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Overview Triangular Bases Operations in Cluster theory Applications

Work with k= C (or C[q± 1
2 ]). Toy model:

G = SL2 := {g =

(
g11 g12
g21 g22

)
|∆12,12(g) = 1}

C[G ] = C[∆1,1,∆1,2,∆2,1,∆2,2]/(∆1,1∆2,2 = 1+∆1,2∆2,1)

Basis:{mono. in ∆1,1,∆1,2,∆2,1}∪{mono. in ∆2,2,∆1,2,∆2,1}
(cluster monomials)

Gw0,w0 := {g ∈ SL2|∆1,2(g) ̸= 0,∆2,1(g) ̸= 0}

(Localized) upper cluster algebra
U = C[∆±1,1,∆

±
1,2,∆

±
2,1]∩C[∆

±
2,2,∆

±
1,2,∆

±
2,1] = C[Gw0,w0 ]

Seeds (local charts):

∆1,2 ∆1,1 ∆2,1 ∆1,2 ∆2,2 ∆2,1

(Partially compactified) upper cluster algebra
U = C[∆±1,1,∆1,2,∆2,1]∩C[∆±2,2,∆1,2,∆2,1] = C[G ]
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[FZ02] Fomin-Zelevinsky invented cluser algebras to study
total positivity [Lus94]
dual canonical bases B∗ of quantum groups
[Lus90, Lus91][Kas91]

Expect:
for many varieties A from Lie theory, k[A] = U (or U)
k[A] has a basis: analog of B∗, contains all cluster monomials.

FZ-Conj. [FZ02] (Kac-Moody Nw [Kim12][GLS13][GY16])

∀ quantum coord. ring k[N], quantum cluster monomials ⊂ B∗.

Proof: [Qin20b] B∗ is the common triangular basis =⇒ FZ-Conj.

Symmetric [Qin17], [KKKO18] (symmetric Kac-Moody);
All cases [Qin20b]. (p-canonical bases [McN21])
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G : connected, simply connected, linear algebraic group
Gu,v = B+uB+∩B−vB− double Bruhat cell
(Quantized) coordinate ring k[Gu,v ] = U [BFZ05][GY20]
C[double Bott-Salmeson cell] = U [SW21]
C[SLn] = U [FWZ20]

Result 1 [Qin22]

k[Gu,v ] and C[double Bott-Salmeson cell] possess the common
triangular bases. The bases are positive when the Cartan datum is
symmetric.

Result 2 [Qin22]

C[G ] = U , and the statements as in Result 1 are still true.

Conjecture

Quantized k[G ] = U .
Its common triangular basis is the global crytal basis [Kas93].
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Convention

A seed t = (B,(xi )i∈I ):
I = Iuf ⊔ If (unfrozen, frozen)
B = (bij ): I × I skew-symmetrizable integer matrix

Skew-symmetric B ⇐⇒ quiver Q s.t. bij = |i → j |− |j → i |
xi = cluster variables, i ∈ I . xm = ∏xmi

i

yk = ∏x
bik
i , k ∈ Iuf . yn = ∏y

nk
k

For any k ∈ Iuf , mutation µk generates a new seed µk(t)
Iterate mutations =⇒ more seeds, cluster variables =⇒ U , U
We assume t can be quantized as in [BZ05]

⇐⇒ BIuf ,I is of full-rank [GSV03, GSV05]
q-twisted product ∗
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g -pointed Functions: Replace Module Characters

Choose a seed t

Comparison

Cluster monomials take the form [CC06][FZ07][DWZ10]
xg ·∑n≥0 cny

n, c0 = 1

called g-pointed [Qin17]

Highest weight modules of Uq(ĝ) have characters
χ(S(w)) = Y w ·∑v≥0 cvA

−v , c0 = 1, cv = dim(eigen space)

[Qin17] introduced
Dominance order ≺t: g is the highest deg of g -pointed func.

on quiver varieties: partial order of strata [Nak11]
in monoidal category M : interpreted via degrees of
R-matrices [KK19]
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Cluster algebras do not have standard bases (or PBW bases)

For i ∈ I , deg(xi ) = fi (i-th unit vector)
xi = CC(Ti ), rigid Ti in a cluster category
xi = [Si ], simple Si in a monoidal category

For k ∈ Iuf , define pointed func Ik s.t deg Ik =−fk modZIf

Ik := q. cluster variable for (almost) all well-known cluster alg
Ik := quantum theta function [GHKK18][DM21]
Ik = CCq(Tk [1]). [1]: shift functor (use Calabi-Yau reduction)
Ik = [D(Sk)] (right) dual of Sk

Distinguished Functions (Standard Monomials)
Im,m′(t) are g -pointed functions

qα
∏j∈If x

mj

j ∗∏k∈Iuf
xmk
k ∗∏k∈Iuf

Im
′
k

k

where α ∈ Z
2 , mj ∈ Z, mk ,m

′
k ≥ 0.

Reduced if mkm
′
k = 0 ∀k ∈ Iuf : denoted as Ig (t).
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Triangular Bases: Kazhdan-Lusztig Type Bases

The triangular functions Lg (t) := unique Laurent series
1 Lg = Lg under the involution q = q−1

2 Lg ∈ Ig +∑g ′≺tg q
− 1

2Z[q− 1
2 ]Ig ′ (infinite sum)

Computed by infinite steps of Kazhdan-Lusztig algorithm

If U has a basis L: ∀t, L = {Lg (t),∀g} and satisfies

Im,m′(t) ∈ Lg +∑g ′≺tg q
− 1

2Z[q− 1
2 ]Lg ′

it is called the (common) triangular basis.
For A⊂U , if L∩A is its basis, it is still called the triangular
basis.

[BZ14]: LBZ
g (t) for acyclic t. [Qin16, Qin20a] LBZ

g (t) = Lg (t).
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Triangular Bases: Properties and Observations

L contains all cluster monomials
L generalizes B∗ (a motivation of cluster theory)
L is naturally parameterized by the tropical points of the
(Langlands dual) cluster variety (FG-conjecture [FG06])

[HL10] proposed monoidal categorification of cluster algebras
∀ known monoidal categorification
[Qin17][KKKO18][KKOP21][CW19], {simples}= L

L is related to categorification and/or geometric representation
theory (like previous Kazhdan-Lusztig type bases)
∀ known cases, L has positive structure constants when B is
skew-symmetric.
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Triangular Bases: Crystal-Like Structure?

The triangularity of L can be characterized as:
∀t, xi ∗Lg ∈ qαLg+fi +∑g ′≺tg+fi q

α ·q− 1
2Z[q− 1

2 ]Lg ′

[Qin20a] Similar statement holds if we work with the ≺t-lowest
Laurent degree (codegree)

This is an analog of Leclerc’s conjecture for B∗ [Lec03]
(proved by [KKKO18])

xi ∗ ( ) acts like a crystal operator.
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Freezing Operators

Choose any seed t. Take any Laurent series of the form
z = xm ·∑n∈NIuf cny

n

Given F ⊂ Iuf , freeze F in t 99K seed t′

The freezing operator sends yk 7→ 0 in z for k ∈ F :

fm(z) := xm ·∑nk=0∀k∈F cny
n

If z has the leading degree degz =m, we abbreviate
f(z) = fm(z)
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Freezing Operators: Properties

∀ pointed Laurent series z1,z2, we have
f(z1 ∗ z2) = f(z1)∗ f(z2);

fdegz1(z1+ z2) = fdegz1(z1)+ fdegz1(z2) if degz2 ⪯t degz1.
f sends localized cluster monomials of U(t) to localized cluster
monomials of U(t ′)

f sends theta func. to theta func.

Theorem [Qin22]

Assume that U(t) possesses the (common) triangular basis L, then
f(L) is the (common) triangular basis for U(t′).
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Coefficient Change & Similarity

Allow relabeling vertices and q 7→ qα in the following.

Definition ([Qin14, Qin17])

Two seeds t,t′ are similar if they share the same unfrozen
submatrix: BIuf ,Iuf = B ′Iuf ,Iuf

. Denote t∼ t′.
We can also define similarity between quantum seeds

Take m-pointed Laurent series z = xm ·Fz for t and
m′-pointed Laurent series z ′ = xm

′ ·Fz ′ for t′. They are similar
if prIuf

m = prIuf
m′ and Fz = Fz ′ .

t∼ t′ =⇒ U(t) and U(t′) share similar structures
Localized cluster monomials are similar.
If S is a well-behaved basis for U(t), then the similar elements
form a basis for U(t ′).

If t∼ t′, µkt∼ µkt′.
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Coefficient Change: Cartesian Product

Coefficient ring R(t) = k[x±j ]j∈If(t)
π∗−→U(t)

tprin: the seed of principal coefficients associated to t
∀k ∈ Iuf , a framing (frozen) vertex k ′→ k

B(tprin) =
(

BIuf ,Iuf − Id
Id 0

)
Assume U(tprin) has an R(tprin)-basis

S = {sg = x(tprin)gFsg (yk(t
prin))|g ∈ ZIuf}.

Then we have the following Cartesian products:

SpecU(t)
f−→ SpecU(tprin) ← SpecU(t ′)

↓ π π ↓ ↓
SpecR(t) f−→ SpecR(tprin) ← SpecR(t ′)

∀k ∈ Iuf , f ∗(xk) := xk , f ∗(xk ′) := ∏j∈If(t) x
bjk
j .

f ∗(S) is an R(t)-basis of U(t), f ∗(sg ) = x(t)gFsg (yk(t)).
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Example
1

2

3

4

5

6

7

8

9
t for k[Nc3

],
c = s1s2s3 [GLS11]

1

2

4

5

7

8

36
t′ for C2 [HL10]
(subcategory of Uq(ŝl3)mod)

z = x−1
4 x7(1+ y4+ y2y4+ y3y4+2y2y3y4+ y2

2 y3y4+
2y1y2y3y4+2y1y

2
2 y3y4+ y2

1 y
2
2 y3y4)

Freeze 3,6 in t: f(z) = x−1
4 x7(1+ y4+ y2y4)

Similar element in t′: z ′ = x−1
4 x7(1+ y4+ y2y4)

k[NcN ] has L [Qin17][KKKO18]. Freezing and coefficient change:
=⇒ q-deformed K0(CN−1) has L [Qin17].
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Double Bott-Salmeson Cells

A= (ai ,j)i ,j∈[1,r ] symmetrizable generalized Cartan matrix
Generalized braid group Br = ⟨si ⟩i∈[1,r ]:

si sj = sj si , if aijaji = 0
si sj si = sj si sj , if aijaji = 1
(si sj )

m = (sj si )
m, if m = aijaji = 2,3

For j = (j1, . . . , jr ), sj := sj1 . . .sjr

[SW21] For any double Bott-Samelson cell, we have

C[Conf
sj
sk (Asc)] = U(t(j ,k ,∆))

If (sj ′ ,sk ′) = (sj ,sk), t(j ′,k ′,∆′) can be obtained from
t(j ,k ,∆) by mutations [SW21]
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Example: Seeds for Double Bott-Salmeson cells

A=

(
2 −1
−1 2

)
, (j ,k) = ((1),(2,1)).

Choose ∆ for a trapezoid (letters of j viewed as negative)

j

k t(j ,k ,∆−,+)

-1

2 1

aij
2
1

2

3

4

5 1

2

3

4

5Line 1

Line 2

-1

2 1

aij
2

j

k∆−,+

-1

2 1
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Unipotent Cells

Weyl group W := Br/(s2
i = e,∀i)

−→w reduced word of w ∈W

k[Nw ] = U(t+(−→w )), Nw = N ∩B−wB−
t+(−→w ): obtained from t( /0,−→w ,∆) by removing the left open
intervals

−→w t( /0,−→w ,∆) t+(−→w )1 2 1

aij
2
1

2

3

4

5 1

2

3

4

5 3

4

5

Fan Qin Triangular Bases for Strata of Algebraic Groups 18 / 21



Overview Triangular Bases Operations in Cluster theory Applications

Oversimplified Example: k[G u,v ] from k[Nw ]

If j ,k are reduced word [sj ], [sk ] ∈W

k[G [sj ],[sk ]] = U(t(j ,k,∆+,−)) [BFZ05][GY20]

Line 1

j

k

∆−,+

-1

1

21 3

j

k

∆+,−

-1

1

21 3

(j1,k) 1 1

21 3

1

4

2

5

3

21

4 5

3

−→w 121

2

5

3

mutation similar similar
(possible freeze)

k[Nw0 ]
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Double Bott-Salmeson cells from Unipotent Cells

Given (j ,k)

Extend size r matrix A to size r +1 matrix Ã
Insert letters r +1 to (j

op
,k) =⇒ reduced word −→w

t(j ,k ,∆−,+) can be obtained from t+(−→w ) by mutations, freezing
and coefficient change

1 Reflection (coefficient change)
t(j ,k ,∆−,+)∼ t((j2, . . .),(j1,k),∆

′)

2 Mutations t((j2, . . .),(j1,k),∆
′) 99K t((j2, . . .),(j1,k),∆−,+)

3 Repeat, until obtain t( /0,(j
op
,k),∆)

4 t( /0,(j
op
,k),∆) is obtained from t( /0,−→w ,∆̃) by freezing and

then deleting the vertices on Line r +1.

k[Nw ] = U(t+(−→w )) has L =⇒ So does U(t(j ,k ,∆−,+).
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Algebraic Groups

C[Gw0,w0 ] = U . G = Gw0,w0 .

C[G ]⊂U .
Proof: f ∈ C[Gw0,w0 ] is contained in C[G ] =⇒ regular on
{xj = 0} ⊂ G .

C[G ] = U .
Proof: a comparison up to codim 2 in G .

∀ j frozen, ∃ double Bruhat cell Vj open dense in {xj = 0}
C[Vj ]= localization of C[G ]/(xj )
Already know that C[Vj ] = U ′.

Show U ′ = localization of U/(xj)

Take the triangular basis L⊂U , then L∩C[G ] spans C[G ].
Proof: ∀j frozen, ∃ an optimized seed tj (bjk ≥ 0 ∀k ∈ Iuf)
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