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Q A:=TFq[f];
Q k:=Fq(0), 0l = a;

Q C. =k

@ t: independent variable of 6;

Q T :={f e C[t]]; fconvergeson |t < 1};

@ p: arank r Drinfeld Fg4[t]-module defined over k;
©Q A,: the period lattice of p;

@ H}q(p): the DeRham cohomology of p;

@ F;: the quasi-periodic function of p associated to a given
biderivation §
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DeRham Isomorphism

Recall the well-defined pairing:

Hbslp) <Ay = Ca
(LA = [y0:=Fs5(N).

Anderson, Gekeler: The above map is a perfect pairing. So we
have the isomorphism as comparison between the DeRham
and Betti cohnomologies of the Drinfeld module p:

Hpa(p) — Homa(A,, Cs) =: H?*(p).

For any basis {[61], ..., [dr]} of H}q(p) defined over k;, i.e.,
3i(Fq[t]) C k[r]7, and any A-basis {\y,..., A/} of A, the r x r

matrix
pr=[ 5
Aj

is called period matrix of the Drinfeld module p.
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Natural Relations among Entries of Period Matrix

Each endomorphism f of p induces a homomorphism
f* (6 — 76 (t — 6tF)) - Hpr(p) — Hpr(p).

The quasi-periodic function of f*4 is given by Fy-5(z) = Fs(box)
for f =7 o bot'.



Natural Relations among Entries of Period Matrix

Each endomorphism f of p induces a homomorphism
f*: ((5 — "8 (t = 5tf)) . HDR(p) — HDF;(p).
The quasi-periodic function of f*4 is given by Fr.5(2) = F5(box)

for f =31 o bor'. Write *6; = >")_4 Cidp and boA; = >°)_; A,
then evaluating z = \; € A, we obtain

Z CoFs, (A Z deFs;(Ae)-
If f ¢ p(Fq[t]), then it is a nontrivial k-linear relation among the

values
/ bj 1= F(;j(A,
A



Period Conjecture for Drinfeld modules

Yu 1997, Brownawell 2001

All the k-linearly relations among the entries of the period
matrix P, are those induced from the endomorphisms of p. In
particular, dimz k-Span {f)\; 0j; 1 <0,j < r} =r?/s, where
s:=[End(p) : A].
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Period Conjecture for Drinfeld modules (Brownawell-Yu)

All the k-algebraic relations among the entries of the period
matrix P, are those induced from the endomorphisms of p. So

tr.deg,;l_((/ 8j) =r?/s.
Aj

Theorem 1 (Chang-Papanikolas 2009)
The period conjecture is true (also true for general A).
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Algebraic independence of Drinfeld logarithms

Yu 1997 (Analogue of Baker’s Theorem)

Let uy, ..., un € Co satisfy exp,(u;) € kforall i. If uy,..., up
are linear independent over End(p), then 1, uq,...,u, are
linearly independent over k.

A

Theorem 2 (Chang-Papanikolas 2009)

Assumption as above. Then uy, ..., u, are algebraically
independent over k (also valid for general A).

Classical conjecture

Let uy, ..., up satisfy e¥ € Q forall i. If uy, ..., up are linearly
independent over Q, then uy, . .., u, are algebraically

independent over Q.




Logarithms and Quasi-Periodic Functions

Yu 1997, Brownawell 2001

Fix a basis {[01], ..., [d]} of H}5(p) defined over k. Let
Uy, ..., Up € Cy satisfy exp ,(u;) € k for all i. Suppose that
uy, ..., upare linearly independent over End(p), then the
following rn values

F51 (U1), 500 F51 (Un)

F(S,(U1), cees F(sr(Un)
are linearly independent over k.




Logarithms and Quasi-Periodic Functions

Yu 1997, Brownawell 2001

Fix a basis {[d1],...,[dr]} of H1DH(,0)_ defined over k. Let
Uy, ..., up € Cy satisfy exp (u;) € k for all i. Suppose that
uy, ..., upare linearly independent over End(p), then the

following rn values

F51 (U1), 500 F51 (Un)

F(S,(U1), sy F(sr(Un)

are linearly independent over k.

Theorem 3 (Chang-Papanikolas 2009)

Assumption as above. Suppose that the fraction field of End(p)
is separable over k. Then the above rn values are algebraically
independent over k.

N
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Step I: Solving difference equations
W.L.O.G, we may assume that p is given by
pt =04+ kiT+ ...+ kg7 4+ 77 Let

[0 1 0 0 |
0 0 1 0
= : : : € Mat,(k[t]),
0 0 0
1 1 2 1 r—1
(t—10) —/<;1/q —mz/q - —firﬁ |

then following Pellarin we use Anderson generating functions to
create V € GL,(T) so that

V(=) = ow, and k(W(9)) = R(/ 5))-
Aj

By Papanikolas’ theory, it suffices to prove dim 'y, = r?/s.
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Let M be the rigid analytically trivial pre-t-motive defined by ¢.
Anderson showed that there is a fully faithful functor
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Sketch of the proof of Period Conjecture

Let M be the rigid analytically trivial pre-t-motive defined by ¢.
Anderson showed that there is a fully faithful functor

{ Drinfeld Fq4[t]-modules/k up to isogeny} — {R.A.T. pre-t-motives} ,

we have
frac(End(p)) = Endg 1y ,-1(M) =: K

Note that [K : Fq(t)] = s.
Step II: Prove

Ny = Centg, IC) = Res,c/]Fq(t)(GLé/,C)

f/JFq(f)(

and hence finish the proof of Period Conjecture.
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Sketch of the proof of I'y = Centg,

()

Let Ry be the Tannakian subcategory generated by M. As Ry
is functorial in M, we have a natural upper bound for y:

r/Fq(t)

Ny C CentGLr/Fq(t)(IC).

Question: How to obtain a lower bound for 'y ?

Answer: Connection to Galois representations.

Let K be a finite extension of k so that End(p) C K[r]. Given a
prime v in Fq[t], we let

T(p) = lim plv".

Let A, := [Fg[t]y and k, := Fg(t)v, then we have the v-adic
Galois representation

by« Gk = Gal(KSP/K) — Aut(k, ®a, Tv(p)) = GL(k,).
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Sketch of the proof of I'y = Centg,

r/Fq(t)

Pink 1997: ¢,(Gk) C Centg,(k,)(K) is Zariski dense.
Key Lemma (Lower bound for I'y): For v = ¢, enlarge K so that
Spec Kk(t)[Vj;, 1/detV] is defined over K(t), then one has

ov(Gk) C Tw(ky) (S Centgy,k,)(K))-

Pink’s theorem implies 'y (ky) = Centgy,k,)(K) for v = t and
hence
Ny = CentGL,/Fq(t)(lC).

Corollary: For each prime v, we have the analogue of
Mumford-Tate conjecture

ov(Gk) C Ty(ky) is Zariski dense.
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Drinfeld modular forms

Forany ze H:=Cqy \ koo, We let A, .= Az + A. Its
corresponding rank 2 Drinfeld Fg4[t]-module is given by

ot 04 g(2)T + A(2)72

Regarding g and A as functions on H,then

@ g is a Drinfeld modular form of weight g — 1, type 0;

@ A is a Drinfeld modular form of weight g — 1, type 0.
Goss, Gekeler: Put gnew := g/7"r‘7*1 and Apew = A/7"rq2*1, then

Onews Dnew € l_([[qoo(z)]], where g-(2) == 1/expq(72).

There is a modular form h € k[[g..]] (Poincaré series) of weight
g+ 1, type 1 for which h9~1 = —A . Then graded ring
generated by modular forms (graded by weights) is given by

Cwo [gneWa h]-



Drinfeld quasi-modular forms

d —
Gekeler: Set E := %FZAA(Z()Z) € k[[gso]]- Then E is called false

Eisenstein series of weight 2 since for v € GL»(A),

E(7z) = (cz + d)?(dety) ™ <E(z) . W(Czid)> .
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Gekeler: Set E := L %> € k[[qw]]. Then E is called false

Eisenstein series of weight 2 since for v € GL»(A),
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Definition/Theorem (Bosser-Pellarin 2008): Any such function
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Drinfeld quasi-modular forms

d —
Gekeler: Set E := %FZAA(Z(Z) € k[[gso]]- Then E is called false

Eisenstein series of weight 2 since for v € GL»(A),

E(7z) = (cz + d)?(dety) ™ <E(z) . W(Czid)> .

Definition/Theorem (Bosser-Pellarin 2008): Any such function

f= Z aijeg/’:yewhiEe € COO[QHGW; h7 E]
(g—1)i+(g+1)j+2e=¢

is called a Drinfeld quasi-modular form of weight .
Defintion: A quasi-modular form f is called arithmetic if

f € kl[gul]



The algebraic points on GL>(A)\H

Recall that the set of isomorphism classes of rank 2 Drinfeld
[Fq[t]-modules can be identified with GL>(A)\H and GL>(A)\H
is analytically isomorphic to C, via the j-invariant function

j(=g9/A): GL(A)\H — Cu
z —  j(2).
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The algebraic points on GL>(A)\H

Recall that the set of isomorphism classes of rank 2 Drinfeld
[Fq[t]-modules can be identified with GL>(A)\H and GL>(A)\H
is analytically isomorphic to C, via the j-invariant function

j(=g9/A): GL(A)\H — Cu
z —  j(2).

Set
S:={a€eH; jla) €k}

Then for each a € S, there exists w, € C so that the rank 2
Drinfeld Fq[t]-module ¢" is defined over k, where
A := Aaw, + Aw, (period lattice of ¢"). Note that

S =CMUNCM,

@ CM := {«a € H; «ais quadratic over k} (set of CM points)
@ NCM := S\CM (set of non CM points).
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Transcendence results

Theorem 4 (Chang 2009)

Let f be an arithmetic quasi-modular form of nonzero weight.
Givenany o € S:= {a € H; j(a) € k} so that f(a) # 0, then
f(«) is transcendental over k.

@ Algebraic independence of f(a), a € S (work in progress).

@ Similar question to f(«) in the classical case. The
transcendence of f(«) is only known for CM point .

Question: Why is f(«) interesting?
Answer:

@ It has connection to periods and quasi-periods of rank 2
Drinfeld Fq[t]-modules defined over k;

@ It has motivic interpretation.
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Given any a € S, consider A, = Aa + A. Then
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Special values of modular forms |

Given any a € S, consider A, = Aa + A. Then
¢p* = 0+ g(a)7 + A(a)72. Choose any € € C* so that
A(a)e® 1 =1. Set A := ¢ 'A,, then we have

o= Mehe =0+ WY@ + 12

where j(a) := g(a)%" /A(a) € k. Note that the period lattice of
N is A= A2 + Al Setw, =1, then

67

Afe) = ()P = ug .

€ «

Since Apew(2) := A(2)/7#F 1, then

2_1q

Apew(a) = (wa/7)T .
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For any arithmetic modular form f of weight ¢, consider
fa*=1 /AL, which has weight zero. Since f&~' and A’,,, are
arithmetic, 9 ‘1/A,,ew belongs to the function field

k(GL2(A)\H) = k(j).
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Special values of modular forms I

For any arithmetic modular form f of weight ¢, consider
fa*=1 /AL, which has weight zero. Since f&~' and A’,,, are
arithmetic, 9 ‘1/A,,ew belongs to the function field
k(GLo(A)\H) = k(j). For x,y € CX, we denote by x ~ y if
x/y € k. Since j(a) € k, ¥ (a )/A,,ew( ) € k and hence
Wa
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fa*=1 /AL, which has weight zero. Since f&~' and A’,,, are
arithmetic, 9 ‘1/A,,ew belongs to the function field
k(GLo(A)\H) = k(j). For x,y € CX, we denote by x ~ y if
x/y € k. Since j(a) € k, ¥ (a )/A,,ew( ) € k and hence
Wa

fla) ~ (22",

™

Remark:
@ The above formula is still valid for any arithmetic modular
forms for a congruence subgroup of GLy(A).

@ The classical modular forms having algebraic Fourier
coefficients have the same formula above.
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Recall that the quasi-modular forms in question are lying in
K[Gnew, h, E], and gnew, h are modular forms. So it suffices to
investigate the value E(«). We claim that

waFur +(wa)

7}2

E(a)
Classical case: Recall Go(z) =, > (rn;w and

Ex(2) = —5Gal2).

For r € H, let A, := Z7 + Z. Let E; be the elliptic curve
associated to A, and set

]
o ::/0 on,.(2)dz.



Special values of E(a) |

Recall that the quasi-modular forms in question are lying in
K[Gnew, h, E], and gnew, h are modular forms. So it suffices to
investigate the value E(«). We claim that

waFur +(wa)

7}2

E(a)
Classical case: Recall Go(z) =, > (rn;w and

Ex(2) = —5Gal2).

For r € H, let A, := Z7 + Z. Let E; be the elliptic curve
associated to A, and set

]
o ::/0 on,.(2)dz.

Katz: o = GQ(T).
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Gekeler: Forany z € H, let A, = Az + A. Then
E(z)
Fon. (1) = .
wer(1) = =55 h(z)
For a € S, recall A, = Ao+ Aand A = Aaw, + Aw,. Since
(%\ = wa¢/1\awo_l1a
F(z)/\ﬂ.(Z) = ng¢Aa’T(w;1Z).
Replacing z by w, and using Gekeler’s formula, we have
OéF T (0%
E(a) ~ W#z(w)
s
Note that ¢" is defined over k and so our Theorem 1 implies
wa /T and Fy (wa)/7 are algebraically independent over k.
Therefore we obtain the transcendence of f(«) for nonzero

weight quasi-modular form f € k[gnew, h, E], since f(a) is

. ) i L
homogeneous over K in (wa/7)97", (wa/7)9t" and %
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Motivic interpretation of E(«)

Given a € S, let k := /j(a) € k. Then ¢ = 0 + k1 + 72.

Define o —&Va(t—0) (t—0)
oc-_< 1 0 )

define a pre-t-motive M,,. Then we have:

@ M, is rigid analytically trivial and the solution matrix for
v = o v, is given by certain generating functions in
terms of E and « (based on functions defined by Pellarin);

Q Ko := Endg,0-11(Ma) = Frac(End(¢")). That s,

Ko = k(o) it « € CM; Ko, = Fy(t) if « € NCM.

© The motivic Galois Iy, is either Resik., /rq(t)(Gmyk. ) (if

a €CM) or GLZ/Fq(t) (if « eNCM).
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Results for Drinfeld modules

@ Prove a period conjecture;
© Establish an analogue of Mumford-Tate conjecture;
© Algebraic independence of Drinfeld logarithms;

© Tools: Papanikolas’ theory + Pink’s theorem on the size of
v-adic Galois image.

Result for arithmetic quasi-modular forms

@ Transcendence of values of positive weight at « € S;

@ Tools: Gekeler’s formula+ Result of period conjecture for
rank equal to 2.

Transcendence Philosophy

No surprising algebraic relations among periods! All algebraic
relations should be explained motivically.




