Theorem 5 (Haagerup-M):
Let T': M, (C) — M, (C) be a 7,-Markov map, n > 1. Then

dep (éT,conv(Aut(éMn(C)))) > dep (T, FM(M,(C))).

In particular, if T is not factorizable, then
den(T', FM(M,(C))) > 0,

since FM(M,(C)) is closed. Therefore, the asymptotic quantum
Birkhoft conjecture does not hold for n > 3.

Proof: We show that given m,n > 1, then for any 7,-Markov map
T on M,(C) and any 7,,-Markov map S on M,,(C),

dep(T' ® S, conv(Aut(M,, @ M,,)) > dep(T, FM(M,(C))).
Let i: M,(C) — M, (C) ® M,,(C) be given by
i) =2®1, x€ M,C).

It is easily checked that i*(T' ® S)i = T, where i* is the adjoint of 7.
Since ||t]|e, = ||7¥||cp = 1, we get

der(T ® S, conv(Aut(M, @ M,,)) > (8)
dep(T', i*conv(Aut(M, @ M,,))i).

Since for every u € U(M,, ® M,,) , the map i* oad(u) o1 is factorizable,
and FM(M,(C)) is a convex set, we deduce that

i*conv(Aut(M, ® M,,)i C FM(M,(C)),
which together with (8) completes the proof.
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