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Wright–Fisher model

• discrete time (generations)

• constant population size N

• panmictic

• no selection, no recombination

• ancestry: each individual chooses (haploid) parent at
random (prob 1/N each) from previous generation
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Effective population size

Other population models (reproduction, variable pop size,
structure, . . .) sometimes behave in certain respects like a W-F
model with an “effective population size” Ne.

• inbreeding effective size (probability of identity by
descent)

• variance effective size (variance in offspring allele
frequency)

• eigenvalue effective size (leading non-unit eigenvalue for
allele frequency transition matrix)

• “coalescent effective size” (if it exists) supersedes all of
these.
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The coalescent

• P(2 indiv choose same parent) = 1/N

• Takes O(N) generations to find common ancestor (per
pair)

• Measure time in units of N generations . . . [Nt]

• AN (τ) = # ancestors τ generations in past

• AN ([Nt]) ⇒ A(t) . . . Kingman coalescent

All genetic information about a sample (polymorphism data) is
embedded in the coalescent.
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Fu and Li’s F statistic

F = F (π, ηs, S) =
π − (n−1

n )ηs√
c1S + c2S2

where n = sample size

π = ave. # pairwise differences (influenced by deep branches)

ηs = # singletons (influenced by external branches)

S = # segregating sites
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Tajima’s D statistic

D = D(π, ηs, S) =
π − S

an√
c
′
1S + c

′
2S

2

where

an =
∑n−1

i=1
1
i

Both statistics have mean ≈ 0, variance ≈ 1.

Deviations from assumptions (neutrality, constant pop size,
panmixia,...) produce changes in F and D.
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Relative time scales

Coalescence events have prob ∼ O(1/N).

• Events that are “faster” have prob ∼ O(1/Nα),
where 0 ≤ α < 1. Effects appear in coalescent only in
average sense. (All demographic processes “fast” ⇒
coalescent effective size exists.)

• Events with prob ∼ O(1/N) are incorporated in the
coalescent and affect pattern of variation in
nonhomogeneous way. (No coalescent effective size)
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Fluctuating population size

(backward) size process MN (1),MN (2),MN (3), . . .

Markov chain with state space {N1, N2, . . .}

Ni = Nxi

How does this affect the coalescent?

Depends on time it takes for “large” size changes (i.e.,
O(N)) to occur.
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Harmonic mean size

Special case: MN (1), MN (2), MN (3), . . . (i.i.d.)

with pi = P (MN (τ) = Ni)

P2(no coalescence in [Nt] generations)

= E
[ [Nt]∏

τ=1

(
1− 1

MN (τ)

)]
=

(
1−

∑
i

pi ·
1

Nxi

)[Nt]

→ exp{−t
∑

pi/xi}
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⇒ limiting coalescent is a linear time change of standard
coalescent:

AN ([Nt]) ⇒ A(ct)

where c =
∑ pi

xi
. . . pairwise coalescence rate

⇒ pairwise coalescence prob ≈ 1
N

∑ pi

xi
≡ 1

Ne

⇒ Ne =
( ∑ pi

Ni

)−1
... harmonic mean of sizes

This is the “coalescent effective size”: Ne = N/c
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General fast size fluctuations

size process stationary distribution (γ1, γ2, . . .)

P2(no coalescence in [Nt] generations)

= E
[ [Nt]∏

τ=1

(
1− 1

MN (τ)
)]

∼
(
1−

∑
i

γi ·
1

Nxi

)[Nt]

→ exp{−t
∑

γi/xi}
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Limiting coalescent . . . linear time change of standard
coalescent:

AN ([Nt]) ⇒ A(ct)

where c =
∑ γi

xi
. . . pairwise coalescence rate

⇒ Ne = N
c =

( ∑ γi

Ni

)−1
... harmonic mean of sizes
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Intermediate fluctuations–stochastic time
change

What if macroscopic changes in pop. size (i.e., O(N))
occur on coalescent time scale (i.e., O(N) generations)?

Pop. size τ generations in past (Markov chain):

MN (τ) = NXN (τ),

where relative size proc. XN ([Nt]) = MN ([Nt])
N ⇒ X(t)

... cont-time Markov (e.g., diffusion proc. or cont-time
jump chain)
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“Large” size changes occur on same time scale as coalescence
events; do not “average out.” Limiting coalescent is of form

AN ([Nt]) ⇒ A(Y (t)),

where the time change

Y (t) ≡
∫ t

0

1

X(s)
ds

is nonlinear and stochastic (coalescence intensity).

No (coalescent) effective size! Behavior different from any
standard W-F model. Effects should show up in polymorphism
data.
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Idea

P2(no coalescence in [Nt] generations|{MN (·)})

=
[Nt]∏
τ=1

(
1− 1

MN (τ)
)

=
[Nt]∏
τ=1

(
1− 1

NXN (τ)
)

∼ exp
(
− 1

N

[Nt]∑
τ=1

1
XN (τ)

)
⇒ exp

(
−

∫ t

0

1
X(s)

ds
)
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Time change

∫ t

0

1
Xs

ds =
∫

E

1
x
· Lx

t m(dx)

Lx
t . . . diffusion local time

m(dx) . . . speed measure
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More general demography

Let
cN

(
MN (τ − 1), MN (τ)

)
denote prob. that two lineages coalesce when going from gen.
τ − 1 to gen. τ (in past). Assume

cN (k, m) =
1

N
HN (

k

N
,
m

N
),

where HN ( k
N

, m
N

) → H(x, y) as k/N → x and m/N → y.
Time change becomes ∫ t

0

H(Xs, Xs)ds.
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Cannings-type models

cN

(
MN (τ − 1), MN (τ)

)
=

1

(MN (τ − 1))2

MN (τ)∑
i=1

E
[
(ν

(τ)
i )2

]
ν

(τ)
i . . . number of offspring produced by ith indiv in gen τ .

With exchangeable reproduction, get

HN

( k

N
,
m

N

)
=

( k

N

( k

N
− 1

N

))−1 md

N
→ yd

x2
≡ H(x, y)
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Simulations for fluctuating size

2 sizes N1, N2; equal prob of size change q1 = q2 ≡ q; mutation
prob u = .001; 10,000 runs per data pt.; stationary starting size.
Plot of Fu and Li’s F

N1 = 103, N2 = 104
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N1 = 103, N2 = 105

Rule of thumb: q ∈ ( 10−1

N2
, 101

N1
) ⇒ no averaging;

too close to coalescent scale.

21



Dependence on initial size

N1 = 103, N2 = 105; q1 = q2 = 10−4.

Top curve: initial size 103

Bottom curve: initial size 105
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Structured Populations

Population of total size N , subdivided into L islands (demes),
connected by migration. Pop. size in deme k is Nk = Nak

(a1 + · · ·+ aL = 1).

• Migration on same time scale as coalescence events (i.e.,
migration prob. for lineage bij = βij/N)

⇒ limiting coalescent is “structured.” (no averaging, no
coalescent effective size)
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• Fast migration (i.e., bij = βij/N
α, 0 ≤ α < 1), and

stationary distribution for locations (γ1, γ2, . . . , γL)

⇒ averaging occurs w/ coalescent time change

c =

L∑
k=1

γ2
k

ak
.

⇒ coalescent effective size is

Ne =
N

c
=

( ∑ γ2
k

Nk

)−1
“harmonic mean”

In case of fast migration, structured model can be thought of as
panmictic W-F model with pop. size Ne.
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Simulations for population subdivision

2 demes, equal size, equal migration rate β = 2Nb

N = 103
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N = 104

26
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