

Virtual Organ Models

For Drug Transport and Metabolism

Rebeccah Marsh, MITACS

Canada-China Workshop on Industrial Mathematics August 7, 2007

- I. Pharmacokinetic Modeling
- II. Methods
- **III.** Angiogenesis and Vascular Networks
- IV. Liver Lobule
- V. Virtual Organ
- VI. Future Directions

I.

Pharmacokinetic Modeling

Pharmacokinetics

the medium

Effectiveness of a drug relies on:

- Transport processes
- Reaction processes
- Body tissues are highly heterogeneous
- Physiological processes typically involve many complex chains of reactions
- Lab experiments and clinical trials are timeconsuming, costly, and potentially harmful.

Compartmental Modeling

k = kinetic rate coefficient

	Conditions		
	Homogeneous	Heterogeneous	
Linear reaction	$\dot{C} = kC$		
Enzyme-mediated reaction	$\dot{C} = \frac{v_{\max}C}{K_M + C}$		

Compartmental Modeling

k = kinetic rate coefficient

	Conditions Homogeneous Heterogeneous		
Linear reaction	$\dot{C} = kC$	$\dot{C} = k_0 t^{-h} C$	
Enzyme-mediated reaction	$\dot{C} = \frac{v_{\max}C}{K_M + C}$	$\dot{C} = \frac{v_{\max}C^X}{K_M + C^X}$	

Objectives of "Virtual Models"

Develop physiologically-accurate models

- Investigate the behaviour at different scales
 - Both spatial and temporal scaling
- Test compartmental predictions
- Develop a simulation platform and a visualization tool
- Start with the liver: main site of drug metabolism

II.

Methods

STARS (Computer Modelling Group Ltd.)

- Advanced process simulator
- Models the flow of multi-phase, multi-component fluid in porous media

Employs:

- Mass and energy conservation
- Equations of state
- Poiseuille flow
- Darcy's Law

Pressure differences can be due to thermal, mechanical, or chemical processes

Example: Simulation of Oil Extraction

Model Components

Grid

- Geometry and dimensions
- Permeability and porosity of each grid cell

"Rock and fluid" properties

- "water" and "oil" components
- Density, chemical composition, viscosity, melting point, etc.
- Relative permeabilities

Reactions

Initial conditions

Distribution of components in the grid cells

Wells - injectors and producers

- Location on grid
- Upper pressure boundary and/or flow rate

Times at which to record data

III.

Angiogenesis and Vascular Networks

Angiogenesis

Movement of Glucose Through the Vessels

t = 0.25 min

t = 0.4 min

t = 0.61 min

Transient Fractal Kinetics in the Outflow

Time (min)

Liver Functional Unit

The Lobule

http://www.niaaa.nih.gov/NR/rdonlyres/

Physiologically-Based Network Model

Flow Network Model of the Liver Lobule Permeability I (md) 1901-01-01 K layer: 1

Image-Based Model

Simulation of Drug Metabolism

Virtual Liver

CT Scan of An Abdomen

High-Resolution CT Scan

Virtual Liver

Liver vasculature

Glucose Transport Through the Liver

VI.

Future Directions

Multi-Scale Modeling

hepatocyte

Future Directions

Compare results with experimental data

- Model zonation of lobule
- Model other organs
 - Kidney, GI tract, lung, brain, heart, gallbladder, etc.
- Model tumours and their vasculature
- Model processes at the cellular or subcellular levels
- Connect organs into a virtual full-body model