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1 Overview of the Field

The BIRS workshop “New and Evolving Roles of Shrinkage in Large-Scale Prediction and Infer-
ence” brought in thirty-six experts in statistical theory, methods and related applied fields to assess
the latest developments and explore new directions in the field of shrinkage methodology and algo-
rithm development for large-scale prediction and statistical inference. There were twenty-six talks
and two discussion sessions during the workshop focusing on both the current and future state of
this rapidly evolving field. The talks were divided into the following themes:

• Empirical Bayes and optimal shrinkage under heterogeneity and asymmetry,

• Shrinkage priors for Bayesian prediction and inference,

• Spectral shrinkage and inferences under unknown covariances,

• Non-linear shrinkage and penalization methods for structured estimation,

• Efficient and scalable shrinkage algorithms for Big Data Analytics.

Overall there was general consensus that shrinkage methods are now omnipresent in modern data
science. The traditional roles of shrinkage have been massively revolutionized as complex shrink-
age penalties pertinent to modern data structures are used for large-scale predictive modeling. His-
torically, the elegant mathematical statistics theory developed following the celebrated works of
[87, 86, 9] guided and popularized the usage shrinkage perspective in varied applications as a tool
to calibrate bias-variance trade-off. Over the past decades, there has been enormous growth of
new applied shrinkage methods. The foundational decision theoretic perspectives now needs to
be extended to complex high-dimensional framework to be useful for evaluating efficacy of mod-
ern methods. The recent developments in shrinkage theory and methods that were presented in
this workshop illustrate the conjoint evolution of field in theory and methods. There has been in-
creasing emphasis on non-linear shrinkage methods that can adapt to latent structure in the data
generation process. Lasso-type methods in the Frequentist domain and local-global shrinkage prior
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based methods in the Bayesian domain have been very successful in variable selection applications.
Though contemporary Frequentist and Bayesian approaches to structured shrinkage modeling in-
volves different computational tools, the corresponding estimators are often proved to enjoy similar
decision theoretic optimality properties. Shape constraint estimation has been a vibrant area in
the recent years yielding pragmatic robust methods based on non-parametric maximum likelihood
methodology. The workshop also displayed shape-constrained estimation in the Bayesian domain
where novel approaches to set-up constrained MCMC samplers are being used. The workshop had
talks involving inference in domains where the covariance structure is unknown and needs to be
estimated from the data. These recent works involve new mathematical statistics ideas particularly
those involving the spectrum of large matrices and yielded powerful methodologies that can be ap-
plied to inventory management, weather forecasting, health-care and environmental sciences. The
workshop also illustrated recent developments in predictive density estimation. High-dimensional
predictive density estimates adapting to various constrains has been developed and they can be used
for probability forecasting in a host of modern applications. The power of predictive density esti-
mation methods were displayed by showing their superior risk properties compared to estimative
plug-in approaches. The participants agreed that there is a growing need for a confluence of modern
theory and large-scale shrinkage applications. This confluence is extremely important for disci-
plined growth of the subject by understanding the operating characteristics and working principles
of innumerable different penalties proposed by practitioners and data enthusiasts.

2 Recent Developments and Open Problems

The workshop brought to fore the latest usage of shrinkage methodology along with their associated
theoretical support and guarantees. Perhaps, the Gaussian sequence model [48] is the simplest
framework to explicitly study the role of different kinds of linear and non-linear shrinkage [95,
10, 9, 19]. The optimal direction and magnitude of shrinkage has been well-studied in this set-up
[14, 32, 33] and these traditional results have lead to an elegant mathematical theory for risk analysis
and decision theory in models where the number of parameters increases along with sample size and
equals to the number of observations. These form the foundations for shrinkage theory in modern
complex models though closed form estimators and exact tractable analysis is not available here. An
intrinsic challenge in shrinkage methods is accurate estimation of the shrinkage hyper-parameters
so that the resultant algorithm is tuned for optimal estimative or predictive performance. Most of
these traditional results dealing with optimal shrinkage consider a parametric family of estimators
indexed by shrinkage hyper-parameters that are then optimally tuned [22, 23, 11, 21, 68]. In real-
world applications, these parametric families of estimators often have limited usage and there is need
to consider flexible non-parametric counter-parts. Conducting optimal non-parametric shrinkage
estimators is difficult [13] and very recently powerful theory and methods in that direction have been
proposed [46, 47, 53, 54, 85, 18] by using Non-parametric Maximum likelihood (NPMLE) based
techniques. This workshop had four talks demonstrating the applicability of NPMLE in constructing
potent non-parametric shrinkage estimators. These recent works shows that incorporating shape
constraints such as monotonicity improves these estimation frameworks and the resultant estimators
are robust and adaptive. A convenient aspect of these estimators is that they can be computed using
convex optimization solvers. In this context, the recent R package REBayes of [52] has seen popular



3

usage for implementing these methods.
In complex models that are typically used in contemporary data analysis, the empirical Bayes

(EB) perspective [79, 80, 96, 1] is used as an efficient interface for conducting shrinkage by pool-
ing information through a hierarchical set-up. Hierarchical modeling has become an increasingly
important statistical method in modeling large and complex datasets as it provides an effective tool
for combining information and achieving partial pooling of inference [89, 57, 6]. The applications
of hierarchical models involve simultaneous inference on different parameters of interest that are
related through a higher level similarity and are often well modeled by a second-level prior. The
workshop showcased recent developments in optimal selection of shrinkage magnitude and direc-
tions in hierarchical models and applications of hierarchical random effects modeling in mortality
rate estimation and individualized prediction [37].

In many contemporary applications [42] auxiliary information regarding the second level struc-
tures (such as correlation patterns) is available and can only be suitably incorporated in the hier-
archical framework through nonexchangeable priors. Recent work of [5] presented in this work-
shop develops a generic predictive program for constructing efficient shrinkage rules in a non-
exchangeable Gaussian model with with an unknown spiked covariance structure. Shrinkage is
facilitated through a family of commutative priors for the mean parameter that are governed by
a power hyper-parameter which varies over perfect independence to highly dependent scenarios.
Bayes predictive rules in such as set-up involve quadratic forms in functionals of the unknown
population covariance. Random matrix theory results [75, 74, 49] are used to correctly estimate
the shrinkage estimator in such a Bayesian hierarchical model. Recent Bayesian and Frequen-
tist methods for inducing shrinkage in models with unknown covariance is also covered. Consis-
tent boootstrap based programs for estimation of several spectral statistics have been developed
[62, 50]. Recently works have lead to several new methods for estimating the spectral distribu-
tion such as by empirical tilting. Novel asymptotic estimation of the distributions of eigen vectors
of high-dimensional structured random matrices are developed in [25] for applications in network
inference. In spatial statistics, statistical computations for large datasets are a challenge, as it is ex-
tremely difficult to store a large covariance or an inverse covariance matrix, and compute its inverse,
determinant or Cholesky decomposition. In this domain, scalable matrix-free conditional samplings
algorithms are being developed for estimation in spatial mixed models [20].

The workshop documented recent progress in predictive density estimation. The goal in Pre-
dictive Density Estimation (prde) is to use past data to choose a probability distribution that will be
good in predicting the behavior of future samples. The problem of predictive density estimation is
one of the most fundamental problems in statistical prediction analysis (See [3, 30, 29]). Tradition-
ally, prediction analysis has dealt with extracting as much information as possible from a small data
set. However, over the last decade high-dimensional prde has recieved much attention. Recently,
decision theoretic parallels have been established between the predictive density estimation and the
multivariate normal mean estimation problem [34, 38, 35, 12, 55, 51, 93, 39, 64]. Connections be-
tween the two estimation regimes under parametric constraints have been explored by [92], [26],
[60], [70] and [69]. Here, recent development in structured predictive density estimation in varied
parametric models were discussed. The resultant density estimates possess optimal predictive log-
likelihood properties and can be used in a host of modern applications where data sets with large
numbers of predictors are increasingly being collected.
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While most of these developments in prde are in the sequence models, the workshop covered re-
gression techniques in high-dimensional model with many more covariates than observations. Here,
variable selection is important for constructing good estimators of the unknown parameters [2]. Re-
cent developments in this domain has lead to scalable Bayesian shrinkage priors with desirable
posterior concentration [7, 8, 61, 91]. Some of the most popular Bayesian variable selection tech-
niques [67, 36, 44] are built on the “spike and slab” prior distribution. Spike and slab approaches
and their computationally tractable extensions have recently been very successfully applied in se-
lecting variables in high-dimensional sparse regression models (See [73, 7, 83, 81, 82, 43] and the
references therein).Of particular note is the wide usage of continuous spike-and-slab methods ex-
emplified by horse-shoe priors based methods [76, 77, 91, 61]. Bayesian inference methods for
adaptation to shape constraints and approximate Bayesian computations reinvigorating traditional
MCMC methods for large scale Bayesian shrinkage are vibrant areas of modern research in this
stream of works.

The workshop also covered new directions where empirical Bayes and related shrinkage ideas
are beginning to be employed for improving existing inference methodologies. The role of shrinkage
in testing hypothesis related to functional data [17] as well as empirical Bayes methods for matrix
completion [66] and modern causal inference problems were discussed.

2.1 Open Problems

One of the generic themes of the presentations in the workshop was the importance of extending
inferential paradigms from point or interval estimation to predictive inference. Here is a brief list of
topics that fit into this research agenda.

1. Predictive density estimation has traditionally focused on usage of the Kullback-Leibler loss.
However, new phenomena have begun to emerge in the context of statistical models involving
high-dimensional parameters with the utilization of a wider variety of losses that include chi-
square, total variation and Wasserstein metrics. One broad class of research problems is to
conduct systematic studies to develop understanding and effective strategies for predictive
inference for various classical models such as Gaussian sequence model, Poisson regression
model, linear regression models and various models for longitudinal data under such loss
functions.

2. High-dimensional inference poses a multitude of challenges and opportunities. While usage
of shrinkage strategies in high-dimensional problems has a long history, the literature on pre-
dictive inference for these problems is still relatively limited. Some relevant open problems
include (a) choice of appropriate sparse and dense priors for linear models with unknown
covariance; and (b) choice of priors for optimal predictive inference for low-dimensional
functionals of high-dimensional parameters.

3. Graphical models have emerged as a powerful modeling paradigm for complex multivariate
data. The question of predictive inference for such models has been largely unexplored. One
of the challenges here is to come up with appropriate models for describing probabilistic
structures on graph spaces that are both analytically and computationally tractable.
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3 Presentation Highlights

The workshop demonstrated fascinating progress in predictive density estimation (prde). Prde has
traditionally been one of the most fundamental problems in statistical inference [31, 3]. Over the
past decade, tractable decision theoretic progress regarding efficacies of Bayesian and Frequentist
approaches to prde has been made. Eric Marchand summarized these recent results across dif-
ferent loss functions and varied useful parametric set-ups [26, 60, 59, 58, 63]. Bill Strawderman
showed that under Kullback-Leibler divergence in spherically symmetric distributions, there ex-
ists alluring parallels between point prediction and predictive density estimation and minimum risk
equivariant densities can be dominated by Harmonic priors [27]. Iain Johnstone showed that in high
dimensional predictive density estimation under sparsity constraints there exists decision theoretic
contrasts with minimax sparse location estimation results [69]. These contrasts can be explained
by analyzing minimax optimal sparse discrete priors [72]. The minimax risk of popular spike-and-
slab prdes were also obtained. Fumiyasu Komaki demonstrated the recent progress made in prde
in discrete Poisson models. Prediction in discrete models differs in fundamental aspects from pre-
diction in continuous models [56]. In particular, Fumiyasu Komaki proposed shrinkage priors so
that its associated non-parametric Bayesian prde under Kullback-Leibler loss. Keisuke Yano pre-
sented optimal tuning and usage of prde in poisson models under sparsity constraints [94]. Sparsity
in count data implies situations where there exists an overabundance of zeros or near-zero counts
and these sparsity constrained framework relates to zero-inflated models. All of the above devel-
opments are built in models with known covariances. Takeru Matsuda [65] showed that in models
with unknown covariance, predictive density estimates based on singular value shrinkage prior have
efficient prediction properties.

Bill Strawderman and Eric Marchand connected frequentist risk in predictive density estimation
with the shrinkage location estimators in Gaussian sequence models. Selection of optimal shrinkage
parameters in sequence models is a vibrant area of research. Yuzo Maruyama presented ensemble
minimaxity [16] of James-Stein type [45] estimators in heteroskedastic sequence set-ups. Roger
Koenker presented a non-parametric estimation framework for modeling binary response by single-
index models with random coefficients [40]. A new approach for computing the Nonparametric
maximum likelihood estimation (NPMLE) that significantly increases computational tractability
was developed. Aditya Guntuboyina discussed empirical Bayes estimation of multivariate normal
means [85] using NPMLE and extended NPMLE based shrinkage estimation to mixture of regres-
sion set-ups. Jiaying Gu demonstrated the applicability of Nonparametric empirical Bayes methods
in econometric applications dealing with heterogeneity in both the location and scale parameters.
She investigated the performance of NPMLE based ranking methods for studying several compound
decision problems in teacher quality evaluation using administrative data. The talk illustrated the
importance of empirical Bayes ideas in providing elegant interfaces and interpretative robust es-
timators for dealing with delicate policy questions. It led to much excitement and considerable
discussions among the audience. It was highlighted that unlike most state-of-the -art black-box
modeling approaches, the rigorous nature of empirical Bayes rules provide the much needed as-
surances needed for framing data-driven policy in sensitive applications such as evaluations based
incentives, remunerative penalties and terminations.

The workshop had several talks on non-linear shrinkage in Bayesian regression models. Edward
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George demonstrated the powerful role of continuous shrinkage priors in sparsity constrained high-
dimensional models [83]. Malay Ghosh showed that in high-dimensional multivariate regression
model, horse-shoe [77, 76] priors can be used for efficient Bayesian estimation [91, 61]. Anirban
Bhattacharya presented recent efforts to scale up Bayesian computation in high- dimensional and
shape-constrained regression problems. The transition kernel of an exact MCMC algorithm was
perturbed to ease the computational cost per step while maintaining accuracy. Debdeep Pati showed
that in Bayesian shape constrained estimation, commonly used priors are not suitable and proposed a
novel alternative strategy based on shrinking the coordinates using a multiplicative scale parameter.
The proposed shrinkage prior [78] guards against the mass shifting phenomenon while retaining
computational efficiency.

Another interesting attribute in this workshop was research talks on statistical methods to deal
with unknown covariances. Feng Liang presented the problem of estimating a high-dimensional
sparse precision matrix in a Bayesian framework. She showed that adaptation in shrinkage and
sparsity levels can be induced by a mixture of Laplace priors [28]. Miles Lopes showed that several
spectral statistics can be non-parametrically well estimated in high-dimensional set-ups by using
bootstrap based methods [62]. Sanjay Chaudhuri presented the problem of estimating the spectral
distribution of large covariance matrices by exponential titling in regimes where sample size as
well as the dimension increases proportionately. Debashis Mondal presented modern Bayesian and
Frequentists approaches to deal with large covariance matrices in saptial mixed models. Tractable
shrinkage estimation using matrix-free conditional samplings algorithms was demonstrated [20].
Yingying Fan showed that asymptotic distributions of eigen vectors in large random matrices can
be adequately estimated and used for large-scale network inference [25]. Gourab Mukherjee ex-
tended the emprical Bayes framework in Gaussian sequence model [89, 90] and considered pre-
diction under unknown covariance in a hierarchical framework guided by a flexible family of non-
cummutative priors. Under spiked structure, the resultant Bayes predictors can be well evaluated in
such non-exchangeable flexible models [5].

There were several other fascinating attributes of shrinkage methods that were also displayed in
the workshop. Xinyi Xu demonstrated the potential of Bayes factors in Bayesian hypothesis testing
and model comparisons. Jinchi Lv presented an interesting methodology in high-dimensional non-
parametric inference where distance correlation is used for inference pertaining to attributes related
to a pair of large random matrices. Holger Dette showed that hypothesis of practical relevance in
functional data analysis often can not be tested by existing methodologies and developed a new
bootstrap based test for conducting accurate two-sample tests for those purposes [17]. Jialiang Li
presented a model averaging method for constructing a prediction function [88]. Several semipara-
metric models are weighted for prediction of the mean response. The nonparametric regression
models are marginally approximated by spline basis functions and fitted by Bayesian MCMC algo-
rithm. Syed Ejaz Ahmed demonstrated the role of shrinkage in removing implicit bias in Big data
applications. He showed how shrinkage rules can be re-calibrated to remove post selection bias in
complex regression models. Qingyuan Zhao discussed the potential of using an empirical Bayes
perspective [95, 96] in modern usage of causal inference in medical and heath care applications.
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4 Scientific Progress Made

There were two discussion sessions during the workshop in which the participants summarized
the progress made during the meetings by connecting the dots among the rigorous scientific talks.
Several new perspectives in regards to modern applications of shrinkage in big-data applications
came up in the discussions. These discussions led to a bigger picture on the current themes of
research on shrinkage methods as well as on potential application areas. In large-scale predictive
modeling in biology, economics, finance, healthcare, management and marketing sciences, it is now
commonplace to use some notions of shrinkage to construct robust algorithms [24, 84, 71, 15, 4].

An interesting attribute of this workshop was the assimilation of mathematical theory with sta-
tistical methods used in modern applications. Another feature was the increasing involvement of
sophisticated Bayesian computational procedures to implement shrinkage strategies involving com-
plex hierarchical models [78, 7, 83, 81, 82, 91]. A further significant development has been in terms
successful demonstration of Bayesian shrinkage strategies in “non-standard” problems motivated
by modern applications [65, 66]. Finally, there were several talks on novel shrinkage strategies for
shape-restricted inference and high-dimensional inference [85, 62, 41], topics that are becoming
increasingly important in modern statistics.

5 Outcome of the Meeting

The workshop showcased the latest advances in the domain of predictive inference and shrinkage
procedures in statistics. Some of the key areas of development in contemporary statistics have
been (i) inference for high-dimensional data; (ii) sparse parameterization of complex models; (iii)
inference under geometric constraints; (iv) computational developments for large volumes of data,
and (v) enhanced Bayesian methodologies for nonparametric and semiparametric problems. This
meeting has been successful in bringing together experts from each of these fields, and thereby
providing a platform for an informative exchange of ideas across these related disciplines. Several
collaborative research efforts, including new research proposals and exchange visits by various
scholars, have been taking shape as a direct consequence of the academic exchanges during this
workshop.

One of the notable features of the workshop was the participation of a large number of young
researchers in the field. The key member of the organizing committee, Dr. Gourab Mukherjee,
is Assistant Professor of Data Sciences and Operations in the University of Southern California.
Among the participants, quite a few were either Assistant Professor or Postdoctoral Scholars in
various reputed universities. This workshop therefore allowed these young researchers to showcase
their exciting research to the some of the most highly respected senior researchers in the field. At
the same time the workshop provided a nice networking opportunity to these young researchers,
many of them are expected to be leaders in their respective fields of research.

Participants in the workshop also laid out a number of open problems in the areas of predictive
inference and shrinkage-based statistical procedure. It is expected that this meeting will work as a
catalyst in bringing together researchers across disciplines to solve the mathematical and computa-
tional challenges associated with these exciting questions.
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