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1 Overview of the Field
A basic goal of algebraic topology is to find algebraic invariants that classify topological spaces up to various
notions of equivalence. Computing such invariants can be extremely difficult, yet can lead to spectacular
outcomes. Some of the most acclaimed results in algebraic topology and K-theory in recent years, including
Hill, Hopkins and Ravenel’s solution to the Kervaire Invariant One problem and Voevodsky’s use of motivic
homotopy theory in resolving longstanding conjectures in K-theory, are founded on such computations.

The calculus of homotopy functors, first introduced by Goodwillie in the 1980’s, is a framework that
makes it possible to understand and gain information about algebraic invariants even when they cannot be
computed explicitly. Within this framework, one replaces an algebraic invariant with a related functor of
topological objects and then approximates this functor by a tower of “polynomial” functors analogous to the
Taylor series for a real-valued function. These polynomial functor approximations have properties that often
make them easier to analyze than the original invariants. This approach has led to significant breakthroughs
in the understanding of periodic homotopy theory, algebraic K-theory, and embeddings of manifolds. (See
[AM99, DGM13, Wei99].)

Goodwillie’s original formulation of functor calculus has been generalized and applied to a variety of
settings, all sharing the common theme of approximating functors (invariants) with easier to control “poly-
nomial” functors. The resulting tower of approximations can be analyzed through study of the fibers, which
can often be classified by “derivatives.” Some versions of functor calculus include

• homotopy calculus for Quillen model categories and∞-categories, generalizes Goodwillie’s homotopy
calculus [Ku07, Lur17],

• abelian calculus, developed by Johnson and McCarthy [JM04] and applied to algebraic invariants like
Hochschild homology (by Kantorovicz and McCarthy, see [KM02]), and

• orthogonal and manifold calculus (see [Wei95, GW99]) , invented by Weiss and Goodwillie-Weiss and
applied to questions in embedding and surgery theory.

One major thread of current activity in functor calculus is unifying these approaches categorically. For
example, comparisons between various functor calculi have been studied by Bauer, Johnson & McCarthy
[BJM15] and Barnes & Eldred [BE15]. Work of Johnson and Hess seeks a categorical context uniting mani-
fold, homotopy, and abelian calculi that can also be used to generate new functor calculi. The WIT II project
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by Bauer, Johnson, Osborne, Riehl and Tebbe [BJO+18] and ongoing work of Bauer, Burke and Ching tie
abelian and homotopy calculus with the notion of cartesian differential categories of Blute-Cockett-Seely
[BCS09].

2 Recent Developments and Open Problems
Broadly speaking, we seek to further these comparisons by

1. finding analogues of theorems from homotopy calculus in abelian calculus,

2. identifying how such theorems are a result of the differential category structure in abelian calculus, and

3. generalizing this relationship to create and compare results in various versions of functor calculus.

In the long term, we expect the flow of information to yield a new framework for dealing with unreduced
functors in homotopy calculus, a topic with few results and important applications.

Our first goal is to find an operad structure for derivatives in abelian calculus. Ching showed that the
derivatives of the identity functor in homotopy calculus form an operad ([Chi05, Chi]). Synthesizing results
from [BJO+18] and methods in [Yea19], we will show that the derivatives of certain functors (including
the identity functor) in abelian calculus form a functor-operad, which recovers an operad upon evaluation
at particular objects. As part of this process, we will show that the operad structures naturally arise as a
consequence of a particular lax monoidal functor built using the differential category structure identified in
[BJO+18].

The next goal will be to compare classifications of polynomial functors given by Arone-Ching in homo-
topy calculus [AC15] and Johnson-McCarthy in abelian calculus [JM03a, JM03b] and determine how these
classifications are tied to differential categories. Ching’s operad was instrumental in the classification of
functors obtained by Arone and Ching [AC11], and we plan to use our operad in a similar way to obtain
classifications in abelian calculus that can be compared to those observed by Johnson and McCarthy.

3 Scientific Progress Made
Prior to the BIRS RIT program, we had established that our desired operad structure for the derivatives in
abelian calculus could be obtained by finding a bicategory homomorphism from AbCat, the bicategory of
abelian categories (suitably defined) and another bicategory which we will call Faà(AbCat). The latter cate-
gory is a bicategorical version of the Faà category originally defined by Cockett and Seely [CS11], and may
be of independent interest. During the BIRS RIT, we focused on constructing this bicategory homomorphism,
∇.

Our goal of extracting specific operad structures from this framework dictates what the source and target
of this bicategory homomorphism should be while the definition of bicategory homomorphism requires that
two technical conditions, the hexagon axiom and the unit axiom, are satisfied by the homomorphism. In
particular, to successfully construct the homomorphism, we needed a very concrete version of a chain rule
for abelian functor calculus – we needed to find a concrete natural weak equivalence

D1F �D1G→ D1(F �G),

where D1 denotes the degree 1 homogeneous approximation of a functor, and � denotes the horizontal
composition in the bicategory AbCat. Abstractly, such an equivalence is known to exist by work of Bauer,
Johnson, Osborne, Riehl, and Tebbe [BJO+18], but verifying the hexagon and unit axioms entails building
an explicit model for this homomorphism and showing that it is a natural weak equivalence. Part of the
challenge in doing so arises from the manner in which horizontal composition in AbCat is defined – the
definition relies on the Dold-Kan correspondence, a well-known equivalence between categories of chain
complexes and simplicial objects in abelian categories.

During the first half of our RIT program, we constructed a candidate for this chain rule map. We showed
that it provided the desired natural weak equivalence between D1F � D1G and D1(F � G), and we were
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able to prove that the hexagon axiom holds for that candidate. In the process, we proved several technical
lemmas that should prove useful as we continue our work on this project.

During the second half of the week, we attempted to verify the unit axiom - but here we ran into trouble.
This will be resolved in ongoing collaboration.

4 Outcome of the Meeting
The Research in Teams program provided us with the opportunity to focus on a highly technical aspect of
our project. We made far more progress on the construction of the bicategory homomorphism in this one
week than we had in many previous months of long-distance collaboration. We are very grateful to Banff
International Research Station for making this possible. In addition to the results we obtained while in Banff,
we now have several new tools and ideas that we can use in tackling the remaining steps in this problem.
Once these steps have been completed, we will have a paper that

• proves a new chain rule for abelian functor calculus,

• provides a bicategorical version of Cockett and Seely’s Faà category,

• demonstrates how operad structures in functor calculus arise from these categorical constructions, at
least in the case of the abelian functor calculus.

These results will pave the way for future work in two significant directions. First, as outlined in Section
2, identification of the operad structures is the first step in a program to obtain a classification of polynomial
functors in abelian functor calculus in a manner similar to that done for the calculus of homotopy functors
by Arone and Ching [AC15], and compare that with the classification obtained by Johnson and McCarthy
[JM03a, JM03b]. The second direction would explore the new Faà bicategory and the extent to which Cockett
and Seely’s characterization of cartesian differential categories in terms of the Faà comonad can be extended
to a bicategorical setting, and the consequences of such an extension.
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