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Regime diagram
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Wave flow in the annulus
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Vacillating flow in the annulus
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Bifurcation analysis

Nonlinear DE:
dx

dt
= G(x, α), x ∈ Rn, α ∈ R1.

Steady solution x0 = x0(α) when: G(x0, α) = 0.

Look for bifurcations from steady solution
linear stability of steady solution
from eigenvalues, λ, of the linearization of dynamical
equation about the steady solution:

Gx(x = x0, α).

Real (λj) < 0 for all j → x0 is linearly stable
Real (λj) > 0 for one j → x0 is linearly unstable
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Numerical computations

Steady solutions
use pseudo-arclength continuation

Linear stability: eigenvalues
Implicitly restarted Arnoldi method
with Cayley transformations
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Steady solution: continuation

Look for steady solutions
discretization reduces PDE to system of nonlinear
algebraic equations
need to solve G(x, α) = 0, x ∈ Rn, α ∈ R

Use Newton’s method with continuation
need to have a good guess
assume we know x0 at α0 such that G(x0, α0) = 0
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Natural parameterization
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Pseudo-arclength continuation

Consider the parameter α as an unknown

predictor: new guess (x̂1, α̂1) given by

x̂1 = x0 +
∆s

‖t0‖
t
(x)
0 , α̂1 = α0 +

∆s

‖t0‖
t
(α)
0

t0 = [t
(x)
0 t

(α)
0 ] is the tangent to the solution curve

the step size ∆s measures arclength along tangent
line

for corrector, add an extra condition to get new system:

G(x, α) = 0

f(x, α) = 0
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Pseudo-arclength continuation
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Eigenvalue approximation

Eigenvalue problem
Linearize about steady solution
get generalized eigenvalue problems

λBΦ = AΦ

discretization leads to matrix eigenvalue problems
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Eigenvalue approximation

For eigenvalues use ‘Implicitly restarted Arnoldi method’
iterative
memory efficient
finds extremal eigenvalues
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Eigenvalue approximation

Use generalized Cayley transform

C(A,B) = (A − σ1B)−1 (A − σ2B)

λ are eigenvalues from λBx = Ax

µ are eigenvalues from µx′ = Cx′

Real(λ) >
σ1 + σ2

2
→ |µ| > 1
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Eigenvalue approximation

Use generalized Cayley transform

C(A,B) = (A − σ1B)−1 (A − σ2B)

Don’t need to form the matrix C explicitly
only need the matrix-vector product w = Cv

w = Cv = (A − σ1B)−1 (A − σ2B) v

multiple by (A − σ1B) get:

(A − σ1B) w = (A − σ2B) v

i.e. a system of linear equations
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Centre manifold reduction

Apply centre manifold reduction at bifurcation points

gives a low-dimensional model of dynamics
get existence and stability of bifurcating solutions
gives results close to a bifurcation point (local
dynamics)

Write ODE (reduced equation) in normal form
compute the coefficients of the normal form
equations

Deduce dynamics of PDE from low-dimensional ODE
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Model of fluid in the annulus

Navier-Stokes equations in the Boussinesq
approximation

Cylindrical coordinates and rotating frame of reference

No-slip boundary conditions

Insulating top and bottom of annulus

Differential heating: ∆T = Tb − Ta

inner cylinder cooled; outer cylinder heated

Quantitatively accurate results

BIRS – p.23/48



Analysis

Look for steady flows invariant under rotation

primary transitions
reduces to problem in two-spatial dimensions

Bifurcations from steady solutions
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Transition curve
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Regions of bi-stability
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Spherical Shell
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Model of fluid in a spherical shell

Navier-Stokes equations in the Boussinesq
approximation

Spherical polar coordinates and rotating frame of
reference

No-slip boundary conditions at inner sphere

Stress-free boundary condition at outer sphere

Insulating outer sphere

Differential heating imposed on inner sphere:
at r = r0, T = T0 − ∆T cos(2θ).
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Differential heating
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Spherical shell
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Analysis

Look for steady flows invariant under rotation and
reflection about equator

Reduces to problem in two-spatial dimensions
Introduces additional boundary conditions at pole
and equator

Bifurcations of steady solutions
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Steady Solution: � ��� � � �
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Steady Solution: � ��� � � �
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Steady Solution: � ��� � �
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Bifurcation Diagram: � � � � �
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Steady Solution: � ��� � �
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Bifurcation Diagram: 5 6 � 5 ?
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Cusp bifurcation
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Cusp bifurcation (schematic)
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Computation of cusp point

Codimension two bifurcation
Need two parameters: ∆T and η

Write equations as:

U̇ = LU + N(U,U)

where U is dependent variable,
LU is linear part, N(U,U) is nonlinear part,
and U̇ is derivative with respect to time
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Computation of cusp point

Cusp point is characterized by:
1. LU0 + N(U0, U0) = 0

2. zero eigenvalue of L0 where
L0V = LV + N(V, U0) + N(U0, V )

3. vanishing of the coefficient of 2nd-order term of
equation on centre manifold (or reduced equation)

BIRS – p.45/48



Reduced equation

Reduced equation

ẇ = β1 + β2w + aw2 + cw3

where
a = 1/2 〈Φ∗, N(Φ,Φ)〉 = 0

Φ is the eigenfunction corresponding to λ = 0,
Φ∗ is the corresponding adjoint eigenfunction,
〈·, ·〉 is the inner product
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Defining system

LU0 + N(U0, U0) = 0, g = 0, g′ = 0

where g and g′ are scalars given by

L0V + gB = 0, 〈C, V 〉 = 1

L0V
′ + g′B = −N(V, V ),

〈

C, V ′
〉

= 0

where B not in range of L0,
and C not in range of the adjoint operator L∗

0.

Solve to get a = 0 at η = 3.46, ∆T = 0.011
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Summary

Application of numerical bifurcation analysis

compute flow regimes
compute details of flow transitions

Could apply same ideas to industrial problems

Applied to transitions from steady flows

Could also apply similar ideas to transitions from
periodic flows

HPC
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