An application of numerical bifurcation analysis

Greg Lewis

University of Ontario Institute of Technology (UOIT)

with Bill Langford (Guelph) and Wayne Nagata (UBC)

BIRS, August 8, 2007

Outline

Introduction

- The differentially heated rotating annulus experiment
- Bifurcation analysis
 - Numerical continuation
 - Eigenvalue computation
- Examples
 - differentially heated rotating annulus
 - differentially heated rotating spherical shell
- Summary

A differentially heated rotating annulus

A differentially heated rotating planet

A differentially heated rotating annulus

Regime diagram

log(Taylor number)

Wave flow in the annulus

Vacillating flow in the annulus

Regime diagram

log(Taylor number)

Bifurcation analysis

• Nonlinear DE:
$$\frac{dx}{dt} = G(x, \alpha)$$
, $x \in \mathcal{R}^n$, $\alpha \in \mathcal{R}^1$.

- Steady solution $x_0 = x_0(\alpha)$ when: $G(x_0, \alpha) = 0$.
- Look for bifurcations from steady solution
 - Inear stability of steady solution
 - from eigenvalues, λ, of the linearization of dynamical equation about the steady solution:

$$G_x(x=x_0,\alpha).$$

- $Real(\lambda_j) < 0$ for all $j \rightarrow x_0$ is linearly stable
- $Real(\lambda_j) > 0$ for one $j \rightarrow x_0$ is linearly unstable

Numerical computations

- Steady solutions
 - use pseudo-arclength continuation
- Linear stability: eigenvalues
 - Implicitly restarted Arnoldi method
 - with Cayley transformations

Steady solution: continuation

- Look for steady solutions
 - discretization reduces PDE to system of nonlinear algebraic equations
 - need to solve $G(x, \alpha) = 0$, $x \in \mathcal{R}^n$, $\alpha \in \mathcal{R}$
- Use Newton's method with continuation
 - need to have a good guess
 - assume we know x_0 at α_0 such that $G(x_0, \alpha_0) = 0$

Natural parameterization

BIRS – p.13/48

Natural parameterization

Pseudo-arclength continuation

- **Solution** Consider the parameter α as an unknown
- **•** predictor: new guess $(\hat{x}_1, \hat{\alpha}_1)$ given by

$$\hat{x}_1 = x_0 + \frac{\Delta s}{\|t_0\|} t_0^{(x)}, \quad \hat{\alpha}_1 = \alpha_0 + \frac{\Delta s}{\|t_0\|} t_0^{(\alpha)}$$

- $t_0 = \begin{bmatrix} t_0^{(x)} & t_0^{(\alpha)} \end{bmatrix}$ is the tangent to the solution curve
- the step size Δs measures arclength along tangent line
- for corrector, add an extra condition to get new system:

$$G(x, \alpha) = 0$$

$$f(x, \alpha) = 0$$

Pseudo-arclength continuation

- Eigenvalue problem
 - Linearize about steady solution
 - get generalized eigenvalue problems

 $\lambda \mathbf{B} \Phi = \mathbf{A} \Phi$

discretization leads to matrix eigenvalue problems

- For eigenvalues use 'Implicitly restarted Arnoldi method'
 - iterative
 - memory efficient
 - finds extremal eigenvalues

Use generalized Cayley transform

$$\mathbf{C}(\mathbf{A}, \mathbf{B}) = \left(\mathbf{A} - \sigma_1 \mathbf{B}\right)^{-1} \left(\mathbf{A} - \sigma_2 \mathbf{B}\right)$$

- λ are eigenvalues from $\lambda \mathbf{B} x = \mathbf{A} x$
- μ are eigenvalues from $\mu x' = \mathbf{C}x'$

•
$$Real(\lambda) > \frac{\sigma_1 + \sigma_2}{2} \to |\mu| > 1$$

Use generalized Cayley transform

$$\mathbf{C}(\mathbf{A}, \mathbf{B}) = \left(\mathbf{A} - \sigma_1 \mathbf{B}\right)^{-1} \left(\mathbf{A} - \sigma_2 \mathbf{B}\right)$$

Don't need to form the matrix C explicitly

• only need the matrix-vector product $w = \mathbf{C}v$

$$w = \mathbf{C}v = (\mathbf{A} - \sigma_1 \mathbf{B})^{-1} (\mathbf{A} - \sigma_2 \mathbf{B}) v$$

• multiple by $(\mathbf{A} - \sigma_1 \mathbf{B})$ get:

$$(\mathbf{A} - \sigma_1 \mathbf{B}) w = (\mathbf{A} - \sigma_2 \mathbf{B}) v$$

i.e. a system of linear equations

Centre manifold reduction

- Apply centre manifold reduction at bifurcation points
 - gives a low-dimensional model of dynamics
 - get existence and stability of bifurcating solutions
 - gives results close to a bifurcation point (local dynamics)
- Write ODE (reduced equation) in normal form
 - compute the coefficients of the normal form equations
- Deduce dynamics of PDE from low-dimensional ODE

A differentially heated rotating annulus

Model of fluid in the annulus

- Navier-Stokes equations in the Boussinesq approximation
- Cylindrical coordinates and rotating frame of reference
- No-slip boundary conditions
- Insulating top and bottom of annulus
- Differential heating: $\Delta T = T_b T_a$ inner cylinder cooled; outer cylinder heated
- Quantitatively accurate results

Analysis

Look for steady flows invariant under rotation

- primary transitions
- reduces to problem in two-spatial dimensions
- Bifurcations from steady solutions

Regime diagram

log(Taylor number)

Transition curve

Regions of bi-stability

Spherical Shell

Model of fluid in a spherical shell

- Navier-Stokes equations in the Boussinesq approximation
- Spherical polar coordinates and rotating frame of reference
- No-slip boundary conditions at inner sphere
- Stress-free boundary condition at outer sphere
- Insulating outer sphere
- Differential heating imposed on inner sphere: at $r = r_0$, $T = T_0 - \Delta T \cos(2\theta)$.

Differential heating

Spherical shell

Analysis

- Look for steady flows invariant under rotation and reflection about equator
 - Reduces to problem in two-spatial dimensions
 - Introduces additional boundary conditions at pole and equator
- Bifurcations of steady solutions

Steady Solution: $\eta = R/r_0 = 1/2$, $\Delta T = 0.004$

Steady Solution: $\eta = R/r_0 = 1/2, \Delta T = 0.026$

Steady Solution: $\eta = R/r_0 = 1/2, \Delta T = 0.0483$

Steady Solution: $\eta = R/r_0 = 1$, $\Delta T = 0.002$

Steady Solution: $\eta = R/r_0 = 1$, $\Delta T = 0.029$

Bifurcation Diagram: $\eta = R/r_0 = 1$

Steady Solution: $\eta = R/r_0 = 3.5, \Delta T = 0.001$

Steady Solution: $\eta = R/r_0 = 3.5, \Delta T = 0.019$

Bifurcation Diagram: $\eta = R/r_0 = 3.5$

DEDS: Pattern Formation - p.27/3

Cusp bifurcation

Cusp bifurcation (schematic)

Computation of cusp point

- Codimension two bifurcation
 - Need two parameters: ΔT and η
- Write equations as:

$$\dot{U} = LU + N(U, U)$$

where U is dependent variable, LU is linear part, N(U, U) is nonlinear part, and \dot{U} is derivative with respect to time

Computation of cusp point

- Cusp point is characterized by:
 - **1.** $LU_0 + N(U_0, U_0) = 0$
 - 2. zero eigenvalue of L_0 where $L_0V = LV + N(V, U_0) + N(U_0, V)$
 - 3. vanishing of the coefficient of 2nd-order term of equation on centre manifold (or reduced equation)

Reduced equation

Reduced equation

$$\dot{w} = \beta_1 + \beta_2 w + aw^2 + cw^3$$

where

$$a = 1/2 \langle \Phi^*, N(\Phi, \Phi) \rangle = 0$$

 Φ is the eigenfunction corresponding to $\lambda = 0$, Φ^* is the corresponding adjoint eigenfunction, $\langle \cdot, \cdot \rangle$ is the inner product

Defining system

$$LU_0 + N(U_0, U_0) = 0, \quad g = 0, \quad g' = 0$$

where g and g' are scalars given by

$$L_0V + gB = 0, \quad \langle C, V \rangle = 1$$

$$L_0 V' + g' B = -N(V, V), \quad \langle C, V' \rangle = 0$$

where *B* not in range of L_0 , and *C* not in range of the adjoint operator L_0^* .

Solve to get a = 0 at $\eta = 3.46$, $\Delta T = 0.011$

Summary

Application of numerical bifurcation analysis

- compute flow regimes
- compute details of flow transitions
- Could apply same ideas to industrial problems
- Applied to transitions from steady flows
- Could also apply similar ideas to transitions from periodic flows
 - HPC