# Topological Bifurcations in the Wake Behind an Oscillating Cylinder

Anne Ryelund Nielsen\* Puneet Matharu<sup>†</sup> Morten Brøns\*

\*Technical University of Denmark <sup>†</sup>University of Manchester, UK



The University of Manchester





#### von Kármán vortex street

2S wake

# Oscillating cylinder may lead to exotic wakes

#### $\mathsf{P} + \mathsf{S}$ wake



Williamson, in Ponta & Aref, J. Fluids Struct. 22(2006), 327-344

#### Other body shapes produce very exotic wakes



**4P** 

2P + 2S

4P + 2S

**2P** 

Schnipper et al, J. Fluid Mech. 633(2009), 411-423





Dimensionless parameters

• 
$$Re = \frac{UD}{\nu}$$
 (= 100 here)  
•  $A \leftarrow \frac{A}{D}$   
•  $f \leftarrow \frac{f}{f_{st}} = \frac{T_{st}}{T}$  or  
 $\lambda \leftarrow \frac{\lambda}{D} = \frac{UT_{st}}{D}$ 

where  $f_{st}$  ( $T_{st}$ ) is the frequency (period) of the vortex shedding for A = 0



where  $f_{st}$  ( $T_{st}$ ) is the frequency (period) of the vortex shedding for A = 0







where  $f_{st}$  ( $T_{st}$ ) is the frequency (period) of the vortex shedding for A = 0

Leontini, Stewart, Thompson & Hourigan, Phys. Fluids 18(2006), 067101



### Purpose of the present study

To elucidate the transitions in the structure of the wake from a 2S to a P+S pattern as the forcing amplitude A is varied, at  $f = f_{st}$  and Re = 100.

#### Purpose of the present study

To elucidate the transitions in the structure of the wake from a 2S to a P+S pattern as the forcing amplitude A is varied, at  $f = f_{st}$  and Re = 100.



• A = 1.092: note the symmetry  $\omega(x,y,t) = -\omega(x,-y,t+1/2)$ 

• 
$$A=1.092$$
: note the symmetry  $\omega(x,y,t)=-\omega(x,-y,t+1/2)$ 

Vortices:

$$egin{aligned} &\partial_x \omega(x^*,y^*,t^*;A) = 0 \ &\partial_y \omega(x^*,y^*,t^*;A) = 0 \ &|\mathbf{H}^\omega(x^*,y^*,t^*;A)| > 0 \end{aligned}$$

Saddle points:

$$egin{aligned} &\partial_x \omega(x^*,y^*,t^*;A) = 0 \ &\partial_y \omega(x^*,y^*,t^*;A) = 0 \ &|\mathbf{H}^\omega(x^*,y^*,t^*;A)| < 0 \end{aligned}$$

• 
$$A=1.092$$
: note the symmetry  $\omega(x,y,t)=-\omega(x,-y,t+1/2)$ 

Vortices:

 $egin{aligned} &\partial_x \omega(x^*,y^*,t^*;A)=0\ &\partial_y \omega(x^*,y^*,t^*;A)=0\ &|\mathbf{H}^\omega(x^*,y^*,t^*;A)|>0 \end{aligned}$ 

Saddle points:

$$egin{aligned} &\partial_x \omega(x^*,y^*,t^*;A) = 0 \ &\partial_y \omega(x^*,y^*,t^*;A) = 0 \ &|\mathbf{H}^\omega(x^*,y^*,t^*;A)| < 0 \end{aligned}$$

• A = 1.092: note the symmetry  $\omega(x,y,t) = -\omega(x, -y, t+1/2)$ 



An extremum and a saddle are created or disappear in a *cusp bifurcation* at a degenerate critical point of vorticity where the Hessian is singular.



• A = 1.092: note the symmetry  $\omega(x,y,t) = -\omega(x, -y, t+1/2)$ 



- Extended classification concatenated by symbols  $\Sigma^n$  with  $\Sigma=2S, \mathsf{P}+S, 2\mathsf{P}, \ldots$
- Integer n designates the number of periods +1 the pattern exists.

• A = 1.092: note the symmetry  $\omega(x,y,t) = -\omega(x, -y, t+1/2)$ 



This wake is classified as  $(2P)^3(2S)^\infty$ 

- Extended classification concatenated by symbols  $\Sigma^n$  with  $\Sigma=2S, \mathsf{P}+S, 2\mathsf{P}, \ldots$
- Integer n designates the number of periods +1 the pattern exists.

# Bistability

• *A* = 1.092

• *A* = 1.092

# Bistability

• 
$$\omega(x,y,t) = -\omega(x,-y,t+1/2)$$

• 
$$\omega(x,y,t) \neq -\omega(x,-y,t+1/2)$$

# A dynamical subcritical bifurcation

Matharu, Hazel & Heil, J. Fluid Mech. 918(2021), A42:

- A subcritical symmetry-breaking pitchfork bifurcation from the symmetric branch occurs at  $A_2 = 1.093$
- The bifurcating branch gains stability at a fold bifurcation at  $A_1 = 1.078$

$$\varepsilon = \|\omega(x,y,t) + \omega(x,-y,t+1/2)$$

















### Following the unstable branch



# Varying the forcing period





• The transition from a 2S to a P+S wake of a transversally oscillating cylinder takes place over a large interval of forcing amplitudes A.

- The transition from a 2S to a P+S wake of a transversally oscillating cylinder takes place over a large interval of forcing amplitudes A.
- A classification scheme extending that of Williamson & Roshko is needed to describe the stages in the transition.

- The transition from a 2S to a P+S wake of a transversally oscillating cylinder takes place over a large interval of forcing amplitudes A.
- A classification scheme extending that of Williamson & Roshko is needed to describe the stages in the transition.
- A sequence of intermediate patterns of the form  $(2S)^{n}(2P)^{m}(2S)^{\infty}$  and  $(P+S)^{n}(2P)^{m}(P+S)^{\infty}$  occur in the transition process.

- The transition from a 2S to a P+S wake of a transversally oscillating cylinder takes place over a large interval of forcing amplitudes A.
- A classification scheme extending that of Williamson & Roshko is needed to describe the stages in the transition.
- A sequence of intermediate patterns of the form  $(2S)^{n}(2P)^{m}(2S)^{\infty}$  and  $(P+S)^{n}(2P)^{m}(P+S)^{\infty}$  occur in the transition process.
- The transition interval is bounded by amplitudes A<sub>0</sub> and A<sub>3</sub> where degenerate topological bifurcations are present.

- The transition from a 2S to a P+S wake of a transversally oscillating cylinder takes place over a large interval of forcing amplitudes A.
- A classification scheme extending that of Williamson & Roshko is needed to describe the stages in the transition.
- A sequence of intermediate patterns of the form  $(2S)^{n}(2P)^{m}(2S)^{\infty}$  and  $(P+S)^{n}(2P)^{m}(P+S)^{\infty}$  occur in the transition process.
- The transition interval is bounded by amplitudes A<sub>0</sub> and A<sub>3</sub> where degenerate topological bifurcations are present.
- Jumps in the wake structure occur at the subcritical dynamical pitchfork bifurcation points  $A_1$  and  $A_2$  of the periodic flow,  $A_0 < A_1 < A_2 < A_3$ . The dynamical pitchfork bifurcation is required to obtain asymmetric patterns P + S

- The transition from a 2S to a P+S wake of a transversally oscillating cylinder takes place over a large interval of forcing amplitudes A.
- A classification scheme extending that of Williamson & Roshko is needed to describe the stages in the transition.
- A sequence of intermediate patterns of the form  $(2S)^{n}(2P)^{m}(2S)^{\infty}$  and  $(P+S)^{n}(2P)^{m}(P+S)^{\infty}$  occur in the transition process.
- The transition interval is bounded by amplitudes A<sub>0</sub> and A<sub>3</sub> where degenerate topological bifurcations are present.
- Jumps in the wake structure occur at the subcritical dynamical pitchfork bifurcation points  $A_1$  and  $A_2$  of the periodic flow,  $A_0 < A_1 < A_2 < A_3$ . The dynamical pitchfork bifurcation is required to obtain asymmetric patterns P + S
- The presence of the (overlooked) local patterns (2P)<sup>m</sup> may be related to the *mystery of the missing 2P wake*.

- The transition from a 2S to a P+S wake of a transversally oscillating cylinder takes place over a large interval of forcing amplitudes A.
- A classification scheme extending that of Williamson & Roshko is needed to describe the stages in the transition.
- A sequence of intermediate patterns of the form  $(2S)^{n}(2P)^{m}(2S)^{\infty}$  and  $(P+S)^{n}(2P)^{m}(P+S)^{\infty}$  occur in the transition process.
- The transition interval is bounded by amplitudes A<sub>0</sub> and A<sub>3</sub> where degenerate topological bifurcations are present.
- Jumps in the wake structure occur at the subcritical dynamical pitchfork bifurcation points  $A_1$  and  $A_2$  of the periodic flow,  $A_0 < A_1 < A_2 < A_3$ . The dynamical pitchfork bifurcation is required to obtain asymmetric patterns P + S
- The presence of the (overlooked) local patterns (2P)<sup>m</sup> may be related to the *mystery of the missing 2P wake*.

Details in AR Nielsen, PS Matharu & M Brøns: *Topological bifurcations in the transition from two single vortices to a pair and a single vortex in the periodic wake behind an oscillating cylinder*, J. Fluid Mech. 940(2022), A22.