Topological Bifurcations in the Wake Behind an Oscillating Cylinder

Anne Ryelund Nielsen*
 Puneet Matharu ${ }^{\dagger}$
 Morten Brøns*

*Technical University of Denmark ${ }^{\dagger}$ University of Manchester, UK

INDEPENDENT
RESEARCH FUND
DENMARK

von Kármán vortex street

$2 S$ wake

Oscillating cylinder may lead to exotic wakes

$P+S$ wake

Williamson, in Ponta \& Aref, J. Fluids Struct. 22(2006), 327-344

Other body shapes produce very exotic wakes

Schnipper et al, J. Fluid Mech. 633(2009), 411-423

Forced transverse oscillations of the cylinder

Forced transverse oscillations of the cylinder

Dimensionless parameters

- $R e=\frac{U D}{\nu}(=100$ here $)$
- $A \leftarrow \frac{A}{D}$
- $f \leftarrow \frac{f}{f_{s t}}=\frac{T_{s t}}{T}$ or

$$
\lambda \leftarrow \frac{\lambda}{D}=\frac{U T_{s t}}{D}
$$

where $f_{s t}\left(T_{s t}\right)$ is the frequency (period) of the vortex shedding for $A=0$

Forced transverse oscillations of the cylinder

Dimensionless parameters

- $R e=\frac{U D}{\nu}(=100$ here $)$
- $A \leftarrow \frac{A}{D}$
- $f \leftarrow \frac{f}{f_{s t}}=\frac{T_{\text {st }}}{T}$ or

$$
\lambda \leftarrow \frac{\lambda}{D}=\frac{U T_{s t}}{D}
$$

Williamson \& Roshko,
J. Fluids Struct. 2(1988), 355-381

where $f_{s t}\left(T_{s t}\right)$ is the frequency (period) of the vortex shedding
for $A=0$

Forced transverse oscillations of the cylinder

Dimensionless parameters

- $R e=\frac{U D}{\nu}(=100$ here $)$
- $A \leftarrow \frac{A}{D}$
- $f \leftarrow \frac{f}{f_{s t}}=\frac{T_{s t}}{T}$ or

$$
\lambda \leftarrow \frac{\lambda}{D}=\frac{U T_{s t}}{D}
$$

where $f_{s t}\left(T_{s t}\right)$ is the frequency (period) of the vortex shedding for $A=0$

Purpose of the present study

To elucidate the transitions in the structure of the wake from a $2 S$ to a $\mathrm{P}+\mathrm{S}$ pattern as the forcing amplitude A is varied, at $f=f_{s t}$ and $R e=100$.

Purpose of the present study

To elucidate the transitions in the structure of the wake from a $2 S$ to a $\mathrm{P}+\mathrm{S}$ pattern as the forcing amplitude A is varied, at $f=f_{s t}$ and $R e=100$.

Leontini et al. (2006)

Locating the vortices, their creation, and disappearance

- $A=1.092:$ note the symmetry $\omega(x, y, t)=-\omega(x,-y, t+1 / 2)$

Locating the vortices, their creation, and disappearance

- $A=1.092:$ note the symmetry $\omega(x, y, t)=-\omega(x,-y, t+1 / 2)$

Vortices:

$$
\begin{aligned}
& \partial_{x} \omega\left(x^{*}, y^{*}, t^{*} ; A\right)=0 \\
& \partial_{y} \omega\left(x^{*}, y^{*}, t^{*} ; A\right)=0 \\
& \left|\mathbf{H}^{\omega}\left(x^{*}, y^{*}, t^{*} ; A\right)\right|>0
\end{aligned}
$$

Saddle points:

$$
\begin{aligned}
& \partial_{x} \omega\left(x^{*}, y^{*}, t^{*} ; A\right)=0 \\
& \partial_{y} \omega\left(x^{*}, y^{*}, t^{*} ; A\right)=0 \\
& \left|\mathbf{H}^{\omega}\left(x^{*}, y^{*}, t^{*} ; A\right)\right|<0
\end{aligned}
$$

Locating the vortices, their creation, and disappearance

- $A=1.092:$ note the symmetry $\omega(x, y, t)=-\omega(x,-y, t+1 / 2)$

Vortices:

$$
\begin{aligned}
& \partial_{x} \omega\left(x^{*}, y^{*}, t^{*} ; A\right)=0 \\
& \partial_{y} \omega\left(x^{*}, y^{*}, t^{*} ; A\right)=0 \\
& \left|\mathbf{H}^{\omega}\left(x^{*}, y^{*}, t^{*} ; A\right)\right|>0
\end{aligned}
$$

Saddle points:

$$
\begin{aligned}
& \partial_{x} \omega\left(x^{*}, y^{*}, t^{*} ; A\right)=0 \\
& \partial_{y} \omega\left(x^{*}, y^{*}, t^{*} ; A\right)=0 \\
& \left|\mathbf{H}^{\omega}\left(x^{*}, y^{*}, t^{*} ; A\right)\right|<0
\end{aligned}
$$

Locating the vortices, their creation, and disappearance

- $A=1.092:$ note the symmetry $\omega(x, y, t)=-\omega(x,-y, t+1 / 2)$

An extremum and a saddle are created or disappear in a cusp bifurcation at a degenerate critical point of vorticity where the Hessian is singular.

Locating the vortices, their creation, and disappearance

- $A=1.092:$ note the symmetry $\omega(x, y, t)=-\omega(x,-y, t+1 / 2)$

Locating the vortices, their creation, and disappearance

- $A=1.092:$ note the symmetry $\omega(x, y, t)=-\omega(x,-y, t+1 / 2)$

This wake is classified as $(2 P)^{3}(2 S)^{\infty}$

- Extended classification concatenated by symbols Σ^{n} with $\Sigma=2 \mathrm{~S}, \mathrm{P}+\mathrm{S}, 2 \mathrm{P}, \ldots$.
- Integer n designates the number of periods +1 the pattern exists.

Bistability

- $A=1.092$

- $A=1.092$

Bistability

- $\omega(x, y, t)=-\omega(x,-y, t+1 / 2)$

- $\omega(x, y, t) \neq-\omega(x,-y, t+1 / 2)$

A dynamical subcritical bifurcation

Matharu, Hazel \& Heil, J. Fluid Mech. 918(2021), A42:

- A subcritical symmetry-breaking pitchfork bifurcation from the symmetric branch occurs at $A_{2}=1.093$
- The bifurcating branch gains stability at a fold bifurcation at $A_{1}=1.078$

$$
\varepsilon=\|\omega(x, y, t)+\omega(x,-y, t+1 / 2)\|
$$

Topological bifurcation diagrams

Topological bifurcation diagrams

$$
A<A_{0}:(2 S)^{\infty}=2 S
$$

Topological bifurcation diagrams

$$
A_{0}<A<A_{2}:(2 S)^{n}(2 \mathrm{P})^{m}(2 \mathrm{~S})^{\infty}
$$

Topological bifurcation diagrams

$A_{2}<A<A_{3}:(\mathrm{P}+\mathrm{S})^{n}(2 \mathrm{P})^{m}(\mathrm{P}+\mathrm{S})^{\infty}$

Topological bifurcation diagrams

$A_{3}<A:(\mathrm{P}+\mathrm{S})^{\infty}=\mathrm{P}+\mathrm{S}$

Topological bifurcation diagrams

$A_{3}<A:(\mathrm{P}+\mathrm{S})^{\infty}=\mathrm{P}+\mathrm{S}$

Following the unstable branch

Varying the forcing period

Conclusions

Conclusions

- The transition from a 2 S to a $\mathrm{P}+\mathrm{S}$ wake of a transversally oscillating cylinder takes place over a large interval of forcing amplitudes A.

Conclusions

- The transition from a 2 S to a $\mathrm{P}+\mathrm{S}$ wake of a transversally oscillating cylinder takes place over a large interval of forcing amplitudes A.
- A classification scheme extending that of Williamson \& Roshko is needed to describe the stages in the transition.

Conclusions

- The transition from a 2 S to a $\mathrm{P}+\mathrm{S}$ wake of a transversally oscillating cylinder takes place over a large interval of forcing amplitudes A.
- A classification scheme extending that of Williamson \& Roshko is needed to describe the stages in the transition.
- A sequence of intermediate patterns of the form $(2 S)^{n}(2 P)^{m}(2 S)^{\infty}$ and $(\mathrm{P}+\mathrm{S})^{n}(2 \mathrm{P})^{m}(\mathrm{P}+\mathrm{S})^{\infty}$ occur in the transition process.

Conclusions

- The transition from a 2 S to a $\mathrm{P}+\mathrm{S}$ wake of a transversally oscillating cylinder takes place over a large interval of forcing amplitudes A.
- A classification scheme extending that of Williamson \& Roshko is needed to describe the stages in the transition.
- A sequence of intermediate patterns of the form $(2 S)^{n}(2 P)^{m}(2 S)^{\infty}$ and $(\mathrm{P}+\mathrm{S})^{n}(2 \mathrm{P})^{m}(\mathrm{P}+\mathrm{S})^{\infty}$ occur in the transition process.
- The transition interval is bounded by amplitudes A_{0} and A_{3} where degenerate topological bifurcations are present.

Conclusions

- The transition from a 2 S to a $\mathrm{P}+\mathrm{S}$ wake of a transversally oscillating cylinder takes place over a large interval of forcing amplitudes A.
- A classification scheme extending that of Williamson \& Roshko is needed to describe the stages in the transition.
- A sequence of intermediate patterns of the form $(2 S)^{n}(2 P)^{m}(2 S)^{\infty}$ and $(\mathrm{P}+\mathrm{S})^{n}(2 \mathrm{P})^{m}(\mathrm{P}+\mathrm{S})^{\infty}$ occur in the transition process.
- The transition interval is bounded by amplitudes A_{0} and A_{3} where degenerate topological bifurcations are present.
- Jumps in the wake structure occur at the subcritical dynamical pitchfork bifurcation points A_{1} and A_{2} of the periodic flow, $A_{0}<A_{1}<A_{2}<A_{3}$. The dynamical pitchfork bifurcation is required to obtain asymmetric patterns $P+S$

Conclusions

- The transition from a 2 S to a $\mathrm{P}+\mathrm{S}$ wake of a transversally oscillating cylinder takes place over a large interval of forcing amplitudes A.
- A classification scheme extending that of Williamson \& Roshko is needed to describe the stages in the transition.
- A sequence of intermediate patterns of the form $(2 S)^{n}(2 P)^{m}(2 S)^{\infty}$ and $(\mathrm{P}+\mathrm{S})^{n}(2 \mathrm{P})^{m}(\mathrm{P}+\mathrm{S})^{\infty}$ occur in the transition process.
- The transition interval is bounded by amplitudes A_{0} and A_{3} where degenerate topological bifurcations are present.
- Jumps in the wake structure occur at the subcritical dynamical pitchfork bifurcation points A_{1} and A_{2} of the periodic flow, $A_{0}<A_{1}<A_{2}<A_{3}$. The dynamical pitchfork bifurcation is required to obtain asymmetric patterns $P+S$
- The presence of the (overlooked) local patterns (2P) ${ }^{m}$ may be related to the mystery of the missing $2 P$ wake.

Conclusions

- The transition from a 2 S to a $\mathrm{P}+\mathrm{S}$ wake of a transversally oscillating cylinder takes place over a large interval of forcing amplitudes A.
- A classification scheme extending that of Williamson \& Roshko is needed to describe the stages in the transition.
- A sequence of intermediate patterns of the form $(2 S)^{n}(2 P)^{m}(2 S)^{\infty}$ and $(\mathrm{P}+\mathrm{S})^{n}(2 \mathrm{P})^{m}(\mathrm{P}+\mathrm{S})^{\infty}$ occur in the transition process.
- The transition interval is bounded by amplitudes A_{0} and A_{3} where degenerate topological bifurcations are present.
- Jumps in the wake structure occur at the subcritical dynamical pitchfork bifurcation points A_{1} and A_{2} of the periodic flow, $A_{0}<A_{1}<A_{2}<A_{3}$. The dynamical pitchfork bifurcation is required to obtain asymmetric patterns $P+S$
- The presence of the (overlooked) local patterns (2P) ${ }^{m}$ may be related to the mystery of the missing 2P wake.
Details in AR Nielsen, PS Matharu \& M Brøns: Topological bifurcations in the transition from two single vortices to a pair and a single vortex in the periodic wake behind an oscillating cylinder, J. Fluid Mech. 940(2022), A22.

