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Overview
[ ]

o Work with k = C (or C[g*2]). Toy model:

G = 5L2 = {g - ( g11 812 ) ‘A12,12(g) = 1}
821 822

Cl[G] =C[A11,A12,021,A22]/(A11002 =14+ A12021)
° Basis:{mono. in A1~1,A1’2,A2A1}U{mono. in A2~2,A1’2,A2A1}
(cluster monomials)

G"oo = {g € SLr|A12(g) #0,A21(g) # 0}

(Localizedi) upper cllister algebira L
U=C[A1;,A75,851]NC[A 5, A7 5, 85,] = C[G0]

o Seeds (local charts):
B (Ba) Bz B (Bad) 1B

o (Partially compactified) upper cluster algebra
U= C[Afl,ALz,Az,l] QC[A§2,A172,A271] = C[G]
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Overview
[ Je]

[FZ02] Fomin-Zelevinsky invented cluser algebras to study
e total positivity [Lus94]

@ dual canonical bases B* of quantum groups
[Lus90, Lus91][Kas91]

Expect:

e for many varieties A from Lie theory, k[A] = U (or U)
o k[A] has a basis: analog of B, contains all cluster monomials.

FZ-Conj. [FZ02] (Kac-Moody N* [Kim12][GLS13][GY16])

V quantum coord. ring k[N], quantum cluster monomials C B*.

V.

Proof: [Qin20b] B* is the common triangular basis —> FZ-Conj. |

e Symmetric [Qin17], [KKKO18] (symmetric Kac-Moody);
@ All cases [Qin20b]. (p-canonical bases [McN21])
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Overview

[
[ ]

@ G: connected, simply connected, linear algebraic group
e G"Y = BiuBiNB_vB_ double Bruhat cell

@ (Quantized) coordinate ring k[G"Y] = U [BFZ05][GY20]
o C[double Bott-Salmeson cell] = U [SW21]

e C[SL,]= U [FWZ20]

Result 1 [Qin22]

k[G*V] and C[double Bott-Salmeson cell] possess the common
triangular bases. The bases are positive when the Cartan datum is
symmetric.

Result 2 [Q|n22]

C[G] = U, and the statements as in Result 1 are still true.

o Quantized k[G] =
@ Its common triangular basis is the global crytal basis [Kas93].
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Triangular Bases
[ JeJele]

Convention

o Aseed t= (B,(X,'),'G/)Z

o | =l,sUJ (unfrozen, frozen)

o B=(bjj): I x| skew-symmetrizable integer matrix

o Skew-symmetric B <= quiver Q s.t. bj = |i — j| —|j — i

o x; = cluster variables, j € . x™ =]]x;"

o v =TDq™, k€l y"=TIy*
e For any k € I,f, mutation L, generates a new seed i (t)
@ Iterate mutations = more seeds, cluster variables =— U, U
@ We assume t can be quantized as in [BZ05]

o <= By is of full-rank [GSV03, GSVO05]
e g-twisted product x
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Triangular Bases
0@00

g-pointed Functions: Replace Module Characters

@ Choose a seed t

Comparison
o Cluster monomials take the form [CCO06][FZ07][DWZ10]
XE- Y0 Cay™ 0 =1
o called g-pointed [Qin17]

o Highest weight modules of Uq(g) have characters
2(S(w))=Y* Y ,>0c,A™Y, co=1, ¢, =dim(eigen space)

v

[Qin17] introduced
Dominance order <;: g is the highest deg of g-pointed func.

@ on quiver varieties: partial order of strata [Nak11]

@ in monoidal category .7 : interpreted via degrees of
R-matrices [KK19]
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Cluster algebras do not have standard bases (or PBW bases)

e For i€/, deg(x;) = f; (i-th unit vector)

e x; = CC(T;), rigid T; in a cluster category

e x; =[S;], simple S; in a monoidal category
o For k € I, define pointed func I, s.t degly = —f,, mod Z/

o I := q. cluster variable for (almost) all well-known cluster alg
I := quantum theta function [GHKK18][DM21]
Ix = CCq(Tk[1]). [1]: shift functor (use Calabi-Yau reduction)
Iy = [5/7(5k)] (right) dual of S5

Distinguished Functions (Standard Monomials)
Im,m (t) are g-pointed functions

!
my

[0 bnl my
q“Ijes %" * Tkene X * kel L

where o € %, mj € Z, my, m| > 0.
o Reduced if mymj =0 Vk € I,s: denoted as I4(t).
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Triangular Bases
[e]e]e] ]

Triangular Bases: Kazhdan-Lusztig Type Bases

@ The triangular functions L,(t) := unique Laurent series

@ L, =Lg under the involution g =g *
Q Ll +Ygg q_%Z[q‘%]lg/ (infinite sum)

Computed by infinite steps of Kazhdan-Lusztig algorithm

o If U has a basis L: Vt, L = {Lg(t),Vg} and satisfies

i} 1
Imm (t) € Lg +Xg2g G 2Z[q 2Ly

it is called the (common) triangular basis.

@ For AC U, if LNA is its basis, it is still called the triangular
basis.

[BZ14]: ng(t) for acyclic t. [Qin16, Qin20a] ng(t) = Lg(t). J
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Triangular Bases
[ le]

Triangular Bases: Properties and Observations

L contains all cluster monomials

L generalizes B* (a motivation of cluster theory)

L is naturally parameterized by the tropical points of the
(Langlands dual) cluster variety (FG-conjecture [FG06])

(]

[HL10] proposed monoidal categorification of cluster algebras
e V known monoidal categorification
[Qin17][KKKO18][KKOP21][CW19], {simples} =L
L is related to categorification and/or geometric representation
theory (like previous Kazhdan-Lusztig type bases)

@ V known cases, L has positive structure constants when B is
skew-symmetric.
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Triangular Bases
oe

Triangular Bases: Crystal-Like Structure?

@ The triangularity of L can be characterized as:
1 1
Vt, x;j* Lg € qO‘Lngf,. +Z§"<tg+fi q“- q_EZ[q_f]Lg/

o [Qin20a] Similar statement holds if we work with the <;-lowest
Laurent degree (codegree)

@ This is an analog of Leclerc’s conjecture for B* [Lec03]
(proved by [KKKO18])

o x;*( ) acts like a crystal operator.
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Operations in Cluster theory
[ Je]

Freezing Operators

@ Choose any seed t. Take any Laurent series of the form

— m n
z= x—-ZﬂeN/uf cny”

o Given F C I, freeze F int --» seed t/

The freezing operator sends y; — 0 in z for k € F:

fm(z) = X1 Y n=0vkeF cny"

@ If z has the leading degree degz = m, we abbreviate

f(2) = fm(2)
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Operations in Cluster theory
oe

Freezing Operators: Properties

@ V pointed Laurent series z1, z», we have
f(z1 x 22) = f(z1) *f(z2);
fdegzl (Zl +Z2) = fdegzl (Zl) + fdegzl(z2) if degz < degz;.

@ f sends localized cluster monomials of U(t) to localized cluster
monomials of U(t')

@ f sends theta func. to theta func.

Theorem [Qin22]

Assume that U(t) possesses the (common) triangular basis L, then
f(L) is the (common) triangular basis for U(t').
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Operations in Cluster theory
@00

Coefficient Change & Similarity

o Allow relabeling vertices and g +— g% in the following.

Definition ([Qin14, Qinl7])

@ Two seeds t,t" are similar if they share the same unfrozen
submatrix: By ;. = B, (1. - Denote t ~ t.

e We can also define similarity between quantum seeds

@ Take m-pointed Laurent series z = x™- F, for t and
m'-pointed Laurent series z/ = x™ - F,, for t'. They are similar
if pry . m=pr, m' and F, = F,.

o t~t' = U(t) and U(t') share similar structures
o Localized cluster monomials are similar.

o If S is a well-behaved basis for U(t), then the similar elements
form a basis for U(t').

o Ift~t/, uet ~ et
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Operations in Cluster theory
(o] le}

Coefficient Change: Cartesian Product

e Coefficient ring R(t) = k[xf]jelf(t) , U(t)

@ tP": the seed of principal coefficients associated to t
o Vk € Iy, a framing (frozen) vertex k' — k

o B(tprin)_( B’Ta’uf 70|d )

o Assume U(tP"") has an R(tP")-basis
S = {sg = x(t""™EF,, (yi(t*™))|g € ZM}.
Then we have the following Cartesian products:
Spec U(t) 5 Spec U(tP") <« SpecU(t))
% Tl 3
SpecR(t) 4 Spec R(tP™") <+ SpecR(t)
o Vk € ly, f*(Xk) = Xk, f*(Xk/) = Hjelf(t))g-bjk.
o f*(S) is an R(t)-basis of U(t), f*(sg) = x(t)&Fs, (yk(t))-
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Operations in Cluster theory
[ele] ]

ETLE

.. e

t for k[N<], t’ for %> [HL10]
c = s15253 [GLS11] (subcategory of U,(sl3)mod)

0 z=x, 2x7(1+y4+yaya + yaya+2yaysya+ y3ysya +
2y1y2y3ya + 2y1y2ysya + yiyaysya)

o Freeze 3,6 in t: f(2) = x; \xz(1+ya -+ yaya)
o Similar element in t': 2’ = x; ' x7(1 4+ ya + yaya)

k[NCN] has L [Qin17][KKKO18]. Freezing and coefficient change:
— g-deformed Ko(%én-1) has L [Qinl7].

V
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Applications
@00000

Double Bott-Salmeson Cells

o A= (aij)ije[1,] symmetrizable generalized Cartan matrix
o Generalized braid group Br = (s;)jc1,1:

® S5i5j = §;5j, if ajjaji = 0

o sis;s; = sjsisj, if ajaj;i=1

o (S,'Sj)m = (SjS,')m, if m= ajjadji = 2,3

o Forj=(,---\Jr) S =5y -.-Sj

[SW21] For any double Bott-Samelson cell, we have

C[Confy (Aw)] = U(t(j, k, A))

o If (sp,5) = (sj,54), t(J', k', A’) can be obtained from
t(j, k,A) by mutations [SW21]
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Applications
0e0000

Example: Seeds for Double Bott-Salmeson cells

oa=(2 ) to-@.@w).

o Choose A for a trapezoid (letters of j viewed as negative)

J -1 J -1
Line 2 W ﬁ2/1 . Zt . ’
Line 1 . . i’/v3\'\5 m @/\/ @
Ay k 2 1 k2 1 t(j, kA1)
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Applications
[o]e] lele]e]

Unipotent Cells

o Weyl group W :=Br/(s? = e,Vi)
o W reduced word of w € W
o k[N"] = U(tH(W)), N¥ = NN B_wB_
° t+(7v>): obtained from t((Z),W,A) by removing the left open
intervals

Qm .

I

= ol
X.

w1 £(0, W, ) t+(W)
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Applications
[e]e]e] le]e]

Oversimplified Example: k[G""Y] from k[N"]

o If j,k are reduced word [sj],[sk] € W
o k[GI) — u(t(j,k, A, ) [BFZ05][GY20]

' 2
Ay - Ay
18 N
7777777777777777777 @
mutation similar similar k[N"o]

possible freeze
( ) @
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Applications
0000e0

Double Bott-Salmeson cells from Unipotent Cells

o Given (j, k)
o Extend size r matrix A to size r +1 matrix A

o Insert letters r+1 to (%, k) = reduced word W

t(j,k,A_ ;) can be obtained from t*(W) by mutations, freezing
and coefficient change

© Reflection (coefficient change)

t(LK?A—,-&-) ~ t((jZa 00 ')7 (.jlﬂk)’A,)
@ Mutations t((j2,...), (1,k),A") --> t((j2,...), (1, k), A_ +)
© Repeat, until obtain t(0,(j”, k),A)

Q t(0,(j",k),A) is obtained from t(0, W,A) by freezing and
then deleting the vertices on Line r+ 1.

v

k[N"] = U(t"(W)) has L = So does U(t(j,k,A_ ;). |
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Applications
00000e

Algebraic Groups

o C[GWo™] = U. G = Gowo,

C[G] c U.
Proof: f € C[G"'"0] is contained in C[G] = regular on
{Xj = 0} C G.

C[G] = U.
Proof: a comparison up to codim 2 in G.
@ V j frozen, 3 double Bruhat cell V; open dense in {x; =0}
o C[Vj]= localization of C[G]/(x;)
o Already know that C[V;] = U'.
@ Show U’ = localization of U/(x;)

Take the triangular basis L C U, then LNC[G] spans C[G].
Proof: Vj frozen, 3 an optimized seed t; (bjx > 0 Vk € Iyf)

v
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