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This report summarizes the objectives and scientific progress made at the 3rd workshop for women in non-
commutative algebra and representation theory at the Banff International Research Station in Banff, Canada.

1 Objectives
The goals of this workshop were the following.

• To have accessible introductory lectures by participants in the themes of the workshop.

• To have each participant engaged in a stimulating research project and/ or be involved in a expansive
research program in noncommutative algebra and/or representation theory.

• To have each participant provide or receive training toward this research activity (before and at the
workshop) and to have made significant progress in such directions by the end of the workshop.

• To set-up mechanisms so that the collaborative research groups formed before/ at the workshop can
continue research after the workshop, so that their findings will be published eventually.

• To provide networking opportunities and mentoring for its participants at and beyond the workshop

2 Introductory Talks
There were four “What is...?” talks given by participants of the workshop:

• Asilata Bapat: What is... the Bridgeland stability condition?

• Emily Gunawan and Emine Yildirim: What is . . . a connection between cluster algebras and friezes?

• Maryam Khaqan: What is... moonshine?

• Florencia Orosz Hunziker: What is... a vertex algebra?
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3 Scientific Progress Made
The group leaders are indicated by (*) below.

3.1 Verlinde-type Formulae for Fusion Coefficients
Group members: Georgia Benkart* (University of Wisconsin, Madison), Sarah Brauner (University of

Minnesota), Laura Colmenarejo (North Carolina State University), Francesca Gandini (Kalamazoo
College), Ellen Kirkman* (Wake Forest University), and Julia Plavnik (Indiana University).

Let H = kG be the group algebra of a finite group over a field of characteristic zero. Then H is a
semisimple Hopf algebra. Denote the simple left H-modules by S1, . . . , Sn. For any fixed left H-module V
and each simple module Sj , the tensor product V ⊗k Sj is a left H-module so decomposes into a direct sum
of simple left H-modules. Hence there are nonnegative integers nV (i, j) with

V ⊗k Vj =

n∑

i=1

nV (i, j)Si.

The matrix NV = (nV (i, j)) represents the k-linear map NV : R(H) → R(H) given by left tensoring
with V acting on the representation algebra R(H), expressed in terms of the basis of R(H) that consists of
isomorphism classes of the simple modules [Si]. The character table of G, thought of as an n × n matrix
S, simultaneously diagonalizes all matrices NV , so S−1NV S = DV , for a diagonal matrix DV , whose
entries also come from the character table of G. Solving for NV = SDV S

−1 gives a formula for the fusion
coefficients in terms of data from the character table. Such a formula is called a “Verlinde formula”, and such
formulae occur in various contexts. As one such example, Witherspoon found such a matrix S related to a
character table when H is a semi-simple almost cocommutative Hopf algebra (e.g. the Drinfeld Double of
a semisimple Hopf algebra). As another example, if H = kG, when k has characteristic p, then H may no
longer be semisimple. Using simple composition factors of kG-modules, instead of simple direct summands,
the table of Brauer characters of G was used to study the maps NV in work of Grinberg, Huang, and Reiner,
who noted that the maps NV can be considered for the modules of any Hopf algebra, since then the tensor
product of two H-modules is again an H-module. More generally, onc can consider the fusion relations
in a fusion category, and in the setting of a modular fusion category there is a symmetric matrix S, that is
a representation of SL2(Z), and has other remarkable properties, including the fact that it diagonalizes the
fusion relations; in this case the category is braided, and the fusion algebra is semisimple, commutative,
symmetric, among other special properties.

Our collaboration group is looking at some examples of Hopf algebras and their related matrices of
fusion coefficients, searching for properties that extend the notions described above. In these examples the
fusion relations are not always diagonalizable, so their Jordan form is considered, and we are interested in
properties of matrices that place the NV matrices into Jordan form. The NV matrices’ properties usually
depend strongly on properties of V . Nevertheless, there is some interest among physicists in producing some
sort of Verlinde formula in circumstances beyond the case where the tensor category is modular and the fusion
algebra is semisimple and commutative. During our week at BIRS we computed various matrices related to
the matrices NV in several settings. Our work continues in our weekly virtual meetings that were initiated
last fall. The group consists of researchers with interests in tensor categories, representation theory, algebraic
combinatorics, commutative algebra, and noncommutative algebra, areas that already have come into play in
our work.

3.2 Cluster Categories I
Group members: Karin Baur* (University of Leeds), Lea Bittmann (University of Vienna), Emily Gunawan

(University of Oklahoma), Gordana Todorov* (Northeastern University),
and Emine Yıldırım (Queen’s University).

Cluster algebras were introduced by Fomin-Zelevinsky in 2002 in order to give a combinatorial frame-
work for studying algebraic groups, and have since appeared in various fields including representation theory,
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triangulations of surfaces, Teichmüller theory, Poisson geometry, algebraic combinatorics and frieze patterns.
The associated categories of representations, cluster categories, introduced by Buan-Marsh-Reineke-Reiten-
Todorov have also had numerous applications throughout mathematics as described in Reiten’s ICM 2010
talk on this subject.

During the week of April 4-8, we have looked at questions related to frieze combinatorics and their
connections to triangulations of surfaces and to representation theory. Here, a frieze is an array of (possibly
infinitely many) rows of integers, starting with a row of 0s and a row of 1s and satisfying the so-called
diamond rule: any four entries

b

a d
c

satisfy ad− bc = 1. We consider periodic friezes, i.e. friezes for which all rows have a translational period.
An example of a frieze of period 4 is here:

0 0 0 0 0 0 0 0

1 1 1 1 1 1 1

3 2 2 4 3 2 2 4

· · · 5 3 7 11 5 3 7 · · ·
18 7 10 19 18 7 10 19

25 23 27 31 25 23 27
...

...
...

...

Friezes have been introduced in the 70s by Coxeter and Conway, [5], [3], [4]. See for example [1] for a
survey.

During the WINART3 workshop, our group has studied various types of infinite friezes. Finite friezes are
known to arise from cluster algebras of Dynkin types A, D and E. Infinite friezes have been studied in the
context of cluster algebras of Dynkin type Ã (affine type). A remarkable property of infinite periodic friezes
is that their entries grow in a controlled way: if the frieze has period n then for any entry in the nth non-trivial
row, the difference to the entry directly above it is a constant, independent of which entry in row n we choose,
[2, Theorem 2.2]. This invariant of the frieze is called growth coefficient of the frieze. In the example above,
the growth coefficient is 20: the first entry shown in row four is 25, the entry directly above it is 5, and so on.
Continuing, the difference of an entry in row kn and an entry in row kn− 2 is also always constant and can
be given in terms of the growth coefficient.

Questions and Progress: The main objects we have studied during the week were triangulations of twice
punctured disks: these give a geometric model for cluster algebras in type D̃ (affine type). We were inter-
ested in the associated infinite friezes and in their growth coefficients. We found properties of these growth
coefficients. In addition, we have considered the affine types Ẽ and determined certain associated friezes.
We found that in both affine types, the growth coefficients behave well and are linked to band modules in
the corresponding cluster category. In addition, we considered friezes arising from triangulations of a pair of
pants, i.e. sphere with three boundary components. These provide new families of triples of infinite friezes
which have different behaviour than the above tame types. A third direction we explored was a surgery and
gluing construction on the surfaces we worked on. This allows us to go from triangulations of annuli to trian-
gulations of pairs of pants and back, i.e. between triangulations of a sphere with two boundary components
and a sphere with three boundary components.

3.3 Cluster Categories II
Group members: Ilke Çanakçı*(Vrije University Amsterdam), Francesca Fedele (Università degli Studi di

Verona - Università degli Studi di Padova), Ana Garcia Elsener* (University of Glasgow - Universidad
Nacional de Mar del Plata), Khrystyna Serhiyenko (University of Kentucky).

Cluster algebras are a class of commutative rings that were introduced by Fomin and Zelevinsky [7] in
2002. Their original motivation was coming from studying canonical bases in Lie Theory. Today, cluster
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algebras are connected to various fields of mathematics, including geometry, combinatorics, and represen-
tation theory of associative algebras. The study of cluster variables, the distinctive set of generators for a
cluster algebra, can be simplified by working with their geometric model or their representation theoretic
interpretation.

We focus on cluster algebras of Dynkin type An. Their geometric model consists of a triangulation of
a disk with n + 3 marked points, where the initial cluster variables are in bijection with the arcs of the
triangulation and the remaining cluster variables correspond to the remaining arcs. The cluster variables can
be computed combinatorially using a snake graph formula: each internal diagonal of the triangulated disk
is associated to a snake graph and the corresponding cluster variable can be written down using its perfect
matchings (also known as dimer covers).

Alternatively, the cluster variables can be computed homologically using representation theoretic means.
Denoting by kAn the path algebra of An, the cluster variables are in bijection with the indecomposable kAn-
modules. Moreover, the Caldero-Chapoton map [6] applied to each indecomposable in mod(kAn) gives its
corresponding cluster variable.

Our project. Starting from the above classic theory, our project aims to give a deeper understanding of
the super cluster algebras of Dynkin type An, as studied combinatorially by Musiker, Ovenhouse and Zhang
[8] in 2021. A super algebra is a Z2-graded algebra and it is generated by a set of even variables x, which
commute with each other, and a set of odd variables θ, which anticommute with each other and commute
with the even ones. The geometric model of these algebras consists of an oriented triangulation (without
internal triangles) of a disk with n + 3 marked points, where the initial even variables are in bijection with
the arcs of the triangulation and the remaining super cluster variables are in bijection with the remaining arcs.
Moreover, the initial odd variables are associated to each triangle of the triangulation. As in the classic case,
the super cluster variables can be computed combinatorially using a snake graph formula: each (oriented)
internal diagonal in the disk is associated to a snake graph and the corresponding super cluster variable can
be written down using its double dimer covers (obtained by superimposing two perfect matchings). Since
each tile in a snake graph is obtained by gluing together two triangles, it has two associated odd variables
which also play a role in the super snake graph formula.

We aim to give a representation theoretic interpretation of super cluster algebras of typeAn. Our proposal
is to study the algebra k̃An := kAn ⊗k k[ε], obtained by tensoring the path algebra of An with the dual
numbers k[ε]. We claim that the super cluster variables are in bijection with the indecomposable induced
modules over k̃An, that is the modules of the form M ⊗k k[ε], where M is an indecomposable kAn-module.
In order to show this correspondence, we define a super Caldero-Chapoton map from the induced modules to
the set of super cluster variables.

• We have worked out a bijection between the lattice of double dimer covers of a snake graph and the
submodule lattice of the corresponding induced module. We are in the process of writing down a
formal proof.

• We defined a super Caldero-Chapoton map and we understand the role of the odd variables combina-
torially. We are exploring if these variables can be described in a representation-theoretic way.

• During the WINART3 workshop week we have also fully worked out the A2 case, and we believe
we understand the general case. We exchanged emails with technical questions with the super cluster
algebra paper authors. We explored bibliography that will be used in our project and agreed on a
writing plan that will take place in the next months. We will have zoom meetings periodically.

3.4 On the Monster Lie algebra
Group members: Darlayne Addabbo (University of Arizona), Lisa Carbone* (Rutgers University),

Elizabeth Jurisich* (College of Charleston), Maryam Khaqan (Stockholm University),
and Sonia Vera (Universidad Nacional de Cordoba).

This work concerns open questions about the structure of the Monster Lie algebra. Borcherds constructed
the Monster Lie algebra m to prove part of the Conway–Norton Monstrous Moonshine Conjecture. Let M
denote the Monster finite simple group. A fundamental component of Borcherds’ construction was Frenkel,
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Lepowsky and Meurman’s Moonshine Module V \, a graded M-module with Aut(V \) = M. V \ is an example
of a vertex operator algebra. The Monster Lie algebra m is a quotient of the ‘physical space’ of the vertex
algebra V = V \ ⊗ V1,1, where V1,1 is a vertex algebra for the even unimodular 2-dim Lorentzian lattice
II1,1. We describe this construction in more detail below. The Monster Lie algebra m also has a realization
as the Borcherds (generalized Kac–Moody) algebra m = g(A)/z where g(A) is the Lie algebra with infinite
generalized Cartan matrix A and z is the center of g(A):
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The numbers c(j) are coefficients of q in the modular function J(q) = j(q)− 744 =

∑

i≥−1

c(j)qj =
1

q
+ 196884q + 21493760q2 + 864299970q3 + · · ·

so c(−1) = 1, c(0) = 0, c(1) = 196884, . . . . If we set I0 = {−1, 1, 2, 3, . . . } and let (i, k) ∈ I0 × Z>0 for
1 ≤ k ≤ c(i). Then g(A) has generators

eik, fik, hik

for (i, k) ∈ I = {(i, k)|i, k ∈ Z, 1 ≤ k ≤ c(i)} and simple roots αik for (i, k) ∈ I0 × Z>0, 1 ≤ k ≤ c(i).
For (i, k) = (−1, 1) we write the generators as e−1, f−1, h−1.

The Lie algebra g(A) has defining relations:
(R1) [hjk, hi`] = 0,
(R2) [hjk, ei`] = −(j + i)ei`,
(R3) [hjk, fi`] = (j + i)fi`,
(R4) [ejk, fi`] = δjiδk`hjk,
(R5) (ad e−1)ieik = 0 and (ad f−1)ifik = 0

for (j, k), (i, `) ∈ I . The hik are linearly dependent, so m = g(A)/z has a two dimensional Cartan
subalgebra h with basis elements denoted h1, and h2.

The Monster Lie algebra has the usual triangular decomposition m = n− ⊕ h ⊕ n+ where n± are direct
sums of the positive (respectively negative) root spaces of m. We define the extended index set

E = {(`, j, k) | (j, k) ∈ I im, 0 ≤ ` < j} = {(`, j, k) | j ∈ N, 1 ≤ k ≤ c(j), 0 ≤ ` < j}.

and set

e`,jk :=
(ad e−1)`ejk

`!
and f`,jk :=

(ad f−1)`fjk
`!

,

for (`, j, k) ∈ E. The following non-trivial result gives an additional non-standard decomposition of m.

Theorem 3.1. ([9], [10]) Let gl2(−1) be the subalgebra of m with basis {e−1, f−1, h1, h2}. Then

m = u− ⊕ gl2(−1)⊕ u+

where gl2(−1) := 〈e−1, f−1, h1, h2〉 ∼= gl2, u+ is a subalgebra freely generated by {e`,jk | (`, j, k) ∈ E}
and u− is a subalgebra freely generated by {f`,jk | (`, j, k) ∈ E}.
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To construct m as a quotient of the ‘physical space’ of a vertex algebra V , we define V = V \ ⊗ V1,1,
where V1,1 is a vertex algebra for the even unimodular 2-dim Lorentzian lattice II1,1. We have m = P1/R
where

P1 = {ψ ∈ V \ ⊗ V1,1 | L(n)ψ = δn0ψ, n ≥ 0}
is the space of weight one primary vectors of the vertex algebra V \ ⊗ V1,1 and

R := {v ∈ V | (u, v) = 0 for u ∈ V }

is the radical of the symmetric bilinear form (·, ·). It is an open question to construct specific elements of
V \ ⊗ V1,1 that determine the generators of certain distinguished subalgebras of m which are known only in
terms of sets of generating root vectors.

Goals. The following are the main goals of this work. In the next subsection, we describe our current
progress towards these goals.

• Find vertex operators that correspond to generators of the ‘imaginary’ gl2 subalgebras gl2(im(ik)) in
V \ ⊗ V1,1 corresponding to imaginary simple root vectors eik, fik, hik and imaginary simple roots
αik for (i, k) ∈ Z>0 × Z>0, 1 ≤ k ≤ c(i).

• Find the vertex operators that correspond to the imaginary root vectors {e`,jk} and {f`,jk} which
generate the free subalgebras u± of m respectively.

• Clarify our understanding of how the action of M carries through V \ ⊗ V1,1 to m as a quotient.

• Understand the role of the vectors in V \ ⊗ V1,1 that give rise to the co-dimension 1 free Lie algebra in
n+ and the structure they generate in V \ ⊗ VL .

Progress. During the months leading up to the WINART program, our WINART group members partic-
ipated in a reading group lead by Prof. Carbone, which helped us to learn necessary background material
for the project. Before our arrival at BIRS, we gave the vertex operators for the gl2 subalgebra in V \ ⊗ VL
corresponding to the unique real simple root vector of m. This was previously also given in [11]. A main goal
for our group during the WINART workshop was to begin identifying vertex operators for gl2 subalgebras in
V \ ⊗ VL corresponding to imaginary simple root vectors eik, fik, hik for (i, k) ∈ I and simple roots αik

for (i, k) ∈ Z>0 × Z>0, 1 ≤ k ≤ c(i). During the workshop, we made conjectures as to how to construct
such vertex operators, and completed several preliminary calculations necessary for proving our conjectures.
Upon returning from the WINART workshop, we proved the existence of certain vectors in V \ that we need
for our proposed construction and completed more computations in this direction.

3.5 Combinatorial models in representation theory: additive friezes
Group members: Asilata Bapat (Australian National University), Véronique Bazier-Matte (University of

Connecticut), Eleonore Faber* (University of Leeds), Bethany Marsh* (University of Leeds), Kunda
Kambaso (RWTH Universität Aachen), and Yadira Valdivieso (UDLAP University of the Americas Puebla).

Recently, many combinatorial models have arisen in the representation theory of algebras. Examples
include the categorification of Coxeter–Conway friezes using cluster categories (first pointed out by Caldero–
Chapoton [14]), the description of module categories via Dyck paths (Moreno Cañadas-Bravo Riós [21]) and
the description of categories associated to gentle algebras via surface triangulations and ribbon graphs (see
Baur–Coelho Simoes [12], Lekili–Polishchuk [19], Opper–Plamondon–Schroll [22]).

During the workshop we looked at a variant of Coxeter–Conway’s frieze patterns, so-called additive
friezes, and studied their representation-theoretic properties.
The notion of a (multiplicative) frieze pattern was introduced by Coxeter in [16] and further studied by
Conway and Coxeter in the 1970s in [17, 18], where it was shown that integral friezes of finite rank correspond
to triangulations of n-gons. After the introduction of cluster algebras in the 2000s, it was shown that the
triangulations define a categorification of cluster algebras of type A [15] (see also [13]). Since then, friezes
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have been studied from various points of view in representation theory; in particular Morier-Genoud’s survey
[20] gives a good overview of recent developments.

While multiplicative friezes are well explained in the context of cluster categories, their additive counter-
parts (see [23] for definitions) have been studied much less from a representation theoretic point of view. In
particular, we were interested in additive friezes of non-negative integers (AIFs), and how to enumerate them,
fixing the rank n of the frieze.

Results: For small n, we could determine the number of AIFs using a computer program. Our model for
additive friezes of rank n is the Auslander–Reiten quiver ofDb(modkQ), whereQ is a quiver of typeAn. We
showed how to interpret additive friezes as elements of the dual of the Grothendieck group of Db(modkQ)
and determined a suitable basis of the dual. Using cluster category methods, we were able to interpret additive
friezes as points in an associahedron in some Rm. The main task was to the find integer points that correspond
to AIFs: we claim that these are integer points in a certain “symmetrization” of the associahedron. For small
n we were able to verify this claim by direct computation and we are working on a proof for arbitrary n.

3.6 Hochschild (co)homology I
Group members: Hongdi Huang (Rice University), Monique Müller (Universidade Federal de São João
del-Rei), Marı́a Julia Redondo* (Universidad Nacional del Sur), Fiorela Rossi Bertone* (Universidad

Nacional del Sur), Pamela Suárez (Universidad Nacional de Mar del Plata).

The aim of this group is to consider a particular family of algebras, the gentle algebras, and study their
deformations in terms of Maurer-Cartan elements.

The gentle algebras are a particular case of monomial algebras, and they can be described as path algebras
kQ/I , with some particular conditions on the quiver Q and the monomial relations I .

It is well-known, see [24], that the deformations of an algebra are parametrized by the Maurer-Cartan
elements, that is, elements f of degree one in C∗(A)[1], the shifted Hochschild complex which has structure
of DGLA, satisfying the equation

df +
1

2
[f, f ] = 0.

The Hochschild complex C∗(A) is obtained by applying the functor HomA−A(−, A) to the Hochschild
resolution C∗(A). When A is an algebra over a field k, the Hochschild resolution is a projective resolution of
A in the category of A-bimodules. Usually, when dealing with computation of Hochschild cohomology, it is
convenient to replace the Hochschild complex C∗(A) by any other complex obtained from another projective
resolution of A.

In the particular case of monomial algebras, Bardzell’s complex B∗(A) has shown to be an efficient
replacement of Hochschild complex when dealing with computations. However, with this replacement we
loose the DGLA structure needed to study deformations. One needs to consider L∞-structures, which is a
generalization of DGLA, in order to recover the connection with deformations, which is now given in terms
of the generalized Maurer-Cartan equation.

Since Bardzell’s complex is a retract of Hochschild complex, one can describe a L∞-structure on B∗(A)
that induces a quasi-isomorphism of L∞-algebras.

In [26] we have described explicitly this L∞-structure on B∗(A) for any monomial algebra A, using
some comparison morphisms between C∗(A) and B∗(A) that have been introduced in [25].

Finally, in order to study deformations of gentle algebras, we have to compute the L∞-structure of their
Barzdell’s complex, and describe their Maurer-Cartan elements. The problem with the generalized Maurer-
Cartan equation is that it is a series and it could be divergent. So, the project for this group contemplates, in the
case of gentle algebras, giving conditions under which the generalized Maurer-Cartan equation is convergent
and, when possible, giving a description of the Maurer-Cartan elements.

We have started working a few weeks ago through Zoom meetings. We are already familiar with the
problem and with the calculations we have to do using the comparison morphisms described in [25] and the
L∞-structure given in [26].
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3.7 Hochschild (co)homology II
Group members: Dalia Artenstein (Universidad de la República), Janina Letz (University of Bielefeld),

Amrei Oswald (University of Iowa), Sibylle Schroll* (University of Cologne),
and Andrea Solotar* (Universidad de Buenos Aires).

Due to pandemic reasons and also due to personal reasons of some of the members of the group, the work
of our group has been completely online.

Andrea Solotar explained in the first meeting the aim and scopes of our work: Our aim is to study a
family of algebras called string algebras using their Hochschild cohomology and possibly the associated
geometric models. String algebras are monomial special biserial algebras and as such they are an important
testing ground for conjectures and ideas. Many other classes of well-studied algebras are part of this class of
algebras, the most well-known ones being the so-called gentle algebras which relate with many other areas
of mathematics. The Hochschild cohomology of an associative algebra endowed with the cup product and
the Gerstenhaber bracket has a very rich structure. Andrea explained some results concerning gentle algebras
that are part of unpublished work by Schroll and Solotar in collaboration with Cristian Chaparro Acosta and
Mariano Suárez-Alvarez and which are important to the project on string algebras.

At a later stage, Andrea Solotar explained in detail the definition of string algebras and showed how to
compute the Hochschild cohomology of a particular family of string algebras: namely, the above mentioned
family of gentle algebras. For this, it is important to have a precise knowledge of how to use Bardzell’s
resolution for monomial algebras.

Some of the members of the team were not familiar with Hochschild cohomology, so this part of the
project is taking longer than initially expected, but it is nevertheless important to spend time on it since it is a
fundamental tool for our work.

At the end of the WINART3 week, Dalia Artenstein explained in her short talk the framework of our
project and some preliminary examples that we have been discussing. Some interesting suggestions resulted
from her talk.

Once all the members of our team acquire enough experience with the required methods of computation,
we will be able to study a wide subfamily of non necessarily quadratic string algebras form the homological
and the representation theoretic points of view.

3.8 Generalized Quantum Symmetry via Hopf algebroids
Group members: Bojana Femić (Mathematical Institute of the Serbian Academy of Sciences and Arts),

Florencia Orosz Hunziker (University of Denver), Chelsea Walton* (Rice University),
and Elizabeth Wicks* (Microsoft Corporation).

We seek to understand more about the representation categories of Hopf algebroids. Notions of Hopf
algebroids naturally arise in various fields such as Poisson geometry, category theory, and algebraic ge-
ometry/topology says something about stable homotopy theory. From our perspective as non-commutative
algebraists, bialgebroids and Hopf algebroids arise naturally in the study of symmetries.

What do we mean by this? A symmetry is a property-preserving transformation from an objectA to itself.
We will take A to be a k-algebra here, where k is the ground field.

Classical symmetry: When A is a polynomial ring, its symmetries are fairly well-understood. For exam-
ple, we have that the group GL2(C) acts on C[x, y] naturally by automorphisms, and the Lie algebra gl2(C)
acts on C[x, y] naturally by derivations.

However, if we want to alter A (for example by a deformation that makes A noncommutative), we have
to alter our acting object as well. This was one of the motivations to develop quantum symmetry.

Quantum symmetry: Let us suppose that we deform our original algebra as follows:

C[x, y] ; Cq[x, y] :=
C〈x, y〉

(yx− qxy)
, q ∈ C×.

In this case, groups or Lie algebras do not suffice to capture the symmetries of this algebra, since we
cannot deform them in the same manner. However, there is a more general structure called a Hopf algebra
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that captures these symmetries. A Hopf algebra is defined to be a tuple (H,m, u,∆, ε, S : H → H) where
(H,m, u) is an algebra, (H,∆, ε) is a coalgebra, and S is the antipode, such that these structures satisfy
certain compatibility conditions. The Hopf algebrasOq(GL2), Uq(gl2) are Hopf algebras that act on Cq[x, y].

To be precise, we can say that a Hopf algebra H acts on an algebra A if and only if A is an algebra in the
monoidal category H-mod. The category H-mod is known to be monoidal with tensor product ⊗k.

Weak quantum symmetry: Now let us suppose that we want to alter A further. One natural operation is to
take direct sums. We could imagine that if H is a Hopf algebra acting on A, then H ⊕H acts on A⊕A. For
example,

C[x, y] ; C[x, y]⊕ C[x, y] ∼= (C⊕ C)[x, y].

However, H ⊕H is no longer a Hopf algebra, so this does not fit into the quantum symmetry framework. We
must alter our notion of acting object in order to allow for direct sums.

A natural candidate is the weak Hopf algebra. A weak Hopf algebra is defined to be a tuple (H,m, u,∆, ε, S :
H → H) where (H,m, u) is an algebra, (H,∆, ε) is a coalgebra, and S is the antipode, such that these struc-
tures satisfy weaker compatibility conditions than a Hopf algebra. It is known that the direct sum of two weak
Hopf algebras is again a weak Hopf algebra, and Hopf algebras are special cases of weak Hopf algebras.

In the previous example we generalized the base of the algebra: the base of C[x, y] is C while the base
of C[x, y]⊕2 is C ⊕ C. In both cases the base is commutative and also Frobenius separable. If we want to
consider symmetries of algebras with any noncommutative base, we need to expand our notion of symmetry
even further.

Towards Generalized Quantum Symmetry: We want to extend our algebra A as follows:

C[x, y] ; B[x, y],

where B is any k-algebra. We think that the natural object to act on such an algebra is a Hopf algebroid with
base B. We omit the definition of Hopf algebroid here, but remark that a weak Hopf algebra is a special case
of a Hopf algebroid where the base is Frobenius separable.

Project: We want to continue the theme of understanding symmetries by understanding module categories
over Hopf-type objects. In particular, we want to study categorical properties of H-mod for H a Hopf
algebroid. For Hopf algebras and weak Hopf algebras, it is well-known that such categories are monoidal,
and work has been done to describe conditions under which the categories inherit desirable properties such
as rigidity, braidedness, semisimplicity, and even modularity. We would like to extend similar conclusions to
the Hopf algebroid case.
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