Light Tailed Behaviour and Decay Rate for a General Type of Two-Dimensional Random Walk with Complex Boundaries

Yiqiang Q. Zhao School of Mathematics and Statistics Carleton University (Canada-China Workshop on Industrial Mathematics, BIRS) August 5—10, 2007

This talk is based on joint work with:

- Q.M. He, Dalhousie University
- Hui Li, Mount Saint Vincent University
- M. Miyzawa, Tokya University of Science

Abstract

Motivated by characterizing properties of rare events in stochastic models such as telecommunications systems, insurance policies, etc, in this talk, we present some key results for a general type of twodimensional random walk with boundaries. This type of random walk can be modeled as a quasi-birth-anddeath process with countably many background (phase) states. By using the matrix-analytic method, combined with probabilistic arguments, conditions for exactly geometric decay and for light-tailed but not exactly geometric decay are obtained.

Outline

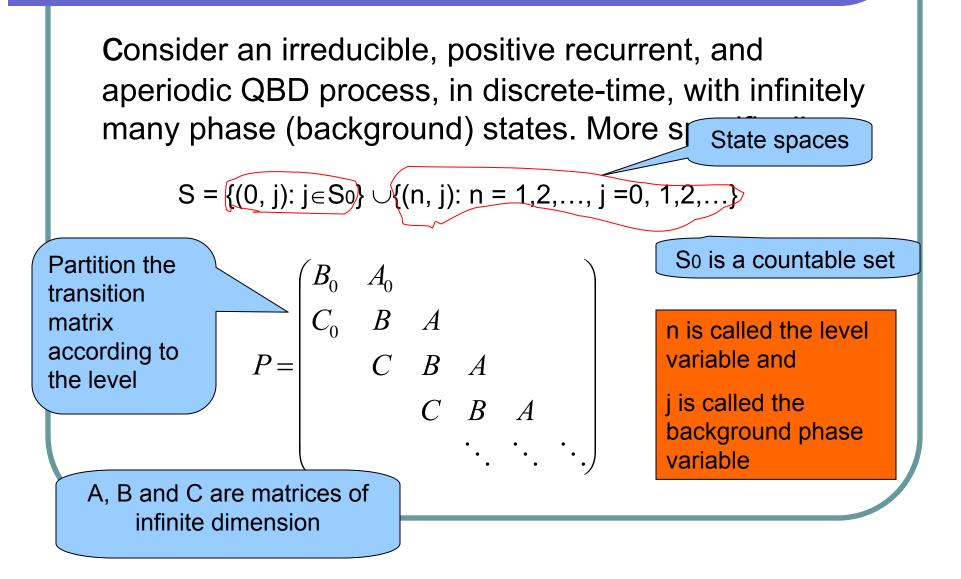
Introduction

- QBD Process with Countably Many Phases
- Issues of Interest
- Selected Literature Review
- Main Results

Applications to Queueing Models

- Polling System
- Gated Service Queues

Introduction (QBD process with countably many phase states)



Introduction (Stationary Vector)

$$\pi = (\pi_0, \pi_1, ..., \pi_n, ...)$$
Partitioned according to
the level
$$\pi_n = (\pi_{n,0}, \pi_{n,1}, ..., \pi_{n,j}, ...), \quad \pi_0 = (\pi_{0,j})_{j \in S_0}$$
Matrix-geometric solution
$$\pi_n = \pi_1 R^{n-1}, \quad n \ge 1$$

$$\pi_0 = \pi_0 B_0 + \pi_1 C_0$$

$$\pi_1 = \pi_0 A_0 + \pi_1 (B + RC)$$

$$R = A + RB + R^2 C$$

$$\pi_0 e + \pi_1 \left(\sum_{n=0}^{\infty} R^n\right) e = 1$$

Introduction (Issues of Interests)

Characterization of tail asymptotics of both the joint distribution $(\pi_{n,j})$ along direction n and the marginal distribution $\pi_n e$ as $n \to \infty$

- Exactly geometric decay rate
- Light tail behaviour without a geometric decay
- Upper and lower bounds (not in this talk)

Introduction (Selected Literature Review)

• Complex analysis (uniformization method, analytic continuation

The parallel queues feeded by arrivals with two types of demand and joint-the-shortest-queue

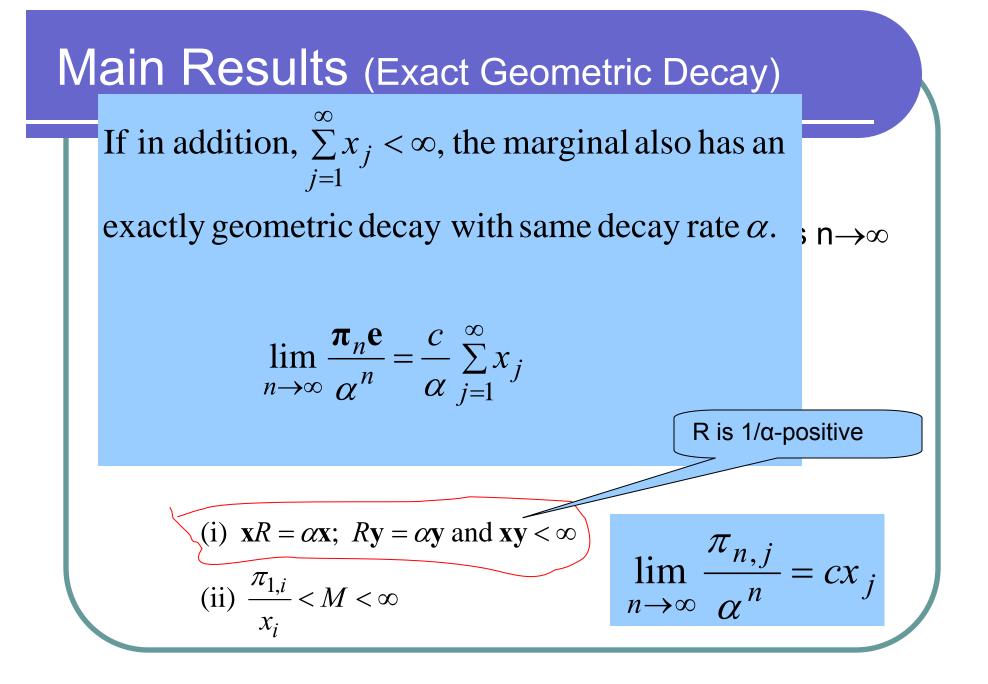
The tandem queue with coupled processors

Generalized joint-the-shortest-queue

Modified Jackson network

- Takanaashi, Fujimoto and Wakimoto (2001) (C
- Haque (2003), Haque, Liu and Zhao
- Miyazawa (2004) (M/G/1)
- Miyazawa and Zhao (2004) (GI/G/1)
- Kroese, Scheinhardt and Taylor (2004), (QBL
- Li, Miyazawa and Zhao (2007), Motyer and Ta

- In literature, focus has been on
- the joint distribution
- 2. exactly geometric decay along level direction
- 3. R is $1/\alpha$ -positive for some 0< α <1.
- 4. R is irreducible



Main Results (Exact Geometric Decay)

Application to the generalized joint shortest queue in which the difference of the two queues is taken as the level variable n and the minimum of two queues is background state j.

There exist an α , $0 < \alpha < 1$ positive row vector $\mathbf{x} = (x_0, x_1, ...)$

such that

(1)
$$\lim_{n \to \infty} \frac{R^n}{\alpha^n} = 0 \left(\lim_{n \to \infty} \frac{r_{i,j}^{(n)}}{\alpha^n} = 0 \right);$$

$$\lim_{n \to \infty} \frac{\pi_{n,j}}{\alpha^n} = c x_j$$

(2) $\mathbf{x}R = \alpha \mathbf{x};$

(3)
$$\lim_{i \to \infty} \frac{\pi_{1,i}}{x_i} = c, 0 < c < \infty.$$

$$\lim_{n \to \infty} \frac{\boldsymbol{\pi}_n \mathbf{e}}{\alpha^n} = \frac{c}{\alpha} \sum_{j=1}^{\infty} x_j$$

Main Results (Exact Geometric Decay)

If there exists $0 < \alpha < 1$, a positive column vector **y** such that

(1)
$$\lim_{n \to \infty} \frac{R^n}{\alpha^n} = 0;$$

(2) $R\mathbf{y} = \alpha \mathbf{y};$
(3)
$$\lim_{i \to \infty} \frac{1}{y_i} = c, \text{ and } \sum_{i=0}^{\infty} \pi_{1,i} y_i < \infty$$

$$\lim_{n \to \infty} \frac{\boldsymbol{\pi}_n \mathbf{e}}{\alpha^n} = \frac{c}{\alpha} \sum_{i=1}^{\infty} \pi_{1,i} y_i$$

410 00

If $0 < c < \infty$, the marginal distribution $(\pi_n \mathbf{e})$ has exactly geometric decay as $n \to \infty$

Definition: We say $\pi_{n,j}$ has a light tail with decay rate α , $0 < \alpha < 1$,

if for each j, $\frac{1}{\lim_{n \to \infty} \frac{\log \pi_{n,j}}{n}} = \log \alpha$

Theorem : $\pi_{n,j}$ does not have an exact geometric decay, but has a light tail with decay rate α if one of the following is true.

(*i*)
$$\lim_{n \to \infty} \frac{\pi_{n,j}}{\eta^n} = 0$$
 for all $\eta \ge \alpha$ and $\overline{\lim_{n \to \infty} \frac{\pi_{n,j}}{\eta^n}} = \infty$ for all $\eta < \alpha$
(*ii*) $\lim_{n \to \infty} \frac{\pi_{n,j}}{\eta^n} = 0$ for all $\eta > \alpha$ and $\overline{\lim_{n \to \infty} \frac{\pi_{n,j}}{\eta^n}} = \infty$ for all $\eta \le \alpha$

If there exists $0 < \alpha < 1$, a positive row vector **x** such that

(1)
$$\lim_{n \to \infty} \frac{R^n}{\alpha^n} = 0;$$

(2) $\mathbf{x}R = \alpha \mathbf{x};$

(3)
$$\lim_{i \to \infty} \frac{\pi_{1,i}}{x_i} = 0,$$

then
$$\lim_{n \to \infty} \frac{\pi_{n,j}}{\alpha^n} = 0$$

If $\alpha = \gamma$, where γ is the convergence norm of R, then the joint distribution $\pi_{n,j}$ does not have exactly geometric decay as $n \rightarrow \infty$. That is,

Assume $\lim_{n\to\infty} \frac{R^n}{\gamma^n} = 0$. If either of the following two sets of conditions are satisfied, the marginal distribution $\pi_n \mathbf{e}$ does not have exact geometric decay but has a light tail with decay rate γ .

There exists a positive row vector **x** such that (i) $\mathbf{x}R \le \gamma \mathbf{x}$ (ii) $\lim_{i \to \infty} \frac{\pi_{1,i}}{x_i} = 0$ (iii) $\sum_{i=0}^{\infty} x_i < \infty$ There exists a positive column vector **y** such that (*i*) $R\mathbf{y} \le \gamma \mathbf{y}$ (*ii*) $\lim_{i \to \infty} \frac{1}{y_i} = 0$ (*iii*) $\sum_{i=1}^{\infty} \pi_{1,i} y_i < \infty$

$$\lim_{n \to \infty} \frac{\pi_n e}{\gamma_n^n} = 0$$

$$\frac{1}{\lim_{n \to \infty} \frac{\log \pi_n e}{n}} = \log \gamma_R$$

- Consider an exhaustive polling system with one server switching between two waiting lines that contain type 1 and type 2 customers, respectively.
- There is no switching time
- At any time, if the server is serving a type k customer, k = 1, 2, it will keep serving type k customers, and switch over to serving another type only as the line of the type k customers becomes empty.
- The server goes into idle state only there are no customers in the system; and it becomes activated immediately upon a new arrival.
- Assume that the arrival processes for both types of customers are Poisson and the service times are exponential with rates $\lambda 1$, $\lambda 2$, $\mu 1$ and $\mu 2$, respectively.

- q1(t) be the queue length of type 1 customers in the system at time t;
- $q^{2}(t)$ be the queue length of type 2 customers in the system at time t,
- S(t) be the status of the server at any time t, where

 $S(t) = \begin{cases} 1 \end{cases}$

2

when server is idle,

when server is serving type 1 customers,

when server is serving type 2 customers.

$$\pi_{n,i,j} = \lim_{t \to \infty} P\{q_1(t) = n, S(t) = i, q_2(t) = j\} \quad \pi_n = [\pi_{n,1}, \pi_{n,2}]$$

$$\pi_{n,1} = (\pi_{n,1,0}, \pi_{n,1,1}, \pi_{n,1,2}, \cdots, \pi_{n,1,j}, \cdots)$$

$$\pi_{n,2} = (\pi_{n,2,1}, \pi_{n,2,2}, \pi_{n,2,3}, \cdots, \pi_{n,2,k}, \cdots)$$

The joint distribution $\pi_{n,2,j}$ does not have an exactly geometric decay, but has a light tail with decay rate

$$\alpha = \frac{\lambda_1}{\lambda_1 + (\sqrt{\mu_2} - \sqrt{\lambda_2})^2} \text{ as } n \to \infty. \text{ More specifically,}$$

$$\lim_{n \to \infty} \frac{\pi_{n,2,j}}{\alpha^n} = 0 \text{ and } \lim_{n \to \infty} \frac{\log \pi_{n,2,j}}{n} = \log \alpha$$

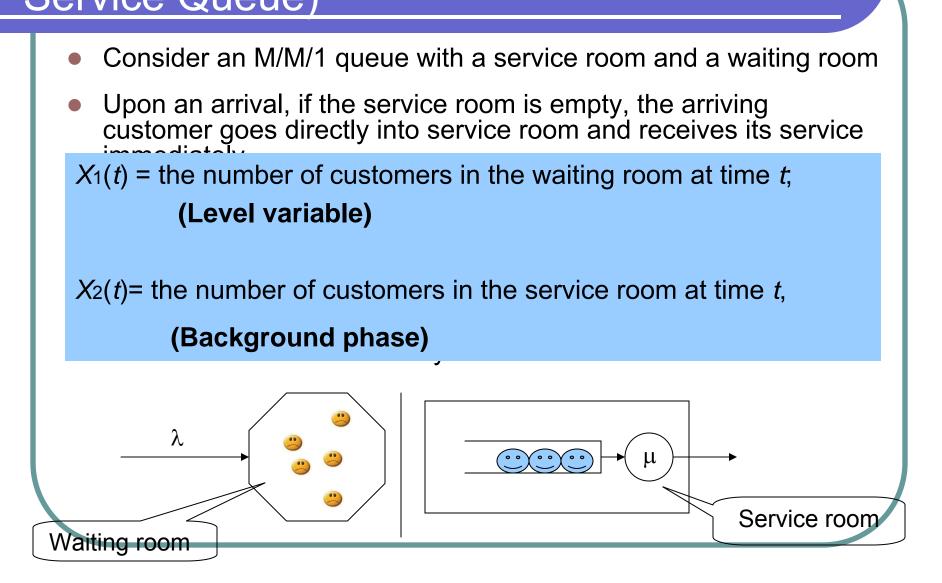
1

The marginal distribution $\pi_{n,2}\mathbf{e}$ does not have an exactly geometric decay, but has a light tail with decay rate

$$\alpha = \frac{\lambda_1}{\lambda_1 + (\sqrt{\mu_2} - \sqrt{\lambda_2})^2} \text{ as } n \to \infty. \text{ More specifically,}$$

$$\lim_{n \to \infty} \frac{\pi_{n,2} \mathbf{e}}{\alpha^n} = 0 \text{ and } \lim_{n \to \infty} \frac{\log \pi_{n,2} \mathbf{e}}{n} = \log \alpha$$

Applications (Gated Random Order Service Queue)



Applications (Gated Random Order Service Queue)

The joint distribution $\pi_{n,j}$ does not have an exactly geometric decay, but has a light tail with decay rate $\alpha = \frac{\lambda}{\mu}$ as $n \to \infty$. More specifically,

$$\lim_{n \to \infty} \frac{\pi_{n,j}}{\alpha^n} = 0 \text{ and } \lim_{n \to \infty} \frac{\log \pi_{n,j}}{n} = \log \alpha$$

Application (Gated Random Order Service Queue)

The marginal distribution $\pi_{n,2}\mathbf{e}$ does not have an exactly geometric decay, but has a light tail with decay rate $\alpha = \frac{\lambda}{\mu} \text{ as } n \to \infty$. More specifically, $\lim_{n \to \infty} \frac{\pi_n \mathbf{e}}{\alpha^n} = 0$ and $\lim_{n \to \infty} \frac{\log \pi_n \mathbf{e}}{n} = \log \alpha$

