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1 Overview of the Field
The main objective of the workshop was to complete a project on the strong asymptotics of Cauchy biorthog-
onal polynomials [1] and an associated Cauchy two-matrix model introduced in [2].

The model consists of two random Hermitean positive-definite matrices M1,M2 of size n× n equipped
with the probability measure

dµ(M1,M2) =
1

Zn
dM1dM2

det(M1 +M2)n
e−NTr(U(M1))e−NTr(V (M2))

where U, V are scalar functions defined on R. The model was termed the Cauchy matrix model because of the
shape of the coupling term. Similarly to the case of the Hermitean one-matrix models for which the spectral
statistics is expressible in terms of appropriate orthogonal polynomials [3], this two-matrix model is solvable
with the help of a new family of biorthogonal polynomials named the Cauchy biorthogonal polynomials [4].
The Cauchy biorthogonal polynomials are two sequences of monic polynomials (pj(x))∞j=0, (qj(y))∞j=0 with
deg pj =deg qj = j that satisfy∫∫

R+×R+

pj(x)qk(y)
e−N(U(x)+V (y))

x+ y
d xd y = hkδjk , ∀j, k ≥ 0 , hk > 0 .

These polynomials appeared initially in an inverse problem for the nonlinear dispersion model (the Degasperis-
Procesi equation) [5] and were further developed in [6] in relation with the spectral theory of the cubic string
as well as applied to other nonlinear partial differential equations [7].

2 Recent Developments
One of the problems we set out to solve was the large N = n + r asymptotics of the Cauchy biorthogonal
polynomials (pj(x))∞j=0, (qj(y))∞j=0. This required first the formulation of an appropriate Riemann-Hilbert
problem and that was accomplished in [1]. With the help of suitable equilibrium potentials, called below ρ1

and ρ2 and a sequence of deformation we formulated the outer and inner parametrix problems essentially
following the machinery laid out by Deift and Zhou [8] with an important modification that our RH problem
deals with 3 × 3 matrices, rather than 2 × 2, and it exhibits a different asymptotic behaviour at infinity. For
example
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Figure 1: The RHP for the outer parametrix

Problem 2.1 (Outer parametrix). Find a 3×3 matrix Ψ(z), analytic inD0 := C\ ((−∞, b0] ∪ [a0,∞)) and
with the following properties

(i) the jumps indicated in Figure 1 with specific values1 0 0
0 0 1
0 −1 0

 on the left (green) cuts

 0 1 0
−1 0 0
0 0 1

 on the right (blue) cuts

1 0 0
0 e−2πiNσl

0 0 e2πiNσl

 on the left l-th gap

e2πiNεl 0 0
0 e−2πiNεl 0
0 0 1

 on the right l-th gap

(ii) the growth conditions at z =∞ and near an endpoint are, respectively

Ψ(z) ∼
(
1 +O

(
1

z

))zr 1
z−r

 , Ψ(z) = O
(

(z − a)−
1
4

)
, a ∈ {ai, bi}i=1,...

We solved completely the RH problem 2.1 by giving an explicit solution in terms of the Riemann Theta
functions associated to certain Riemann surface L which can be realized as a double of the bordered Riemann
surface obtained by gluing together three Riemann spheres slit along the support of one of the equilibrium
measures ρ1 and glued there with the middle Riemann sphere which is subsequently slit also along the support
of the second equilibrium measure ρ2 and glued across it with the third Riemann sphere, cut along the support
of ρ2. More details can be found in [9].

3 Outcome of the Meeting and Open Problems
The original project was completed and in fact during the workshop the paper reporting the results was
submitted as well as posted on the archives [9]. As expected, all spectral statistics, including gap probabilities,
were proved to follow the standard universality results for the one-matrix Hermitean model. However, it is
expected that new universal behavior will appear at the zero eigenvalue where two interacting matrices (a
positive-definite M1 and a negative-definite −M2) in some sense come ”close” one to another. We started
investigating this scaling regime by looking at the concrete example, which is of independent interest as it
involves certain classical special functions. More concretely, during the workshop we made a significant
progress on the explicit construction of both Cauchy biorthogonal polynomials as well as the accompanying
two-matrix model for the case of two Laguerre-type measures dµ = xae−x, dν = xbe−x, x > 0.
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Theorem 3.1. Given two Laguerre-type measures dµ, dν specified above let us set α := a + b. Then the
associated Cauchy biorthogonal polynomials pn, qn are expressed as (they are normalized so that the leading
coefficient is the same)

pn(z) = (−1)n
√

2n+ α+ 1

√
Γ(a+ n+ 1)

Γ(b+ n+ 1)

Γ(α+ n+ 1)

n!Γ(α+ 1)Γ(a+ 1)
2F2(−n, α+ n+ 1; a+ 1, α+ 1; z)

qn(z) = (−1)n
√

2n+ α+ 1

√
Γ(b+ n+ 1)

Γ(a+ n+ 1)

Γ(α+ n+ 1)

n!Γ(α+ 1)Γ(b+ 1)
2F2(−n, α+ n+ 1; b+ 1, α+ 1; z)

and they satisfied 3-rd order differential equations:

[z (∆− n) (∆ + α+ n+ 1)−∆ (∆ + a) (∆ + α)] pn = 0,

[z (∆− n) (∆ + α+ n+ 1)−∆ (∆ + b) (∆ + α)] qn = 0,

where ∆ = z d
dz .

The fact that the Cauchy biorthogonal polynomials are expressed in this case by hypergeometric functions
of type 2F2 is a welcoming sign that the theory of these polynomials is an extension of ”classical function
theory”. Moreover, the scaling limit points to a new universal behaviour:

Theorem 3.2. The orthonormal pn(z), qn(z) in the scaling regime behave as

qn+r(zn
−2) = (−1)n+r+1

(
1 +

r(α+ 2∆) + (α+1)(α+2∆)
2

n
+

1

n2

(
(α+ 2∆)(α+ 2∆− 1)r2

2
+ rC1 + C2

))
G(z)

where C1, C2 are two operators that are independent of r (and n) while G(z) is the Meijer G function

G(z) ≡ G1,0
0,3

(
z
∣∣0,−α,−a) =

1

2πi

∫
γ

Γ(u)

Γ(1 + α− u)Γ(1 + a− u)
z−udu.

Conjecture 3.1. All correlation functions in the scaling regime z
n2 , n→∞, can be expressed as differential

expressions in the the scale invariant ∆ applied to the Meijer G function.
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