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Coordination Polyhedra

The growth rate is based on a coordinate polyhedron model

This is capable of naturally explaining the different growth
rates between the positive and negative directions in a polar
crystal such as the III-V semiconductors

If AB is the III-V semiconductor under consideration, then its
anion-coordination polyhedra are AB

6−
4 tetrahedra
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Coordination Polyhedra

i

j

k

Shown are the four tetrahedra of an AB unit cell. To the left only
the B atoms in the unit cell are shown. B atoms in the unit cell
but not included in the four growth units are represented with
hollow circles. At the centre of each tetrahedral growth unit is a A

atom accounting for all the atoms in the AB unit cell. On the
right only the tetrahedra are shown.
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Coordination Polyhedra
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For a crystal pulled in the [001] direction,

[001̄] is into the melt gives vaxial = 1.7321

vlateral has four-fold symmetry
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Constrained Growth

vn n

∂S 
k∂t

Crystal

Melt

Gas

Meniscus

r = R(z)

vlateral∆t

TP

r = Rc

θ

θc

vaxial∆t

If not constrained by the meniscus then tan(θ − θc) = vlateral

vaxial

For growing a cone θ− θc is 1/2 the opening angle of the cone
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Pulling in the [001] direction
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Pulling in the [1̄1̄1̄] direction
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Pulling in the [2̄11] direction
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Equilibrium Crystal Shapes
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Equilibrium Crystal Shapes

For the purpose of computing thermal stress, we assume the
following expression in the case of weak anisotropy (α small)

R(φ, z) = R̄(z)

(

1 + α

m
∑

k=1

βk cos (nkφ + δk)

)

,

where m, n1 < n2 < · · · < nm are positive integers and
∑m

k=1 β2
k = 1.

α is the (small) geometric anisotropy factor

4-fold symmetry (m = 1, n1 = 4)

6-fold symmetry (m = 1, n1 = 6)

We assume that the lateral shape of the crystal is in
equilibrium
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Basic Equations

Within the crystal Ω, the temperature T (x, t) satisfies the heat
equation,

ρscs
∂T

∂t
= ∇ · (κs∇T ) , x ∈ Ω, t > 0

where ρs , cs and ks are the density, specific heat, and thermal
conductivity of the crystal. The boundary conditions are below,

−κs
∂T

∂n
= hgs(T − Tg ) + hF (T 4 − T 4

b ), x ∈ Γg ,

κs
∂T

∂z
= hch(T − Tch), z = 0,

where hgs and hch represent the heat transfer coefficients; hF the
radiation heat transfer coefficient; Tg , Tch and Tb denote the
ambient gas temperature, the chuck temperature and background
temperature respectively.
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Basic Equations

The crystal/melt interface is denoted ΓS and is where T = Tm, the
melting temperature. Explicitly we denote the melting isotherm by

z − S(x, t) = 0, x ∈ ΓS .

The motion of the interface of the phase transition is governed by
the Stefan condition

ρsL|vn| = κs
∂T

∂n

∣

∣

∣

∣

z→S−

− ql ,n, |vn| = vn =
∂S

∂t
k · n

where L is the latent heat, |vn| is the speed of the interface in the
direction of its outward normal n, and ql ,n is the heat flux from the
melt normal to the interface. The speed ∂S/∂t is the speed of the
interface S in the k direction.



Constrained Growth The Thermal Problem Thermoelastic Equations Results Conclusions

Rescaled Equations

Identify the Biot number

ε =
h̄gsR̃

κs
(1)

as a small parameter (small lateral heat flux). Rescaling,

ε

St
Θt =

1

r
(rΘr )r +

1

r2
Θφφ + εΘzz , x ∈ Ω, t > 0,

with,

−Θr +
1

R2
RφΘφ + εRzΘz = εF (Θ)

(

1 +
R2

φ

R2
+ εR2

z

)1/2

, x ∈ Γg ,

Θz(0, φ, t) = δ (Θ(0, φ, t) − Θch) ,

Θ = 1, x ∈ ΓS ,

Θz −
1

ε
SrΘr −

1

εr2
SφΘφ = γ + St, γ =

ql R̃

ε1/2κs∆T
.
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Rescaled Equations

β(z) = hgs/h̄gs, and δ = ε1/2hch/h̄gs and γ (ql ) is the
non-dimensional (dimensional) heat flux in the liquid across the
crystal/melt interface in the axial direction. Also,

F (Θ) =
hF (T 4

g − T 4
b )

h̄gs∆T
+

(

β(z) +
4hF

h̄gs

T 3
g

)

Θ

+
hF

h̄gs

∆T (6T 2
g + 4Tg∆TΘ + ∆T 2Θ2)Θ2.
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Perturbation Solution

The Biot number for the lateral heat flux is small (ε ∼ 0.03) and
the geometric anisotropy is weak (α � 1).
Expansion:

Θ ∼ Θ0(z , t) + εΘ1(r , φ, z , t) + ε2Θ2(r , φ, z , t) + · · · ,

S ∼ S0(t) + εS1(r , φ, t) + ε2S2(r , φ, t) + · · · .

Zeroth order model (Fast to compute):

1

St
Θ0,t − Θ0,zz =

2

R̄

(

R̄ ′Θ0,z − F (Θ0)
)

, 0 < z < S0(t), t > 0,

Θ0,z(0, t) = δ(Θ0(0, t) − Θch), t ≥ 0,

Θ0(S0(t), t) = 1, t ≥ 0,

S ′

0(t) = Θ0,z(S0(t), t) − γ, S0(0) = Z0, t > 0.
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Perturbation Solution

First order model:

Θ1(r , φ, z , t) = Θa
1(z , t) + r2Θb

1(z , t) + αΘc
1(r , φ, z , t) + O(α2)

where, keeping only those terms to O(α),

Θb
1(z , t) =

1

2R̄

(

R̄ ′Θ0,z − F (Θ0)
)

,

Θc
1(r , φ, z , t) = R̄F (Θ0)

m
∑

k=1

βk

nk

( r

R̄

)nk

cos(nkφ + δk).

These last two terms are completely determined by Θ0 and R̄ . Θa
1

does not play a role in the stress.
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Basic Relations

For a crystal with cubic symmetry the stresses
σ = (σxx , σyy , σzz , σyz , σxz , σxy)

T and strains
e = (exx , eyy , ezz , 2eyz , 2exz , 2exy )T are related through

σ = Crecte, Crect =

















C11 C12 C12

C12 C11 C12

C12 C12 C11

C44

C44

C44

















.

For an anisotropic material the quantity H = 2C44 −C11 +C12 6= 0.
We assume that the z-component of the displacement is zero
because of the free surface at the melt.
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Directional Dependence of the Young’s modulus for an
InSb Crystal
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Operator Splitting

Split Crect into a diagonal anisotropic part and an isotropic part
Crect = C0 − Ca,rect, Ca,rect = H/4 × diag(2, 2, 2,−1,−1,−1), and

C0 =

















C 0
11 C 0

12 C 0
12

C 0
12 C 0

11 C 0
12

C 0
12 C 0

12 C 0
11

C 0
44

C 0
44

C 0
44

















is isotropic. Ca,rect is chosen to minimize ρ(C−1
0 Ca,rect).

E and ν in term of Cij are given by

E =
(C11 + 2C12 + H/2)(C11 − C12 + H/2)

C11 + C12 + H/2
,

ν =
C12

C11 + C12 + H/2
.
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Operator Splitting

Denote the displacement vector as w, the strain by e = S(w) and
the stress by σ = CS(w) with C = C0 − Ca.
The thermoelastic problem becomes

∇ · CS = (C11 + 2C12)∇Θ, x ∈ Ω, t > 0,

CS · n = (C11 + 2C12)Θn, r = R(φ, z)

or by rescaling

∇ · CS =

(

1 − ν

1 − 2ν
−

H

2

)

∇Θ, x ∈ Ω, t > 0,

CS · n =

(

1 − ν

1 − 2ν
−

H

2

)

Θn, r = R(φ, z)

with n denoting the outward normal of the surface r = R(φ, z).
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Operator Splitting

Using the form of C ,

∇ · CS = ∇ · C0S −∇ · CaS = L0 − La,

CS · n = C0S · n − CaS · n = B0 −Ba,

to solve for w(x) one starts with w0 given by

L0(w0) =

(

1 − ν

1 − 2ν
−

H

2

)

∇Θ, x ∈ Ω, t > 0,

B0(w0) =

(

1 − ν

1 − 2ν
−

H

2

)

Θn, r = R(φ, z).

w0 is the isotropic displacement found previously [Bohun et al.],
multiplied by a factor of 1 − H

2
1−2ν
1−ν .
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Operator Splitting

We know w0 explicitly for a given crystal shape R(φ, z).
Having defined w0, we denote by wk+1 = Nwk , with k ≥ 0, the
solution to

L0(wk+1) = La(wk), x ∈ Ω, t > 0,

B0(wk+1) = Ba(wk), r = R(φ, z).
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Perturbation Series

Continuing this process we have for w(x)

w = w0 + Nw0 + N 2
w0 + · · · + N n

w0 + · · · .

Since ‖N‖ ≤ ω in a suitable norm, where

ω =
|H|/2

C11 − C12 + H/2
=

|2C44 − C11 + C12|

2C44 + C11 − C12
< 1

is an anisotropic factor, the series converges and an error can be
estimated when replaced by a finite sum. For typical cubic
anisotropic materials ω ∼ 1/3.

C11 C12 C44 ω
GaAs 12.16 × 104 5.43 × 104 6.18 × 104 0.295
InP 10.76 × 104 6.08 × 104 4.233 × 104 0.288
InSb 6.70 × 104 3.65 × 104 3.02 × 104 0.329
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Perturbation Series

For a given pulling direction C0 is invariant however, the
explicit form of Ca depends on the crystal orientation

Consequently La and Ba depend on the orientation

Ca transforms as a fourth rank tensor and includes only
trigonometric factors cos mφ and sinmφ where m depends on
the orientation of the crystal

For example, if (c4, s4) = (cos 4φ, sin 4φ) then

C
[001]
a,cyc =

H

4

















1 + c4 1 − c4 0 0 0 −s4
1 − c4 1 + c4 0 0 0 s4

0 0 2 0 0 0
0 0 0 −1 0 0
0 0 0 0 −1 0

−s4 s4 0 0 0 −c4

















.



Constrained Growth The Thermal Problem Thermoelastic Equations Results Conclusions

Plane Strain

To illustrate the procedure assume that the displacement is only in
the (r , φ) plane.
Stress strain relation for the [001] direction becomes





σa,rr

σa,φφ

σa,rφ



 =
H

4





1 + c4 1 − c4 −s4
1 − c4 1 + c4 s4
−s4 s4 −c4









err

eφφ

2erφ



 .

For the [1̄1̄1̄] direction





σa,rr

σa,φφ

σa,rφ



 =
H

12





0 2 0
2 0 0
0 0 −1









err

eφφ

2erφ



 .



Constrained Growth The Thermal Problem Thermoelastic Equations Results Conclusions

A Canonical Problem

To find w0 + w1 = w0 + Nw0 the thermoelastic equations

L0(w1) = La(w0), x ∈ Ω, t > 0,

B0(w1) = Ba(w0), r = R(φ, z)

reduce to finding sequence of solutions of the form

∂σrr

∂r
+

1

r

∂σrφ

∂φ
+

σrr − σφφ

r
= fr r

k−2 cos(nφ + δ), r < R̄(z),

∂σrφ

∂r
+

1

r

∂σφφ

∂φ
+

2σrφ

r
= fφrk−2 sin(nφ + δ), r < R̄(z),

with integers n ≥ 0, k ≥ 1, and

σrr = gr r
k−1 cos(nφ + δ), r = R̄(z),

σrφ = gφrk−1 sin(nφ + δ), r = R̄(z),

where fr , fφ, gr , gφ depend on Ca.
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A Canonical Problem

We solve this with a two stage approach.

1 Find a particular solution that does not necessarily satisfy the
boundary condition

2 Find a homogeneous solution with a (perhaps) modified
boundary condition

The point here is that the solution can be written out explicitly for
general fr , fφ, gr , gφ so that the problem becomes a bookkeeping
problem.
Fast
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Results - Geometric [001]: Total Resolved Stress
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Results - Geometric [1̄1̄1̄]: Total Resolved Stress
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Results - Geometric [2̄11]: Total Resolved Stress
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Results - Anisotropy [001]: Total Resolved Stress
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Results - Anisotropy [1̄1̄1̄]: Total Resolved Stress
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Results - Anisotropy [2̄11]: Total Resolved Stress
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Conclusions

A simple argument based on the crystal lattice structure
predicts facets that depend on both the crystal orientation
and growth angle

Small opening angles tend to suppress the formation of facets

The model naturally incorporates the polarity of III-V
semiconductors

Facet formation greatly affects the thermal stress distribution

Anisotropy has a lesser effect when the crystal has facets

The industry preference of the [2̄11] pulling direction,
determined by trial and error, produces facets yet avoids the
drastic increase in the stress seen in the [1̄1̄1̄] orientation.
Furthermore, effect of the material anisotropy is negligible in
this case
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Thank you
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