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Abstract

Motivated by characterizing properties of rare events 
in stochastic models such as telecommunications 
systems, insurance policies, etc, in this talk, we 
present some key results for a general type of two-
dimensional random walk with boundaries. This type 
of random walk can be modeled as a quasi-birth-and-
death process with countably many background 
(phase) states. By using the matrix-analytic method, 
combined with probabilistic arguments, conditions for 
exactly geometric decay and for light-tailed but not 
exactly geometric decay are obtained.
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Introduction (QBD process with countably 
many phase states)

consider an irreducible, positive recurrent, and 
aperiodic QBD process, in discrete-time, with infinitely 
many phase (background) states. More specifically.
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Partition the 
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State spaces

S0 is a countable set

n is called the level 
variable and 

j is called the 
background phase 
variable

A, B and C are matrices of 
infinite dimension



Introduction (Stationary Vector)
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Introduction (Issues of Interests)

Characterization of tail asymptotics of 
both the joint distribution         along 
direction n and the marginal distribution          

as n →∞

Exactly geometric decay rate

Light tail behaviour without a geometric 
decay

Upper and lower bounds (not in this talk)
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Introduction (Selected Literature Review)

Complex analysis (uniformization method, analytic continuation 
and analysis of singularities)

Flatto and McKean, (1977, 1984), Leeuwarden, 2005

Probabilistic method (large deviations-like)
McDonald (99), Foley and McDonald (2001, 2004, 2004)

Matrix-analytic methods
Takahaashi, Fujimoto and Makimoto (2001) (QBD)
Haque (2003), Haque, Liu and Zhao (2005) (QBD)
Miyazawa (2004) (M/G/1)
Miyazawa and Zhao (2004) (GI/G/1) 
Kroese, Scheinhardt and Taylor (2004), (QBD)
Li, Miyazawa and Zhao (2007), Motyer and Taylor (2007) (QBD)

In literature, focus has 
been on 

1. the joint 
distribution

2. exactly geometric 
decay along level 
direction

3. R is 1/α-positive 
for some 0< α<1.

4. R is irreducible 

The parallel queues feeded by arrivals with two 
types of demand and joint-the-shortest-queue

The tandem queue with coupled processors

Generalized joint-the-shortest-queue

Modified Jackson network



Main Results (Exact Geometric Decay)

If the following conditions are satisfied, the joint 
distribution       has an exactly geometric decay as n→∞jn,π
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Main Results (Exact Geometric Decay)

If the following conditions are satisfied, both the joint 
distribution       and the marginal distribution         have 
exactly geometric decay as n →∞
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Application to the generalized joint shortest queue 
in which the difference of the two queues is taken 
as the level variable n and the minimum of two 
queues is background state j.



Main Results (Exact Geometric Decay)

If 0<c<∞, the marginal distribution         has exactly
geometric decay as n →∞
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Main Results (Light tail without a geometric 
decay)
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Main Results (Light tail without a geometric 
decay)

If α = γ, where γ is the convergence 
norm of R, then the joint distribution         
does not have exactly geometric decay 
as n →∞. That is,
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Main Results (Light tail without a geometric 
decay)
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Main Results (Light tail without a geometric 
decay)

0lim =
∞→ n

n

n
n

e
γ

π

R
n

n n
e

γ
π

log
log

lim =
∞→



Application (Polling system)

• Consider an exhaustive polling system with one server switching 
between two waiting lines that contain type 1 and type 2 
customers, respectively. 

• There is no switching time

• At any time, if the server is serving a type k customer, k =1, 2, it 
will keep serving type k customers, and switch over to serving 
another type only as the line of the type k customers becomes 
empty.  

• The server goes into idle state only there are no customers in the 
system; and it becomes activated immediately upon a new arrival.

• Assume that the arrival processes for both types of customers 
are Poisson and the service times are exponential with rates λ1, 
λ2, μ1 and μ2, respectively.



Application (Polling system) 

q1(t) be  the queue length of type 1 customers in the system at time t;
q2(t) be  the queue length of type 2 customers in the system at time t; 
S(t) be the status of the server at any time t, where

, , 1 2lim { ( ) , ( ) , ( ) }n i j t
P q t n S t i q t jπ
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0           when server is idle,
( ) 1            when server is serving type 1 customers,
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Application (Polling system) 

α
π

α

π

λμλ
λα

π

log
log

lim  and  0lim 

ly,specifical More  .n as 
)(

 ratedecay  with light tail a hasbut  decay, geometric

exactly an  havenot  does on distributijoint  The

,2,

n

,2,
n

2
221

1

,2,

==

∞→
−+

=

∞→
∞→ n

jn
n
jn

jn



Application (Polling system) 
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Applications (Gated Random Order 
Service Queue)

Consider an M/M/1 queue with a service room and a waiting room

Upon an arrival, if the service room is empty, the arriving 
customer goes directly into service room and receives its service 
immediately. 

however, if upon an arrival, the service room is nonempty, the 
arriving customer has to enter the waiting room and waits until the 
service room becomes empty;

once the service room becomes empty, all customers in the 
waiting room are instantaneously transferred into service room in 
a random order in which they will receive their services. 

μ
λ

Service room
Waiting room

X1(t) = the number of customers in the waiting room at time t;
(Level variable)

X2(t)= the number of customers in the service room at time t,                    

(Background phase)



Applications (Gated Random Order 
Service Queue)
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Application (Gated Random Order 
Service Queue)
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