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Convective parameterization

Many clouds and especially the processes within them are subgrid-scale size
both horizontally and vertically and thus must be parameterized.

This means a mathematical model is constructed that attempts to assess their

effects in terms of large scale model resolved quantities.
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Parameterization Basics

Arakawa & Schubert 1974

Key Quasi-equilibrium assumption:

τadj ≪ τls
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Quasi-equilibrium

Convective equilibrium requires scale separation
Large scale uniform over region containing many clouds
Large scale slowly varying so convection has time to respond

Convective activity within a small grid cell is highly variable(even in
statistically stationary state)
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Fluctuations in radiative-convective equilibrium

For convection in equilibrium with a given forcing, the mean mass flux should be well defined.

At a particular time, this mean value would only be measured in an infinite domain.

For a region of finite size:

What is the magnitude and distribution of variability?

What scale must one average over to reduce it to a desired level?
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Main assumptions

Assume:

1.Large-scale constraints- mean mass flux within a region 〈M〉 is given in terms
of large scale resolved conditions

2.Scale separation- environment sufficiently uniform in time and space to
average over a large number of clouds

3.Weak interactions- clouds feel only mean effects of total cloud field( no
organization)

Find the distribution function subject to these constraints
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Other constraints

〈m〉 is not necessarily a function of large scale forcing

Observations suggest that 〈m〉 is independent of large scale forcing

Response to the change in forcing is to change the number of clouds.

〈m〉 might be only sensitive to the initial perturbation triggering it and the dynamical
entrainment processes.
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mass flux of individual clouds are statistically un-correlated :

PM (n) = Prob{N [(0, M ]) = n} =
(λM)ne−λM

n!
n = 0, 1, · · ·

given λ = 1/(〈m〉) =
〈N〉
〈M〉

is fixed.

Poisson point process implies:

P (m) =
1

〈m〉
e
− m

〈m〉

The total Mass flux for a given N Poisson distributed plumes is a Compound point process:

M =
N
X

i=0

mi
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Predicted distribution

So the Generating function of M is calculated exactly:

G(t) = 〈etM 〉m,N = 〈et
P

N

i
mi〉m,N

〈etM 〉m,N = 〈gN (t)〉N

= e−ΛeΛg(t)

where

g(t) = 〈etm〉m Λ = 〈N〉

Therefore the probability distribution of the total mass flux is exactly given by:

P (M) = P (M) =

„

〈N〉

〈m〉

«1/2

e−〈N〉M−1/2e−M/〈m〉I1

 

2

„

〈N〉

〈m〉
M

«1/2
!

All the moments of M are analytically tractable and are functions of 〈N〉 and 〈m〉.

〈(δM)2〉

〈M〉2
=

2

〈N〉

〈(δM)3〉

〈M〉3
=

6

〈N〉2
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Estimates

In a region with area A and grid size ∆x ≫ L where L the mean cloud
spacing is:

L = (A/〈N〉)1/2 = (〈m〉A/〈M〉)1/2

Assume latent heat release balance radiative cooling S,
rate of Latent heating ≃ Convective mass flux × Typical water vapor mass mixing
ratio q

lvq 〈M〉
A = S

Estimate:
S = 250Wm−2, q = 10gkg−1 and lv = 2.5 × 106Jkg−1 gives

〈M〉/A = 10−2kgs−1m−2

〈m〉 = wρσ with w ≃ 10ms−1 and σ ≃ 1km2 gives
〈m〉 ≃ 107kgs−1

hence
L ≃ 30km

δM
M =

√
2 L

∆x
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CRM distributions of cloud mass flux

Mass flux per cloud Total mass flux distribution

Craig and Cohen JAS (2006)

Resolution: 2km× 2km× 50 levels
Domain: 128 km×128 km× 21 km
Boundary conditions: doubly periodic, fixed SST of 300 K
Forcings: fixed tropospheric cooling of 2,4,8,12,16 K day−1
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CRM mass flux variance

Without organization Shear (organization)

Left panel: normalized standard deviation of are-integrated convective mass flux versus
characteristic cloud spacing.

Right panel: Various degrees of convection organization: un-sheared(*), weak shear ( ), strong

shear(+).
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Simulations with a ’cloud resolving’ model

Resolution: 2km× 2km× 90 levels

Domain: 96 km×96 km× 30 km

Boundary conditions: doubly periodic, fixed SST of 300 K

Forcing: An-elastic equations with fully interactive radiation

scheme
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A 2D cut through the convective field
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In cloud properties up-drafts M(t) and A(t)
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Long time portraits of ql(t), qv(t) and T(t)
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short time portraits of ql(t), qv(t) and T(t)
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Distribution of CAPE and LNB
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Short and long wave heating rates
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Adjustment time

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5  10  15  20  25  30  35  40  45

C
Q

T
 M

(τ
)

τ (hours)

z=1517 m
z=4989.53 m
z=8403.16 m

z=11400.00 m

CQT M (τ) =
〈Q̃T (t)M̃(t + τ)〉

σQT
σM

The adjustment time of the total heating rate QT = QS + QL and the mass flux at various altitudes.

The τadj varies in the range of ≃ 2 − 4 hours .
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Auto-correlation of up-drafts M
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〈M̃(z, t)M̃(z + δ, t + τ)〉

σM (z)σM (z + δ)

where M̃ ≡ M − 〈M〉 and 〈· · · 〉 is a time average.
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Auto-correlation of up-drafts A
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Auto-correlation of up-drafts mc
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Auto-correlation of qv
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Auto-correlation of ql
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Auto-correlation of T
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CAPE auto-correlation
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Speculation:

τrad =
H2ρcp(dθ/dz)

〈Qrad〉

Assuming 〈Qrad〉 = 125Wm−2, H = 15Km, ρ = 0.6kgm−3, dθ/dz = 3Kkm−1

gives ws ≃ 0.005cms−1 and τrad ≃ 30 days.
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Spatio-temporal delayed correlation function
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Information transport in Au
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Information transport in Mu
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Information transport in Wu
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Mean characteristics
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〈N〉 and 〈σc〉
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Fat tails of marginal PDF of up-draft area coverage
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Altitude variability of total Mass flux PDF
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P(M,z)
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P(M,z)
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Mass flux variance
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The scaling of the variance of total mass flux and number of active grids in different heights with the
Craig and Cohen prediction:
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Mass flux Skewness
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Clustering degree

If N(A) is the number of clouds in any sub-area A ⊂ S then Pp[N(A) = k] is defined by

Pp[N(A) = k] =
(γ|A|)ke−γ|A|

k!
for k = 0, 1, · · · ,

where γ|A| is the average number of clouds in the sub-area with size |A|.

Centered on any arbitrary cloud we define the probability of finding the farthest neighboring cloud
with a given Euclidean distance less than r, i.e. Π<

p (r).

Π<
p (r) = 1 − Π>

p (r) = 1 − Pp(N(A) = 0)

= 1 − e−γπr2

,

where |A| = πr2 is used.

For obtaining the clustering degree one measures directly the cumulative probability of having k

clouds inside a ball of radius r centered around any existing cloud in each altitude.
Then

χ(r) =
Π<(r)

Π<
p (r)

.
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Clustering I
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In a radius of around 10 km any cloud is surrounded with more neighboring clouds than a Poisson

distribution predicts.
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Clustering II
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Summary

Analysis of the time scales shows that a state of quasi-equilibrium establishes in our CRM
simulation with diurnal forcing.

The response of the total up-draft mass flux to the total heating rate at all heights indicates to a
range of 2 − 4 hours adjusting time.

The statistics of the total up-draft mass flux is qualitatively consistent with the predictions of the
Cohen and Craig (2006).

The Gibbs theory under-estimates the variance and skewness of the total mass flux.

Analysis of our CRM simulation shows that the non-interacting assumption employed in the
Craig and Cohen theory does not hold as we demonstrate the clouds preferentially cluster .
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