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1 Overview of the Field
There is no doubt now that the current trend that every electronic device should be connected in one way or
another (usually many) implies a greater need for efficient networks. These networks should be connected,
exhibit small-world behavior and their topology should be robust to local modifications like device movement;
all this should be achieved using minimal and distributed processes. The workshop we held at BIRS between
Feb 5–10 2012 was aimed at a deeper understanding of some of the major network models.

The topic of the workshop was mainly sparse geometric graphs and their use as models for wireless,
bluetooth and ad-hoc networks, but some more general models of sparse networks have also been discussed.
We focused in particular on quantitative indicators of the quality of the network, and of performance of the
main communications algorithms. We first describe the important aspects of the subject area: the models, the
quantities of interest and the relationships with neighboring fields.

The community working in the field aims at designing and understanding models of networks. A good
analysis is crucial in that it permits to improve the design and to adapt it to the needs. The models of interest
arise naturally either from concrete applications and the constraints imposed by physics (random geomet-
ric graphs) or as essential objects in more fundamental questions (Erdős–Rényi random graphs, Achlioptas
processes). The parameters that are crucial to the quality of a model are

• CONNECTIVITY: in general, it should be possible to go from any point to any other; but it it is some-
times acceptable if a vast majority of the nodes are interconnected (there is a giant connected compo-
nent).

• MAGNITUDE OF DISTANCES: the diameter should be rather short to ensure that it is (at least theo-
retically) possible to move quickly from any point to any other; again, constraining the diameter is
sometimes too strong a requirement and one settles for short typical distances.

• SPARSITY: it is rather easy to design networks that are very connected, and with short distances, just
take a complete graph. Such a topology is however unacceptable for reasons of cost and/or scalability,
and one would like the graph to be as sparse as possible.

• NAVIGABILITY: for sparse connected graph with short distances, one is only certain that short paths
exist, but they may be difficult to find using local information only. To be useful in practice, one would
like that the network be navigable, i.e., that short paths are easily found by some distributed algorithm
using local information.
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• DIFFUSIVITY: finally, one would like broadcast algorithms to perform very well. The analysis here is
usually important since one would like good information to spread quickly, but also to be able to stop
efficiently the propagation of viruses.

We will finish this quick overview of the field by defining the two main classical models of interest, Erdős-
Rényi random graphs, and random geometric graphs. Most of the interesting and more complex models build
on either of these. We will then discuss the recent developments and open questions in Section 2.

ERDŐS–RÉNYI RANDOM GRAPHS. The model introduced by Erdős–Rényi [25, 26] is one of the most
studied models of random networks. In spite of its simplicity it exhibits very interesting phenomena. It is
usually the model one keeps in mind to understand more complex networks. A random graph G(n, p) is a
graph (V,E) on n labelled vertices V = {1, 2, . . . , n} where the edge set E consists of a random sample of
the
(
n
2

)
possible edges where each one is present with probability p, independently of the others. The structure

of typical graphs varies greatly depending on the value of p with respect to n. With the parametrization
p = c/n, where c is a fixed constant, one sees that the largest component ofG(n, p) has size at mostO(log n)
when c < 1, Θ(n2/3) when c = 1 or Θ(n) when c > 1. This last phase is most interesting since a large part
of the graph is then interconnected. The graph only becomes completely connected when p is of the order of
log(n)/n so that the average degree is of order log n.

RANDOM GEOMETRIC GRAPHS. The model dates back to Gilbert [28] who introduced an underlying spatial
topology for the network. One is given a connected domain, [0, 1]d for simplicity, and draws a set of n
uniformly random points X = {X1, . . . , Xn}. The graph G(n, r) is the graph with vertex set X where two
nodes are tied by an edge if the Euclidean distance between them is at most r. Again, the structure of a typical
graph depends highly on the respective values of r and n. When r = (λ/n)1/d for some fixed constant λ, the
average degree is of order λ. As in the G(n, p) model, the is a phase transition for the connectivity: there is
a critical value λc such that the largest connected component has linear size if and only if λ > λc. A typical
graph is connected only when r is of order (log(n)/n)1/d so that, again, the average degree is about log n.

2 Recent Developments and Open Problems

2.1 Sparse connected graphs
As we mentioned above, the typical graphs only get connected when the average degree is logarithmic in the
size. This is usually not acceptable since this raises the question of scalability: a typical node of the network
cannot have a number of links that grow with the size of the graph.

SPARSE RANDOM GEOMETRIC GRAPH MODELS. The natural model for a spatial network is the random
geometric graph G(n, r), where n points are randomly distributed in space, say the unit square [0, 1]2, and
edges are added between any pair of vertices whose Euclidean distance does not exceed some value r [33, 32].
Above the threshold r?(n) for connectivity, the average degree is of order Ω(log n) so that graph is too dense
for pratical reasons. This is why a number of related models have been proposed, that built a sparse connected
overlay of the geometric graph. An example is provided by the irrigation graph introduced by Dubhashi,
Häggström, Johansson, Panconesi, and Sozio [23]. In this model, each node chooses independently a number
c(n) of its geometric neighbours (at distance at most r(n)) with which it establishes a connection. One
would like to study how small one can pick c(n) and still obtain a nice enough network. More precisely, the
properties that are crucial for applications are related to the quantitative measures of the connectivity and the
ability to design efficient communications algorithms, both highly dependent upon the network model.

2.2 The problem of distances and navigability
The good connectivity of the graph is only a minimal requirement for the network. There should obviously
be a trade-off between connectivity and sparsity of the network. This trade-off must also take into account
the fact that the network should be usable: it should be relatively fast and easy to find short routes between
vertices.
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DISTANCES AND SMALL-WORLD PHENOMENON. One important property concerns the magnitude of dis-
tances: indeed the communication time between two nodes is lower bounded by the shortest distance between
them.Branching arguments show that the scale of distances is at least of order 1/r(n); so one would want
the distances to have a magnitude approaching this lower bound. In other words, one would like the graph
to exhibit small-world behavior. Many non-geometric models exhibit such properties, and for these precise
asymptotics have been proved for quantities such as the typical distance or the diameter (maximum shortest
pairwise distance) [36, 10, 34, 16]. However, for geometric models, the known results about distances mostly
characterize the growth rate and more precise results are still lacking.

NAVIGABILITY, CONDUCTANCE AND BROADCASTING. For the navigability, one would like that the short
paths, if they exists, are easily found in a random way. Two main parameters of interest here are mixing
time and the cover time. The mixing time is the length of the transition period before the behavior stabilizes
to the stationary distribution. It is related to the spectral properties of the graph and to its conductance,
which measures the uniform expansion quality of the network. The cover time measures the number of steps
required for the simple random walk to visit every node. In some sense, it is the simplest (of course inefficient
in practice) toy model for broadcast in a graph where a unique messenger must inform every user in person;
the practical version —in which every informed person becomes a messenger— is considered below. For
random geometric graphs, the cover time has been addressed by [17] in dimension three and up; the most
important case of dimension two is still unknown.

In practice, one of the broadcast strategies that has received a lot of attention is based on rumor spreading
and relates to the propagation of epidemics in a population [21]. There are three versions, push and pull and
push–pull. Some piece of information is originally in the hands of some user of the network. The algorithm
consists in spreading the information in the network by pushing (each user randomly chooses a neighbor to
transmit information to) or pulling (each user asks information from a randomly selected neighbor) or both.
The performance of the algorithm has been studied under various assumptions on the underlying graph. Only
recently [15] have used a more general approach that characterizes the broadcast time in terms of the graph
conductance. In some sense, it relates the cover time of the branching random walk to the spectral properties
of a single random walk and opens a very promising route towards more general characterizations of the
performance of broadcast algorithms.

2.3 Diffusions in random networks
To of the main questions about propagations in networks are about diffusion of new technology (bootstrap
percolation) and diffusion of a rumor.

BOOTSTRAP PERCOLATION Some processes on random networks are of great interest. The first one, boot-
strap percolation, has been used to model the adoption of new technology by a population. The process takes
place on any (connected) graph. One is given a set of vertices that is initially infected (has the new tech-
nology). The infection then propagates deterministically: any node that with at least k infected neighbors
becomes infected. These new infected vertices can, in turn, contributed to the propagation of the infection.
One says that we have percolation if the entire graph gets infected. The most important question consists in
determining the proportion pc of nodes that have to be infected at random in the first place to ensure perco-
lation. In order to understand the influence of locality on the process, random geometric graphs is a natural
model to study bootstrap percolation. Recently, some first bounds on the critical threshold pc have been
obtained by Bradonjić and Saniee [14].

RUMOR SPREADING USING CONDUCTANCE. A first step towards more general results about broadcasting
algorithms consists in characterizing the time for rumor spreading in terms of an important parameter of
the connectivity of the graph that would be computed for specific examples. The first result in this direc-
tion is due to Chierichetti, Lattanzi, and Panconesi [15] who provide almost tight bounds for the broadcast
time using a push–pull strategy in terms of the graph conductance. We will discuss ways to nail down the
correct asymptotics and discuss what other important graph invariant might be more suitable to express the
asymptotic bounds in a useful way.
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2.4 Fundamental questions of universality
Aside from the parameters of practical interest, one would like to understand better the models themselves
and the common behaviors that they exhibit.

UNIVERSALITY OF RESCALED COMPONENT SIZES. A first step towards the understanding of the metric
structure consists in understanding the component sizes. Aldous [3] has shown that the component sizes of
critical Erdős–Rényi random graphs were asymptotically following a very specific coagulation process, the
multiplicative coalescent. It seems that this process also describes the evolution of the asymptotic sequence
of component sizes in many other random graphs processes, like inhomogeneous random graphs [8], the
Bohman–Frieze process [7] as well as other Achlioptas processes (where one is given rules to choose an edge
from a list of random available ones). The question of the universality of the multiplicative coalescent for
natural models of random graphs is one of the fundamental and difficult questions.

TOWARDS UNIVERSALITY FOR GRAPH PARAMETERS. One of the more challenging questions concerns the
universality of the behavior of graph models. Rather than analyzing the models one by one, one would gain
a lot of insight by adopting a more abstract point of view. The main obstacle here is to define a suitable
measure of similarity between graphs. The question of metrics on the space of graphs and continuity of the
parameters in the induced topology is crucial here. The question has been very successfully answered for
dense graphs with the notion of graph limits by [30] (see also [20]). For sparse graphs, the question is more
subtle and many natural metrics (like the Gromov–Hausdorff metric) do not yield good topologies on the
spaces of sparse graph that are not “critical” (only supercritical (branching) graphs are crucial in practice
for their expansion properties.) The recent survey by [12] provides possible approaches. The question of
convergence of geometric networks is also the main theme of Aldous’ talk at the ICM [2].

3 Presentation Highlights
The talks covered the spectrum of topics we intended to discuss. In particular, there were talks about prop-
erties of random geometric graphs, the structure and distance in random sparse graphs, some applications of
sparse graphs, as well as some presentations about related more fundamental questions.

3.1 Random geometric graphs
Nicolas Fraiman — Connectivity of Bluetooth graphs

We study the connectivity of random Bluetooth graphs, these are obtained as irrigation subgraphs of the
well-known random geometric graph model. There are two parameters that control the model: the radius
r that determines the visible neighbors of each node and the number of edges c that each node is allowed
to have. The randomness comes from the distribution of nodes in space and the choices of each vertex.
We characterize the connectivity threshold (in c) for values of r close the critical value for connectivity in
the underlying random geometric graph. This is joint work with Nicolas Broutin, Luc Devroye and Gabor
Lugosi [13].

Tobias Muller — Colouring random geometric graphs
If we pick points X1, . . . , Xn at random from d-dimensional space (i.i.d. according to some probability

measure) and fix a r > 0, then we obtain a random geometric graph by joining points by an edge whenever
their distance is < r. I will talk about some results on the chromatic number and the clique number of this
model [31].

Matthew Penrose — Connectivity of G(n,r,p)
Consider a graph on n vertices placed uniformly independently at random in the unit square, in which any

two vertices distant at most r apart are connected by an edge with probability p. This generalizes both the
classical random graph and the random geometric graph. We discuss the chances of its being disconnected
without having any isolated vertices, when n is large, for various choices of the other parameters.
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Joseph Yukich — Probabilistic Analysis of Some Geometric Networks
We survey some techniques for establishing general limit theorems in stochastic geometry (laws of large

numbers, variance asymptotics, and central limit theorems). We show how the general theorems may be
applied to deduce the limit theory for various functionals of random geometric graphs, including, for example,
network connectivity functionals, clique count, total edge length, and component count. The talk is based on
joint work with M. Penrose, T. Schreiber, and Y. Baryshnikov.

3.2 Structure and distances in sparse graphs
Shankar Bhamidi — Limited choice and randomness in evolution of networks

The last few years have seen an explosion in network models describing the evolution of real world net-
works. In the context of math probability, one aspect which has seen an intense focus is the interplay between
randomness and limited choice in the evolution of networks, ranging from the description of the emergence
of the giant component, the new phenomenon of ”explosive percolation” and power of two choices. I will
describe on going work in understanding such dynamic network models, their connections to classical con-
structs such as the standard multiplicative coalescent and local weak convergence of random trees.

Justin Salez — Joint distribution of distances in large random regular networks.
We study the array of point-to-point distances in large random regular graphs equipped with exponential

edge-weights. The asymptotic marginal distribution of a single entry is now well-understood, thanks to the
work of Bhamidi, van der Hofstad and Hooghiemstra (2010). In this talk, we will show that the whole array,
suitably re-centered, converges in the weak sense to a rather simple infinite random array. Our proof consists
in analyzing the invasion of the network by several mutually exclusive flows emanating from different sources
and propagating simultaneously at unit rate along the edges. The result applies to both the random regular
multi-graph produced by the configuration model and the uniform regular simple graph.

3.3 Applications of sparse graphs
David Aldous — Some thoughts on data compression and entropy for sparse graphs with vertex-names

After an informal review of classic Shannon theory of entropy and data compression for random se-
quences, I will speculate on analogs for sparse graphs with vertex-names.

Marc Lelarge — A new approach to the orientation of random hypergraphs
A h-uniform hypergraph H = (V,E) is called (`, k)-orientable if there exists an assignment of each

hyperedge e ∈ E to exactly ` of its vertices v ∈ e such that no vertex is assigned more than k hyperedges.
Let Hn,m,h be a hypergraph, drawn uniformly at random from the set of all h-uniform hypergraphs with n
vertices and m edges. In this paper, we determine the threshold of the existence of a (`, k)-orientation of
Hn,m,h for k ≥ 1 and h > ` ≥ 1, extending recent results motivated by applications such as cuckoo hashing
or load balancing with guaranteed maximum load. Our proof combines the local weak convergence of sparse
graphs and a careful analysis of a Gibbs measure on spanning subgraphs with degree constraints. It allows us
to deal with a much broader class than the uniform hypergraphs.

Pat Morin — Maximum interference in the highway and related models.
Given a set D of n disks, the interference of a point p is defined as the number of disks of D that contain

p. The interference of D is the maximum interference over all centers of disks in D. In this talk, we discuss
upper and lower bounds on maximum interference in 1 dimension, 2 dimensions, in the worst case, and in
probabilistic settings.

3.4 Fundamental questions
Charles Bordenave — How does a uniformly sampled Markov chain behave ?

This is joint work with P. Caputo and D. Chafai. In this talk, we will consider various probability dis-
tributions on the set of stochastic matrices with n states and on the set of Laplacian/Kirchhoff matrices on n
states. They will arise naturally from the conductance model on n states with i.i.d conductances. With the
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help of random matrix theory, we will study the spectrum of these processes. An emphasis will be put on the
case of the simple random walk on a sparse directed Erdős-Rényi graph.

Csaba Toth — Convex partitions.
A convex partition is a planar straight-line graph where every bounded face is convex and the complement

of the outer face is also convex. Two results are presented in this talk: (1) For every n points in the plane,
there is a convex partition G such that the total edge length of G is at most O(log n/ log log n) times that
of a Euclidean minimum spanning tree (EMST) for the n points, and this bound is the best possible. (2)
If G is a convex partition and the outer face has O(1) edges, then G contains a monotone path of at least
Ω(log n/ log log n) edges, and this bound is the best possible. (Joint work with Adrian Dumitrescu.)

4 Some open questions
One of the main objectives of the workshop was to foster new collaborations between the participants. To
this aim, we organized an open problem session the day of arrival and scheduled informal working sessions
every afternoon. Some of the proposed questions are famous and notoriously difficult, and were brought up
to get the opinions of participants with a fresh eye and a different background, others have spawn from the
participants current interests. In any case, the set of open questions which have been proposed has great
scientific value, and we reproduce them here:

LENGTH OF THE GREEDY TOUR (Presented by C. Bordenave). Thow n uniform points on the unit square,
and consider the total length Ln of the greedily constructed traveling salesman path. More precisely, start
from a random point, then at any stage move to the closest yet non-visited point. Let Ln denote the length
of this path. It is possible to show that Ln is of order

√
n [6]. Prove that Ln/

√
n converges to a constant.

Many problems of this kind, when the path constructed is in some sense optimal, have been solved using
sub-additive arguments (see, e.g., [35]). Here the main argument collapse since the path is constructed in a
greedy way.

GREEDY TOUR IN THE PLANE (Presented by C. Bordenave). In an other version of the previous problem,
one starts from a homogeneous Poisson point process P in the plane, conditioned to have a point at the origin.
Starting from the origin, proceed to a walk which always visits the nearest point of P not yet visited. Does
this walk eventually visit every point of P?

GREEDY ALGORITHM UNDER POISSON RAIN. Consider a homogeneous Poisson point process on R2 ×
[0,∞). The first two coordinates are interpreted as space, and the third one as the time at which the point
defined by the first two coordinates arrives. Suppose that an agent always goes towards the closest non-
visited point. In particular, if at some time t a point appears that is closer than all the others, the agent
changes direction to aim at the newly arrived point. Let Vt be the number of points visited before time t. Is it
true that lim inft→∞ Vt/t > 0 ?

ASYMPTOTICS FOR GENERALIZED U-STATISTICS (presented by J. Yukich). U-statistics are a way to boot-
strap an r-sample estimator into an n-sample estimator. Given a real-valued function f of r variables, the U-
statistic fn : Rn → R is the average over distinct ordered r-subsamples. Generalized U-statistics of the form∑

i,j fn(Xi, Xj , Dn) where the Xi are independent and identically distributed in Rd, Dn = (X1, ..., Xn),
and fn is some translation invariant function are of great interest. Can they be understood using a variation
of the stabilization method?

ABOUT INTERFERENCE (presented by P. Morin) Given a set D of n disks, the interference of a point p is
defined as the number of disks of D that contain p. The interference of D is the maximum interference over
all centers of disks in D.

For a point set V , and a graph G, the set D consists of the disks centered at the points v of V with radius
equal to the length of the longest edge adjacent to v. The interference I(G) of the graph G is the interference
of that set D.
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• Given a point set V ⊂ R, can we compute at graph G that approximately minimizes I(G)?

• Is the following statement true: “for any V ⊂ Rd, there exists a graph G = (V,E) with I(G) =
O(
√
n)”

• Is there an algorithm for finding a graph G that approximately minimizes I(G)? A 5/4-approximation
is best possible.

• If V consists of n i.i.d. points uniform on [0, 1] the minimum spanning tree has interference Θ(
√
n).

Is there a better graph that gives o(
√
n)? What is the interference of the minimum spanning tree of n

i.i.d. uniform points in [0, 1]d?

• Let G? minimize the interference I(G) for a n i.i.d. points uniform on [0, 1]d. What is E[I(G?)]?
Previous construction show an upper bound of O((log n)1/2).

DIAMETER OF THE EUCLIDEAN MST (presented by L. Addario-Berry). The minimum spanning tree (MST)
is one of the most important sparse graphs. A lot is known about the local properties of minimum spanning
trees; much less is known about the typical distances, or about the diameter. In a geometric setting, take n
i.i.d. uniform points in the square and use Euclidean distance to weight the edges of a complete graph on n
vertices. What can we say about the expected diameterDn of the corresponding random Euclidean minimum
spanning tree? Only the trivial bounds Dn = O(n) and Dn = Ω(

√
n) are known.

THE EXTRA-COST FOR GUARDING SCULPTURES. (presented by L. Addario-Berry). An art gallery is a
simple polygon. One is asked to place a minimal set of guards to that every point of the interior perimeter
of the gallery (where the paintings lie) is seen by at least one guard. A related question concern the extra
cost needed to also ensure that the interior of the polygon (where the sculptures lie) is also guarded. Addario,
Amini, Séréni and Thomassé proved that if n guards are needed for the walls, then the extra cost for sculptures
is at most 4n− 6 [1]. It seems that n− 2 extra guards should suffice.

RESILIENT SPANNERS (presented by V. Dujmovic). Highly connected and yet sparse graphs (such as ex-
panders or graphs of high tree-width) are fundamental, widely applicable and extensively studied combinato-
rial objects. Can we find such graphs that are robust to failures of some of the nodes in the following sense:
Given a point set V , |V | = n, is it possible to construct a graph G = (V,E) such that for any V ′ ⊆ V , with
|V ′| ≤ f(n) the subgraph G induced on V \ V ′ has a connected component of size n− o(n) that is a sparse
(at most g(n) edges) t-spanner? For instance, it is possible with g(n) = O(n) and f(n) =

√
n?

5 Scientific Progress Made
The schedule was made with only a limited number of presentations in order to leave most of the time for
discussions between the participants. In particular, we organized an open problem session on the first day,
and working sessions every afternoon. We believe that the workshop was very successful with respect the
exchanges it fostered. On top of the informal discussions whose long term impact is difficult to estimate, a
number of open problems have been solved, some of which have also already been submitted to a conference
or a journal [9, 19]. Most concrete outcomes that have been produced or will be published in the very near
future concern groups of people with similar backgrounds, and this is inevitable. However some of the most
promising work involve participants with different backgrounds; such collaborations take of course more
time to reach a ripe state.

INTERFERENCE GRAPHS. Pat Morin and Luc Devroye have worked on interference in random geometric
graphs. They improved the bounds on the interference of graphs on a set V of n uniformly random points
in [0, 1]d. In particular, they showed that there exists a connected graph on V that has interference of order
(log n)1/3 and that no connected graph on V has interference o((log n)1/4). They also showed that the min-
imum spanning tree on V has interference Θ((log n)1/2). Their results have been collected in a manuscript
that has been submitted [19].
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ROBUST GEOMETRIC SPANNERS. Jit Bose, Pat Morin and Vida Dujmovic have worked on the robustness of
highly connected yet sparse graphs. In particular, they initiated the study of such graphs that are in addition
geometric spanners. Following the suggestions the open problem proposed by V. Dujmovic, they defined a
robustness property and proved that robust spanners must have a superlinear number of edges, even in one
dimension. On the positive side, they also give constructions, for any dimension, of robust spanners with a
near-linear number edges. These results have already been submitted [9].

IRRIGATION GRAPHS WITH CONSTANT OUT-DEGREE. Full connectivity of a network is of little importance
in practice, there will always be some remote and isolated points, and this does not affect the quality of the
network from the provider’s point of view. What matters is the size of the largest connected component. S.
Boucheron, N. Broutin, L. Devroye and G. Lugosi have worked on this question on the model that was the
subject of N. Fraiman’s lecture, the connectivity of bluetooth graphs. They have proved that even when the
range of reach r of a point is only slightly above the connectivity threshold of the random geometric graph,
keeping only two random neighbors suffices to ensure that the largest connected component has size n−o(n).
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[21] M. Draief and L. Massoulié. Epidemics and Rumours in Complex Networks, volume 369 of London
Mathematical Society Lecture Notes. Cambridge University Press, Cambridge, 2010.

[22] D. Dubhashi and A. Panconesi. Concentration of Measure for the Analysis of Randomized Algorithms.
Cambridge University Press, Cambridge, UK, 2009.
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