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This is a summary of open problems raised in connection with my talk at
the BIRS workshop “Operator Structures in Quantum Information Theory”,
15 February 2007. The main references are [CHKŻ] and [CGHK]. Given
T ∈ MN(C) (the algebra of N × N complex matrices), we use Λk(T ) to
denote the “rank–k numerical range of T”:

Λk(T ) = {λ ∈ C : there exists P ∈ Pk such that PTP = λP},

where Pk denotes the space of rank–k orthogonal projections in MN(C).

Problem 1: Is Λk(T ) always a convex subset of C?

Remarks: This is perhaps the key problem, and others mentioned in what
follows are related to it. There is considerable theoretical and experimental
evidence suggesting a positive answer. Such an answer would be valuable in
at least two ways:

(1) The venerable Toeplitz–Hausdorff Theorem says that the classical nu-
merical range W (T ) (ie {(Tu, u) : ‖u‖ = 1}) is convex, and it is easy to see
that Λ1(T ) = W (T ). Thus a positive answer to Problem 1 for any k ≥ 2
would be a striking extension of the Toeplitz–Hausdorff Theorem.

(2) The problem is important in connection with quantum information theory
(see [CKŻ1], [CKŻ2]), particularly in the light of the criteria for correctable
subspaces due to Knill–Laflamme and Bennett et al. For example, a positive
answer would extend (and perhaps complete) our understanding of the CKŻ
conjecture:

CKŻ Conjecture: If T is normal, then Λk(T ) = Ωk(T ), where

Ωk(T ) =
⋂

#(J)=N−k+1

conv({λj : j ∈ J}).
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Here λj are the eigenvalues of the normal T and J runs over subsets of
{1, 2, . . . , N}. Since Ωk(T ) is convex, the CKŻ conjecture implies a positive
answer to Problem 1 for normal matrices. On the other hand, it is often
relatively easy to verify that the extreme points of Ωk(T ) (for normal T ) lie in
Λk(T ); in such cases a positive answer to Problem 1 yields the CKŻ conjecture
as well. It may well be that the combinatorial techniques of [CHKŻ] can be
extended to give a positive answer to the following problem.

Problem 2: When T is a normal matrix, is each extreme point (vertex) of
Ωk(T ) also an element of Λk(T )?

Remarks: In [CHKŻ] the CKŻ conjecture is reduced to the unitary case and
for unitary T with distinct eigenvalues the conjecture is established except
when 2k < N < 3k; it is also established by nonconstructive methods for
N = 3k − 1 and N = 5k/2. In applications to quantum information theory,
the structure of the quantum systems may require us to deal with unitary
or normal T having multiple eigenvalues. Hence the importance of the next
problem.

Problem 3: Extend the results of [CHKŻ] on the CKŻ conjecture for normal
T to the case of multiple eigenvalues.

In [CGHK] Problem 1 is reduced (for a given value of k) to a variety of
“simpler” but equivalent forms. We mention just two of them as Problems
4 and 5.

Problem 4: (equivalent to Problem 1) Do we have, for any given X,Y ∈
Mk(C), the existence of Z ∈ Mk(C) such that Ik + XZ + Z∗Y − Z∗Z = 0k?

Problem 5: (equivalent to Problem 1) Do we have, for any given M,R ∈
Mk(C), where R is positive definite, a Hermitian fixed point H for the map
fM,R defined by

fM,R(H) = Ik + MH + HM∗ −HRH?

Remark: Evidently Problem 4 suggests that the methods of algebraic ge-
ometry (over the real field) may be brought to bear on Problem 1, while
Problem 5 suggests that topological methods may be helpful. In [CGHK]
some special cases are handled successfully.
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In [CGHK] we present experimental (graphic) results that suggest the fol-
lowing more ambitious form of Problem 1.

Problem 6: Do we have, for any T ∈ MN(C),

Λk(T ) =
⋂
{W (PLT |L) : L is a subspace of dimension N − k + 1}?

Remarks: A positive answer to Problem 6 would imply a positive an-
swer to Problem 1 since the Toeplitz–Hausdorff Theorem ensures that each
W (PLT |L) is convex. Note that the CKŻ conjecture can be restated in an
analogous form: for normal T ,

Λk(T ) =
⋂
{W (PLT |L) : L is a T–invariant subspace of dimension N−k+1}.

Experiments indicate that invariant subspaces do not suffice for nonnormal
T .

While it is a standard technique to trace the boundary of the classical numeri-
cal range W (T ) (=Λ1(T )) by plotting (Tu1

θ, u
1
θ) where u1

θ is a unit eigenvector
corresponding to the largest eigenvalue of Re(eiθT ), the phenomenon seen in
Figure 1 and 2 remains to be explained. There it appears that (Tuk

θ , u
k
θ)

where uk
θ is a unit eigenvector corresponding to the k–th largest eigenvalue

of Re(eiθT ) traces the boundary of Λk(T ) (plus “wings” at the “corners” of
Λk(T )). Thus we include the following somewhat vague problem.

Problem 7: Explain what is going on in Figures 1 and 2. More specifically,
when is (Tuk

θ , u
k
θ) an element of Λk(T )?

Finally, we point out yet another way of looking at Problem 1. The “k–th
spatial numerical range” has been defined as follows:

W k
s (T ) = {X∗TX : X is a N × k matrix with X∗X = Ik}.

These sets have been studied in some detail (see [Li–Tsing], [Farenick], for
example). They are not convex in general but it seems possible that the
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Figure 1: Λ2(T ) for a random T ∈ M4(C) (black; via a Newton–Raphson
technique) bounded (with additional “wings”) by the curve (Tu2

θ, u
2
θ) where

uk
θ is a unit eigenvector corresponding to the k–th largest eigenvector of

Re(eiθT ); this mysterious phenomenon is discussed in connection with Prob-
lem 7
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Figure 2: The boundries of Λk(T ) (k = 1, 2, 3) are plotted for a random
T ∈ M6(C) by the (poorly understood) method described in connection with
Problem 7; the “wings” should be ignored; the curves plot (Tuk

θ , u
k
θ) where uk

θ

is a unit eigenvector corresponding to the k–th largest eigenvector of Re(eiθT )
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scalar matrices λIk ∈ W k
s (T ), which correspond to Λk(T ), do nevertheless

form a convex set. Hence we have the following problem.

Problem 8: (equivalent to Problem 1) Do the scalar matrices in W k
s (T )

form a convex set?
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