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1 Overview of the Field and Recent Developments
The subject of Diophantine equations is currently experiencing a rapid succession of breakthroughs. These
include:

(i) The work of Rafael von Känel, Benjamin Matschke, Hector Pasten, and others, proving powerful
results on classical Diophantine equations by associating solutions to points on modular or Shimura
curves.

(ii) Recent successes in making the Chabauty-Kim method effective, explicit and practical, due to Balakr-
ishnan, Dogra, Müller, and others.

(iii) Progress on Manin’s conjecture and other quantitative questions by a new generation of analytic num-
ber theorists, including Browning, Loughran, Schindler, Tanimoto and many others.

(iv) The introduction of the notion of Campana points which interpolate between rational and integral
points, and which give rise to a host of new Diophantine problems.

(iv) Applications of modularity over number fields to the asymptotic Fermat conjecture and other Diophan-
tine problems due to Bennett, Dahmen, Freitas, Kraus, Sengun, Siksek and others.

Whilst these and other successes constitute dramatic progress on problems of tremendous historical impor-
tance, there has also been a divergence of methods and approaches, and the subject is undergoing a period of
fragmentation. A primary objective of the workshop was to reverse this fragmentation by bringing together
researchers belonging to disparate Diophantine traditions, and who would otherwise rarely interact.

2 Presentation Highlights

2.1 Benjamin Matschke: A general S-unit equation solver and tables of elliptic
curves over number fields

Many Diophantine problems can be algorithmically reduced to solving unit and S-unit equations, including
the determination of integral points on elliptic and hyperelliptic curves, the resolution of Thue and Thue–
Mahler equations, and the enumeration elliptic and hyperelliptic curves of good reduction outside a given
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finite set of primes. Matschke presented work in progress on a new highly optimized solver for general and
constraint S-unit equations over number fields. He previewed some impressive applications to computing ta-
bles of elliptic curves over number fields which involve improvements to the method of Koutsianas (Parshin,
Shafarevich, Elkies). For example, Matschke has computed all elliptic curves with everywhere good reduc-
tion over all number fields K with absolute discriminants ≤ 20000.

2.2 Josha Box: Modularity of elliptic curves over totally real quartic fields not con-
taining

√
5

The proof by Wiles, Breuil, Conrad, Diamond and Taylor that elliptic curves over the rationals are modular
was one of the highlights of 20th century mathematics. More recently, modularity of elliptic curves over
totally real fields of degree 2 and 3 has been proved by Freitas, Le Hung and Siksek, and Derickx, Najman
and Siksek respectively. In fact, the strategy involves reducing the problem to the determination of low degree
points on some collection of complicated modular curves. Box tackles the problem for totally real quadratic
fields. Recent strong results of Thorne and Kalyanswami allow him to eliminate some of the modular curves,
subject to the assumption that

√
5 is not contained in the field. For the remaining modular curves, Box

used Chabauty’s method and sieving to describe the quartic points. This allowed him to prove the following
theorem.

Theorem 1 (Box). Let K be a totally real quartic fields not containing
√

5. Let E be an elliptic curve defined
over K. Then E is modular. More precisely, there is a Hilbert eigenform f over K with parallel weight 2 and
rational Hecke eigenvalues such that L(E, s) = L(f, s).

2.3 Hector Pasten: A Chabauty–Coleman bound for surfaces in cubic threefolds
Let C/Q be a curve of genus g ≥ 2, and write J for the Jacobian of C. Let r = rank(J(Q)) and suppose
r < g. Let p > 2g be a prime of good reduction for C. A famous theorem of Coleman assert that

#C(Q) ≤ #C(Fp) + (2g − 2). (1)

The method of Chabauty–Coleman can often be refined to determine the rational points C(Q) provided the
condition r < g holds, and this is the most popular method for determining rational points on curves. There
are extensions to Chabauty–Coleman higher dimension, which apply to symmetric powers of curves, or to
Weil restrictions of curves defined over number fields, but these have yet to yield an analogue of Coleman’s
elegant bound (1).

Pasten sketched a proof of the following elegant theorem, which is the first instance of a Coleman-style
bound in higher dimension.

Theorem 2 (Caro and Pasten). Let A/Q be an elliptic variety of dimension 3 such that rank(A(Q)) = 1. Let
X/Q be a smooth projective hyperbolic surface contained in A. Write c2

1(X) = (KX ,KX) (this is the first
Chern number of X). Let p be a prime > 15c2

1(X)2 of good reduction such that X ⊗ Fp does not contain
elliptic curves. Then

#X(Q) ≤ #X(Fp) + (p + 4
√
p + 8) · c2

1(X).

3 Open Problems

3.1 Adam Logan: Quicksand K3s
Define a K3 surface X to be ‘quicksand’ if there is no map of finite degree from X to a nonisomorphic K3
surface Y . (In characteristic p I exclude supersingular K3 surfaces on both sides. I do not require every
finite-degree map from X to itself to be an isomorphism.) Obviously a K3 surface is not quicksand if it has
an elliptic fibration with an isogeny of degree greater than 1, or if it has a genus 1 fibration without a section.

If a K3 does not have one of these types of fibration, should it be expected to be quicksand? In particular,
what about:
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• X of Picard number 1;

• X with Picard lattice U + E6 + E8, where U is the hyperbolic lattice generated by x, y with x2 =
y2 = 0, (x, y) = 1?

Probably easy: prove that there are no examples with rank greater than 16.

3.2 Lajos Hajdu: Arithmetic Progressions of Powers
Problem 1: Is it true that the length of any non-constant arithmetic progression of perfect powers (possibly
with different exponents) with initial term 1 or −1 is bounded by an absolute constant?
Problem 2: More generally, is it true that the length of any primitive non-constant arithmetic progression
of perfect powers (possibly with different exponents) is bounded by an absolute constant? (An arithmetic
progression a + td (t = 0, 1, 2, . . . ) is primitive if gcd(a, d) = 1.)
Remarks by Lajos Hajdu: Both problems are open. Note that the cases where the exponents of the perfect
powers are the same, immediately follow from results of Darmon and Merel [1].

• If in Problem 1, the first term of the progression is a with |a| ≥ 2, then the length of the progression
can be bounded in terms of a. If a = 0, then the length of the progression cannot be bounded. For
details, see [2].

• The question in Problem 2 was answered affirmatively in [3], assuming the abc conjecture.

3.3 Benjamin Matschke: Szpiro Ratio

How large can you make log |∆E |
log rad(NE) for elliptic curves E/Q? Here,

• ∆E is the minimal discriminant of E, and

• rad(NE) is the radical of the conductor of E, that is, the product of all primes of bad reduction.

Remarks:

• The limsup over all E/Q might be 6.

• E : y2 = x3 − 54540x + 9958896 yields 21.2187 . . . .

• Any uniform upper bound would yield a strengthening of the best currently known bounds for the abc
conjecture.

4 Outcome of the Meeting
We were initially overwhelmed by the idea of running an online workshop, but the BIRS staff were really
supportive and guided us through the process. The combination of using Zoom for the lectures and Zulip
for the discussions worked unexpectedly well, and most talks generated good feedback and interactions.
With the cancellation of many workshops and local seminar series, there are fewer opportunities for young
mathematicians to shine, and so we made a choice to have as many talks by younger participants as possible.
Whilst the online format lacked many of the informal exchanges that are integral to a face-to-face workshop,
it has allowed us to welcome a much larger number of participants. We are particularly pleased that many
PhD students and postdocs were able to join the workshop, and also with the surprising geographical spread
of the participants.
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