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Hilbert’s 12th Problem

F = totally real field

H = finite abelian extension of F

Can we construct H analytically from information intrinsic to F?

H itself will be specified via information instrinsic to F , e.g. let

H = Hf, the narrow ray class field associated to a conductor

f ⊂ OF .

Can we construct Stark units analytically? Can we implement

these constructions in practice?
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Partial zeta-functions

p = prime ideal of F , splits completely in H

S = set of primes of F , with S ⊃ {p, archimedean primes, those

ramifying in H}.
Assume #S ≥ 3, let R = S − {p}.

For σ ∈ G = Gal(H/F ) and Re(s) > 1, define

ζR(σ, s) =
∑

(a,R)=1
σa=σ

Na−s.

Note that

ζS(σ, s) = (1−Np−s)ζR(σ, s).

In particular ζS(σ,0) = 0.
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Auxiliary set T

T = set of primes of F disjoint from S containing two primes

of different residue characteristic or one prime whise absolute

ramification degree is at most its residue characteristic minus 2.

Define ζS,T (σ, s) by the group ring equation∑
σ∈G

ζS,T (σ, s)[σ] =
∏

η∈T

(1− [ση]Nη1−s)
∑

σ∈G

ζS(σ, s)[σ],

for example

ζS,{η}(σ, s) = ζS(σ, s)−Nη1−sζS(σσ−1
η , s).

Condition on T implies ζS,T (σ,0) ∈ Z. It also implies there are

no nontrivial roots of unity ≡ 1 (mod T ) in H.
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Stark’s Conjecture

Fix a prime P of H above p.

Conjecture 1. There exists a (unique) uT ∈ H× such that:

1. |uT |P′ = 1 if P′ - p.

2. For all σ ∈ G, we have ζ′S,T (σ,0) = log |uσ
T |P.

3. uT ≡ 1 (mod T ).

The second condition can be restated

ordP uσ
T = ζR,T (σ,0).
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Gross’s Conjecture

Let K be an auxiliary abelian extension of F containing H and

unramified outside S. Let rec : F×p → AF → Gal(K/F ) be the

Artin reciprocity map of local class field theory.

Note H ⊂ HP
∼= Fp.

Conjecture 2. Conjecture 1 is true, and for all σ ∈ G we have

rec(uσ
T ) =

∏
τ∈Gal(K/F )

τ |H=σ

τζS,T (K/F,τ,0)

in Gal(K/H).
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Reformulating Gross’s Conjecture

For expositional reasons, assume p = (p) and H = narrow Hilbert

class field of F .

Let S = {p, archimedean primes}.
Class field theory:

rec : O×p /Ê ∼= Gal(Hp∞/H),

where Op = completion of OF at p, and

E = group of totally positive units of F .

Let b = fractional ideal of F , relatively prime to S and T . Let U

be a compact open subset of O×p /Ê. Define

ζS(b, U, s) =
∑

a⊂O,(a,S)=1
σa∈σb·rec(U)

Na−s = Nb−s
∑

α∈(b−1/E)∩U
α�0

Nα−s,

using the change of variables ab−1 = (α).

Define ζS,T from ζS as before.
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A Formula mod Ê

Define a Z-valued measure on O×p /Ê by

µb(U) := ζS,T (b, U,0).

Proposition. Conjecture 2 implies that

u
σb
T = pζR,T (H/F,σb,0) · ×

∫
O×p /Ê

x dµb(x)

in F×p /Ê.

Here

×
∫
O×p /Ê

x dµb(x) = lim
||U||→0

∏
U∈U

x
µb(U)
U ∈ O×p /Ê,

as U ranges over uniformly finer covers of O×p /Ê by disjoint com-

pact opens U .
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Lifting the Measure

Let π : O×p → O×p /Ê denote the projection. Suppose we can

define a Z-valued measure µ̃b on O×p such that

µ̃b(π
−1(U)) = µb(U)

for all U ⊂ O×p /Ê.

Then the image of

pζR,T (H/F,σb,0) · ×
∫
O×p

x dµ̃b(x)

in F×p /Ê equals the value proposed by Gross’s conjecture for the

image of u
σb
T . Therefore, if this element of F×p depends only on

the narrow ideal class of b, it is a good candidate for u
σb
T .
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Lifted Measure via Fundamental Domain

For U ⊂ O×p /Ê, recall the formula

ζS(b, U, s) = Nb−s
∑

α∈(b−1/E)∩U
α�0

Nα−s.

If we fix a fundamental domain b−1/E for the action of E on

b−1, then the subscript in the sum makes sense for U ⊂ O×p !

Which fundamental domain? Answer given by Shintani.
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Shintani Domains

Let Q denote the positive orthant in F ⊗R. A simplicial cone in

Q is a subset of the form

C(v1, . . . , vr) =


r∑

i=1

civi : ci > 0


for r linearly independent elements vi ∈ Q.

Proposition. There exists a fundamental domain D for the ac-

tion of E on Q which consists of a union of simplicial cones

generated by elements of F .

Such a set D is called a Shintani domain.
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Shintani Domain for n = 2

If n = 2 and E = 〈ε〉, then D = C(1) ∪ C(1, ε) is a Shintani

domain.
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Shintani Zeta-Functions

Let D be such a Shintani domain, and define for U ⊂ O×p :

ζS(b,D, U, s) = Nb−s
∑

α∈b−1∩D∩U

Nα−s.

Define ζS,T (b,D, U, s) from ζS(b,D, U, s) as before, and let

µ̃b,D(U) := ζS,T (b,D, U,0).

Two formulas for µ̃b,D(U): one as the trace of an algebraic inte-

ger, and one as a generalized Dedekind sum (sums of products

of B1(x) for various rational x).
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A formula for uT?

Theorem. If D and T are chosen to satisfy a certain technical

condition, then µ̃b,D is Z-valued, and

uT (b,D) := pζR,T (H/F,σb,0) · ×
∫
O×p

x dµ̃b,D(x) ∈ F×p

depends only on the narrow ideal class of b (and in particular not

on the choice D), up to a root of unity.

The root of unity ambiguity does not occur when n = 2 (and

the technical condition is quite simple in this case).
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The refined conjecture

Fix an embedding H ⊂ F×p .

Conjecture 3. The root of unity ambiguity in the theorem does

not hold, so we may write uT (b,D) as uT (b). Furthermore,

1. uT (b) ∈ OH[1/p]× and has absolute value 1 at all archimedean

places.

2. uT (b) ≡ 1 (mod T ).

3. (Shimura Reciprocity Law) uT (ab) = uT (b)σa.

Conjecture 3 ⇒ Conjecture 2 (Gross) ⇒ Conjecture 1 (Stark).
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Computing uT

Recall

uT (b,D) := pζR,T (H/F,σb,0) · ×
∫
O×p

x dµ̃b,D(x)

:= pζR,T (H/F,σb,0) ·A.

We have O×p ∼= (Op/p)× × (1 + pOp)×. For a ∈ (Op/p)×, let

Aa := ×
∫
a+pOp

x dµ̃b,D(x).

Then logA =
∑

logAa.
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Computing logAa mod pM

Write ν for µ̃b,D.

logAa ≡ log
∏

b∈(a+pOp)/pM

bν(b+pMOp)

=
∑
b

ν(b + pMOp) log(b)

=
∑
b

ν(b + pMOp)
(
log

(
1 +

(
b

a
− 1

))
+ log(a)

)
= (log a)ν(a + pOp)

+
∑
b

ν(b + pMOp)
∞∑

i=1

(−1)i+1

i

(
b

a
− 1

)i
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The moments of ν

Write

k∑
i=1

(−1)i+1

i

(
b

a
− 1

)i

= ck(a)b
k + ck−1(a)b

k−1 + · · ·+ c0(a).

Define measures νi on Op by

νi(U) :=
∫
U

xidν(x).

Then

logAa = (log a)ν(a + pOp) +
k∑

i=0

ci(a)νi(a + pOp).
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Calculating νi

Fix τ : F → C.

For U ⊂ Op, define

ζS,i(b,D, U, s) = Nb−s
∑

α∈b−1∩D∩U

τ(α)i

Nαs
,

which converges for Re(s) > i + 1. Define ζS,T,i from ζS,i as

before.

Proposition. The function ζS,T,i(b,D, U, s) extends to a mero-

morphic function on C, and the value ζS,T,i(b,D, U,0) ∈ C lies in

the image of τ . Furthermore, we have

νi(U) = τ−1(ζS,T,i(b,D, U,0)).
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Digression — Shintani zeta-functions

Let A = (ajk) be an r × n matrix with positive entries.

Consider the linear forms

Lk(z1, ..., zr) =
r∑

j=1

ajkzj, 1 ≤ k ≤ n.

Let x = (x1, ..., xr) with xj > 0 and let χ = (χ1, ..., χr) be an

r-tuple of complex numbers with |χj| ≤ 1 for all j = 1, ..., r. Let

a1, ..., ar be nonnegative integers.

The Dirichlet series

Za1,...,ar(A, x, χ, s) =
∞∑

z1,...,zr=0

χ
z1
1 . . . χzr

r z
a1
1 . . . zar

r∏n
k=1(Lk(z + x))s

converges absolutely for Re(s) > r(1+max(a1,...,ar))
n .
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Define polynomials Qa(q) for integers a ≥ 0 by

∞∑
n=0

naqn =
Qa(q)

(1− q)a+1
for |q| < 1.

Following Shintani, Slavov proved:

Proposition. The function Za1, ..., ar extends to a meromorphic

function on C. If χj 6= 1 for all j, then

Za1, ..., ar(A, x, χ,0) =
Qa1(χ1)

(1− χ1)a1+1
...

Qar(χr)

(1− χr)ar+1
.

In other words, the value at s = 0 is obtained by formally plugging

in s = 0 in the series

Za1,...,ar(A, x, χ, s) =
∞∑

z1,...,zr=0

χ
z1
1 . . . χzr

r z
a1
1 . . . zar

r∏n
k=1(Lk(z + x))s

.
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Picture of Lk(z + x) when r = n = 2
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A “lattice cone”
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Final step — reducing ζS,T,i to Za1,...,ar

Let T = {η}, with Nη = `, a prime in Z.

Let χ : b−1/b−1η → C× denote a non-trivial character.

Using the orthogonality relation (for a ∈ b−1):

`−1∑
t=0

χ(a)t =

`, if a ∈ b−1η

0, if a 6∈ b−1η,

the series

NbsζS,T,i(b,D, U, s) =
∑

α∈b−1∩D∩U

τ(α)i

Nαs
− `

∑
α∈b−1η∩D∩U

τ(α)i

Nαs

can be expressed as a finite linear combination of Za1,...,ar with
coefficients in `th roots of unity, with a1 + a2 + · · ·+ ar = i.

Note: computing the indexing set of this finite sum involves the
LLL algorithm.
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A Shintani Domain intersected with a lattice translate

It is a finite union of “lattice cones” if the generators (a11, a12)

and (a12, a22) lie in the lattice.

(L1(x),L2(x)) 
(L1(x),L2(x)) + (a11,a12) 

(L1(x),L2(x)) + (a21,a22) 

 

 

 

 

 

 

  

 

C((a11,a12), (a21,a22)) 
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Results, n = 2

Let F = Q(
√

11) with OF = Z[
√

11]. We take p = (3), and η over

` = 5. Take S = {∞1,∞2, p} and T = {η}.

With b1 = 1 and D = C(1) ∪ C(1,10− 3
√

11), we compute

A = ×
∫
O×p

x dν(b1,D, x) ∈ O×p

up to M = 9 p-adic digits, and we obtain

A ≡ −118098 + 638972
√

11 (mod 39).

Since

ζR,T (H/F, b1,0) = −1

we have

uT (b1,D) =
A

3
.
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Next we take b2 = (
√

11), and compute

A′ = ×
∫
O×p

x dν(b2,D, x) ≡
1

A
(mod 39).

Thus, uT (b1,D) and uT (b2,D) are roots of the polynomial in

Fp[x], whose coefficients are as follows up to 9 p-adic digits:

x2 −
(

A

3
+

3

A

)
x + 1 ≡ x2 +

1

3

√
11x + 1 (mod 39).

Indeed, the narrow Hilbert class field of F , namely F (
√
−1), is

the splitting field of the polynomial

x2 +
1

3

√
11x + 1 (mod 39),

and the roots of this polynomial are the Gross–Stark units for

the data (H/F, S, T ).

26



Shintani Domains for n = 3

If n = 3 and E has basis (ε1, ε2) as a free abelian group, Colmez

proved that

D = C(1) ∪ C(1, ε1) ∪ C(1, ε2) ∪ C(1, ε1ε2) ∪
C(1, ε1, ε1ε2) ∪ C(1, ε2, ε1ε2)

is a Shintani domain, provided ε1, ε2 satisfy the sign condition

det(1, ε1, ε1ε2) det(1, ε2, ε1ε2) < 0,

where det(α, β, γ) = det

α1 β1 γ1

α2 β2 γ2

α3 β3 γ3

 for α, β, γ ∈ F.
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Heuristic Picture for n = 3
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Results, n = 3

Let F = Q(w), where w3 + 2w2 − 3w − 2 = 0, with OF = Z[w].

We choose a conductor f = q2, where (2) = qq′ with q, q′ prime

ideals and N(q) = 2. The narrow ray class field Hf over F has

Galois group

G = 〈(3), q′〉 ∼= Z/2Z× Z/2Z.

We take p = (5) and η with (11) = ηη′ in F , with Nη = ` = 11.

We have S = {∞1,∞2,∞3, q, p} and T = {η}.
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Cheating — calculating the Gross-Stark unit knowing Hf

We compute

ζR,T (H/F, b,0) =


−10, if b = 1,

10, if b = (3),

−10, if b = q′,

10, if b = (3)q′.

If P1, . . . , P4 denote the primes of Hf above p, we compute the

corresponding product

P−10
1 P10

2 P10
3 P−10

4 = (u).

Choosing u such that u ≡ 1 (mod η) and |u|w = 1 for any infinite

w, we compute that its minimal polynomial over F is

x2 +
1

510
(−1154763w2 − 6369741w + 5739634)x + 1.
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Attempting to calculate via Shintani domains

The Colmez sign condition is satisfied, so we take the corre-

sponding Shintani domain. Fix b = (q′)2; it is a representative

for the trivial class in G.

We set M = 6 p-adic digits and find

A = ×
∫
O×p

x dν(b,D, x)

= 14138w2 + 10366w + 10366 (mod 56)

in Op = Z5[w].

The minimum polynomial of uT (b,D) = 5−10A should be

x2 −
(
5−10A +

510

A

)
x + 1.

Indeed, we have that −A is congruent to the middle coefficient

of the calculated minimal polynomial of the Stark unit mod 56.
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Connection with modular forms

In earlier work with Henri Darmon, I provided an alternate for-

mula for the Gross–Stark units when F is a real quadratic field

and H is a ring class field extension. Hugo Chapdelaine general-

ized this to ray class fields in his thesis. Both constructions use

the modular symbols attached to Eisenstein series for GL2(Q).

I proved that the formula above via Shintani domains agrees

with that arising from the modular symbol method in the real

quadratic case.

Question. Is there a Darmon-type construction using modular

forms for the Gross–Stark units attached to an arbitrary totally

real field F? If so, we should be able to prove it agrees with the

one presented here using Shintani domains. Does this suggest

that we can define Stark–Heegner points over arbitrary totally

real fields?
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Earlier Computations

Example. p = 3, Q(
√

209), h = 1, u(P,D) satisfy 3x2 + 5x + 3.

Example. p = 7, Q(
√

321), h = 3, u(P,D) satisfy

75x6 −
2205

√
D + 53361

2
x5 +

3465
√

D + 48699

2
x4 −

4455
√

D + 21791

2
x3

+
3465

√
D + 48699

2
x2 −

2205
√

D + 53361

2
x

+75.
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