

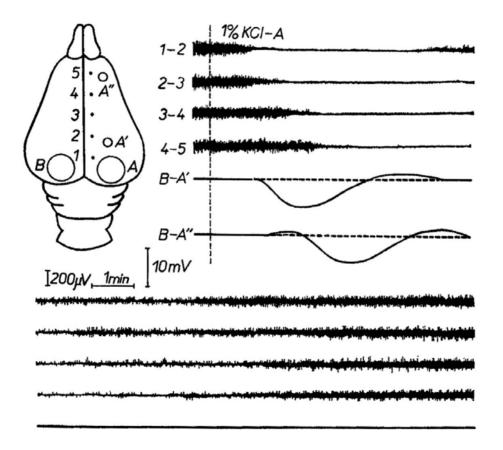
http://www.utdallas.edu/~kilgard/brain.jpg BIRS Canada-China Workshop on Industrial Mathematics August 5-10, 2007

Modeling Cortical Spreading Depression

Robert M. Miura

Departments of Mathematical Sciences and of Biomedical Engineering New Jersey Institute of Technology, Newark, New Jersey, USA

> Huaxiong Huang - York University Anisha Banerjee - NJ Inst. of Technology Yuqing Wang - Royal Bank of Canada Ben Steinberg - University of Toronto Longxiang Dai - Maryland Hideo Ikeda - Toyama University Henry Tuckwell - France

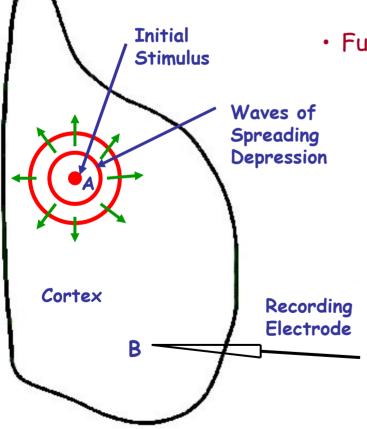

<u>Outline</u>

- Cortical Spreading Depression
- Ion Movements in the ECS and ICS
- Spatial Buffering and Cell Swelling
- Applications

Cortical Spreading Depression

- A.A. Leao 1944 Ph.D. Harvard, Epilepsy in rabbit
- Depression of the EEG ~1-3 min

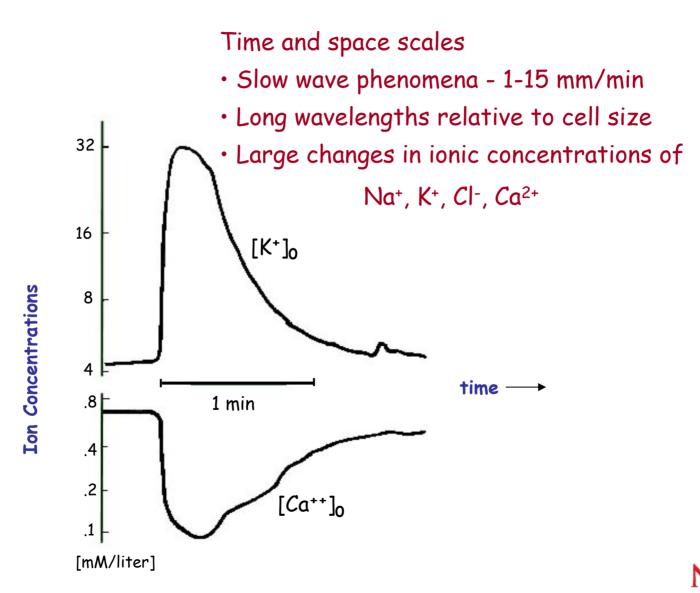
Bures, Buresova, and Krivanek (1974)


Why Study Cortical Spreading Depression?

- Discovered in 1944, but still do not understand SD
- Functional reasons
 - Seizures
 - Connection with (classic) migraine with aura
- Structure of the brain and diffusion paths of ions
 - Volume fraction
 - Tortuosity
- Ionic concentrations in the microenvironment of neurons
 - Large ion concentration changes in the ECS
 - Maintain balance of ions during neural activity

Cortical Spreading Depression (SD)

- Stimuli chemical, electrical, mechanical
- Animals rabbit, cat, rat, human, others
- Structures cerebral cortex, retina, hippocampus, etc.



- Functional significance:
 - Physiologists nuisance
 - Psychologists learning and behavior
 - Physicians migraine with aura

BIRS Canada-China Workshop on Industrial Mathematics August 5-10, 2007

Cortical Spreading Depression

Models of Spreading Depression

- Analog to conduction of impulses in cardiac muscle (Wiener and Rosenblueth, Shibata and Bures)
- Computer simulation (Reshodko and Bures)
- Potassium, action potentials (Grafstein)
- Neurotransmitter mechanism (Tuckwell and M.)
- Osmosis and neuronal gap junctions (Shapiro, Kager et al.)

Simplified Model Equations


Continuum model, considering only potassium and calcium:

$$\begin{split} & \mathsf{K}^{\mathsf{o}}_{\mathsf{t}} = \mathsf{D}_{\mathsf{K}}\mathsf{K}^{\mathsf{o}}_{\mathsf{x}\mathsf{x}} + \mathsf{\rho}_{1}(\mathbf{I}_{\mathsf{K}} + \mathsf{P}_{\mathsf{K}}), \\ & \mathsf{K}^{\mathsf{i}}_{\mathsf{t}} = -\frac{\alpha}{1-\alpha} \mathsf{\rho}_{1}(\mathbf{I}_{\mathsf{K}} + \mathsf{P}_{\mathsf{K}}), \\ & \mathcal{C}^{\mathsf{o}}_{\mathsf{t}} = \mathsf{D}_{\mathcal{C}}\mathcal{C}^{\mathsf{o}}_{\mathsf{x}\mathsf{x}} + \mathsf{\rho}_{2}(\mathbf{I}_{\mathcal{C}_{\mathsf{a}}} + \mathsf{P}_{\mathcal{C}_{\mathsf{a}}}), \\ & \mathcal{C}^{\mathsf{i}}_{\mathsf{t}} = -\frac{\alpha}{1-\alpha} \mathsf{\rho}_{2}(\mathbf{I}_{\mathcal{C}_{\mathsf{a}}} + \mathsf{P}_{\mathcal{C}_{\mathsf{a}}}), \\ & -\infty < \mathsf{X} < \infty, \quad \mathsf{t} > \mathsf{O}. \end{split}$$

Tortuosity and volume fraction.

H.C. Tuckwell and R.M. Miura, "A mathematical model for spreading cortical depression," Biophysical J. <u>23</u> (1978), 257-276.

<u>Solution of the SD Equations</u> in One Space Dimension (K⁺, Ca²⁺)

Difficulties in Modelling and Computations

- Complicated 3-D geometric structures of ICS and ECS
- Different kinds of cells and processes, such as neurons, glial cells, axons, synapses
- Many different kinds of ions with distinct diffusion coefficients and coupled dynamics
- Connections between neurons (synapses, gap junctions) and between glial cells (gap junctions)
- Cell membranes have spatial distributions of ion channel densities
- Cell swelling (moving cell membranes)

<u>Modelling Geometric Structure</u> of the Brain-Cell Microenvironment

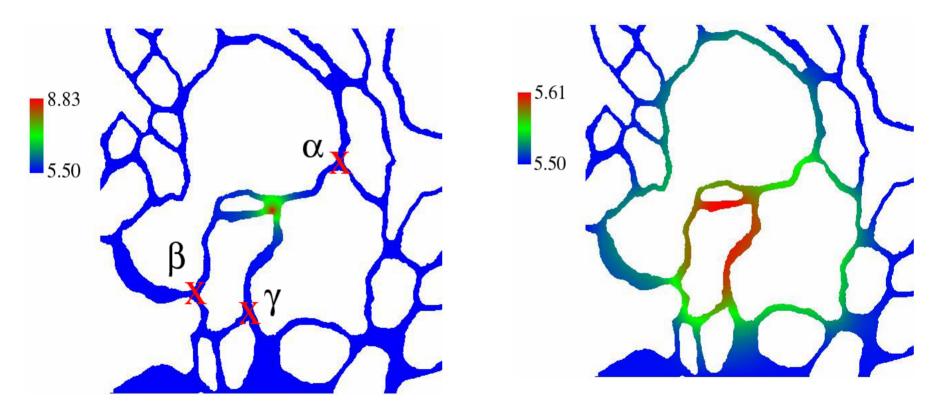
Retrieving geometry from electron micrograph

Retrieved components of the system:

- . ECS and ICS structure
- 2. Cell shape and membrane

Solving the Diffusion Processes using LBE

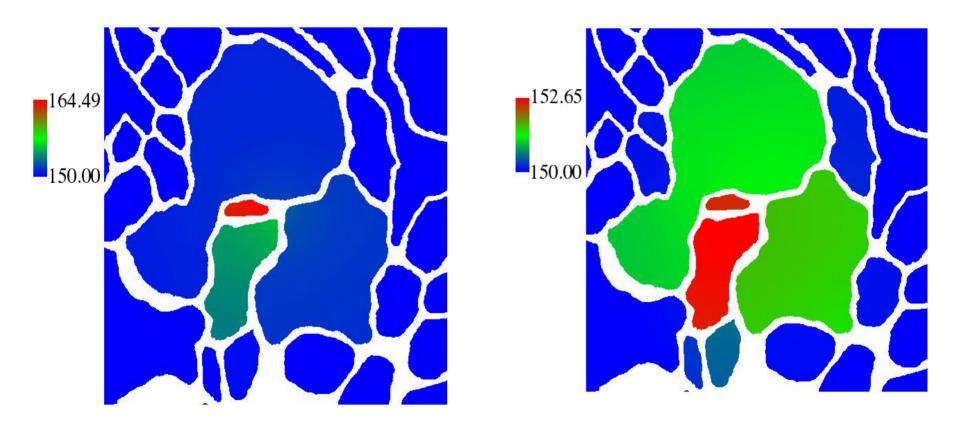
Ions move along the lattice nodes. The densities at each node, the LBE rule, and the corresponding diffusion coefficients are given by:


$$C^{i,o}(\vec{r},t) = \sum_{j=0}^{4} N_{j}^{i,o}(\vec{r},t),$$

$$\begin{array}{c} & & & \\ & & & \\ & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ &$$

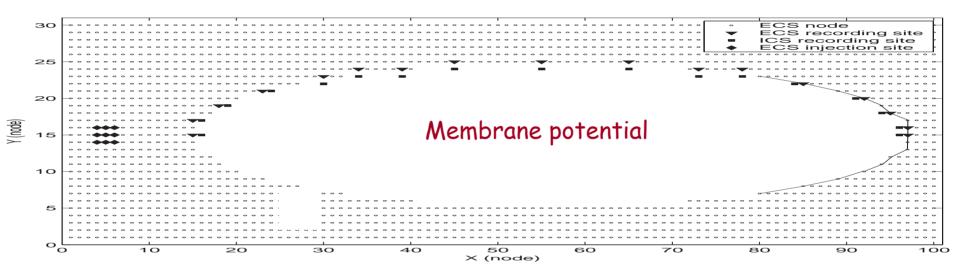
$$\begin{split} N_{j}^{i,o}(\vec{r},t) &\to N_{j}^{i,o}(\vec{r}+v_{j},t+\tau) \\ N_{j}^{i,o}(\vec{r},t) &= \sum_{l=0}^{4} p_{j,l}(\vec{r},t) N_{l}^{i,o}(\vec{r}-\vec{v}_{l},t), \\ D_{k,Na,Cl} &= \frac{\Lambda^{2}}{4\tau} (1-p_{0,K,Na,Cl}), \quad p_{j,l} = p_{j} = \frac{1-p_{0,K,Na,Cl}}{4} \end{split}$$

<u>Simulation of a Small System</u> with Permeable Membranes


Potassium injected in the ECS

Potassium diffusion in the ECS at t=0.125ms and t=5ms. The injection stops at t=2.5 ms.

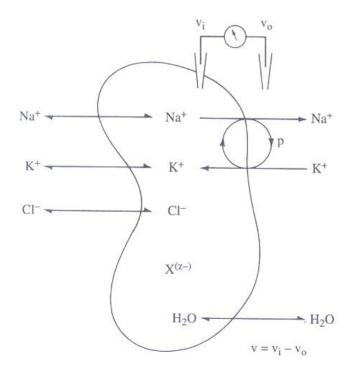
• Potassium in the ICS



Potassium diffusion in the ICS at t=0.125ms and t=5ms. The injection stops at t=2.5 ms.

Single cell microenvironment with injection of potassium

Chen and Nicholson, Biophys. J. 78 (2000), 2776-2797.


Steinberg, Wang, Huang, and Miura, Math. Biosci. Engin. 2 (2005), 675-702.

Osmosis & Cell Volume Change

• During SD, the extracellular space is compressed to about 25-50% of its original fraction of 20%.

• The swelling of cells caused by osmosis due to the movement of water molecules across a semi-permeable membrane.

• Na+, K+, Cl-, and water move through channels in the membrane.

- X molecules are trapped inside the cell.
- Isotonicity
- Electroneutrality

Applications

- SD is a cause of migraine with aura
- Diffusion tensor imaging
- Blood vessels (video)

Summary

- Spreading Cortical Depression
- Brain-Cell Microenvironment
- Ion Movements in the ECS and ICS
- Spatial Buffering
- Cell Swelling
- Applications to Migraine with Aura and Diffusion Tensor Imaging

