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Motivations



Multivariate GARCH models

- GARCH models are very popular in econometrics to deal with extremes.
- The univariate GARCH models are well understood thanks to Kesten's theory, see

Buraczewski et al. (2016).
- What about the most multivariate extensions?

Few literature

CCC-GARCH are treated in Starica (1999), factor-GARCH in Basrak and Segers
(2009). For all these models the tails of the margins are asymptotically equivalent
and regularly varying (multivariate regularly varying).

What about the popular BEKK-GARCH models?



Existence of a stationary solution



The BEKK-ARCH Process

Definition (BEKK-ARCH (or BEKK(1,0, n)), Engle and Kroner (1995))
Let X; € RY satisfying

X, = H'*z,

H;

n
C+ > AXe 1 X AT,
i=1

with Z; ~ i.i.d.N(0, I4), C a d x d positive definite matrix, Ay, ..., A, € R9*9,

- Includes Scalar BEKK: n=1 and A; = aly with a € R.

- Includes Diagonal BEKK: n =1 and A; diagonal.

- Contains the case of stacked independent univariate ARCH(1) processes:
Let n = d, C diagonal, and A; = a,-e,-e;.r with a; € R, i=1,...,d.



The SRE Representation

Recall that

Xe = H?Z, Zi~iidN(O, ),

n
C+ D AXe 1 XAl
i=1

Hi

Remark (Caporin & Mc Aleer, 2008)

Exploiting that Z; is Gaussian, we obtain the stochastic recurrence equation (SRE)

representation for Xi:
Xe = MeXe—1 + Qt,

with
n
M = Z mitA;
i=1

and (mj¢ : t € Z) is an i.i.d. process mutually independent of (mj; : t € Z) for i # J,
with mj ~ N(0,1). Moreover (Q: : t € Z) is an i.i.d. process with Q: ~ N(0, C)
mutually independent of (mj;: t € Z) for all i=1, ..., n.



Geometric Ergodicity

Recall that
Xe = MeXe—1 + Q:,  Qr ~ i.i.d.-N(0, C),

n
MF:E:nmAh mj ~ i.i.d.N(0, 1).
i=1

Exploiting the SRE representation we obtain the following result:
Theorem

Let (X;:t=0,1,...) be a BEKK-ARCH process. Suppose that

eniel= () <2

Then (X: : t = 0,1, ...) is geometrically ergodic, and for the associated stationary
solution, E[||Xt||°] < co for some s > 0.

k

[Tm

Note the following special case:
When n =1, the condition corresponds to
p(A1)? < 3.56...,

which is similar to Nelson's stationarity condition for univariate ARCH(1).



Tail properties



Tail properties

Recall that
Xt = MX;—1+ Qt, Qr~ i.i.d.N(O, C),

n
Me=">"miAi, mj~ iid.N(0,1).
i=1

In order to determine the tail behavior of X;, we exploit the SRE representation and

apply existing results for R9-valued SREs:

- Kesten's theory for SRE's satisfying certain irreducibility and density conditions
(1D BEKK). (Alsmeyer and Mentemeier, 2012):
Essentially, M; should have a suitable Lebesgue density. which is strictly positive
in a neighborhood around /.

- Results of Buraczewski et al. (2009), where M is a similarity (Similarity BEKK).
This includes scalar BEKK.

Under the stationarity condition, X; is multivariate regularly varying with index a > 0.



Tail properties

Note that:

- The regular variation is in the Kesten sense, each component of X; has the same
tail index, o > 0:
For i=1,...,d, P(Xgi > x) ~ cix~* as x — oo for some constant ¢; > 0.

- The ID and Similarity BEKK processes are not that interesting from an empirical
point of view.

What can be said about the Diagonal BEKK processes?



Tail properties: Diagonal BEKK

Consider the Diagonal BEKK process:

Xt = MXi 1+ Qr, Qr~ iid.N(O,C),
Mt = mtA, mg ~ IIdN(O7 1)7
where A is diagonal with non-zero diagonal elements, Aj1, ..., Agg > 0.

Theorem (Goldie (1991))
Then each marginal of X: satisfies the SRE

Xii = mAiXe_1,i+ Quiy i=1,....d.
It holds that
P(Xt,i > x) ~ cix™ 1, x— oo,

with ¢; > 0 and a; > 0 depending on Aj;.

Hence, in general the tail indices differ along the components of X!



Asymptotic independence tails

Consider diagonal terms Aj; that are different so that
Xei = miAiXe—1,i+ Qriy i=1,...,d.

satisfies
P(Xe,i > x) ~ cix” %, x— o0
for different a;.
Theorem (Mentemeier & W.)
For any i # j we have

lim uP(Xe; > x4, Xy ;> x1/92) = o.
X—> 00

Thus X; is non-standard regularly varying with spectral measure degenerate on the
axis e; = (0,...,0,1,0,...,0).



Tail properties: ID BEKK

Suppose that d = 2 and
Xt = MeXe—1+ Qr, Q¢ ~ i.i.d-N(0, C),

4
Me=">" Aimir, mj ~ i.id.N(0,1),
i=1

with
ag O 0 O 0 a3 0 O

Ar = Ay = , A= , Ay = 5
0O 0 a 0 0 O 0 ag

and

ai, a, a3, a4 # 0.

Under the stationarity condition X; is multivariate regularly varying with o > 0.



Tail properties: Similarity BEKK

Suppose that

Xi = MiXe—1 + Qt, Q¢ ~ i.i.d.N(0, C),
Mt = mltAl, mit ~ f.i.d.N(O, 1),

where A; = a0, with a > 0 and O an orthogonal matrix.
Then M; is a similarity with probability one.

Under the stationarity condition, X; is multivariate regularly varying with a > 0.



Tail properties: Diagonal BEKK

Suppose that

Xt = MXi—1+ @1, Qt ~ i.i.d.N(0, C),
Mt = mltAl, mye ~ IIdN(O 1)7

where A;j is a diagonal matrix with distinct coeffcients on the diagonal.

Under the stationarity condition, X; is non-standard regularly varying with different
tails indices «;.



Simulations

Al =1, Apn = 2 - a; = 1, ap ~ 0.3102022477.
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VSRV and tail chain




Vector scaling regular variation (VSRV)

We introduce the notion of vector scaling regular variation (VSRV):
Definition: VSRV

Let X; € RY. Suppose that
- for some a; > 0, ¢; > 0, P(|X¢,i| > x) ~ gix~ %, x— o0, fori=1,..,d,
- Xt is non-standard regularly varying in the sense of Resnick (2007).
Then the distribution of X; is said to be VSRV.
Remarks:
- The "vector scaling” is due to the non-standard regular variation:
There exists (x(s) : s > 0) with x(s) := (x1(5), ..., x4(5))T € R and a Radon
measure p with non-null marginals, such that

sP(x(s) "t © X¢ € -) — pu(-) vaguely, s — oo.

- We show that the VSRV X; has a spectral decomposition YO ~ pu(-;
P(Y>y) =y !, y>1, Yindependent of @y € S~ 1.

x| > 1),



Adapted from Perfekt (1997). Assume X; € RY VSRV so that P(|X¢,il > x) ~ cix— i,
x — oo and define

Ixlla = |(c; il *)1<ixcd] -

Theorem (Pedersen & W.)

Let X; € RY constitue a stationary VSRV SRE. The tail chain (©¢) satisfying ©; =
M:®;_1, t > 1 is such that

P(IIXolla*(Xo, -, Xe) € - | 1 Xolla > x) = P((©o, ..., O1) € ), x— oo

Similar tail process in the multivariate and non-standard regularly varying cases.



An application: Asymptotics for sample covariance matrices

Let (X;¢) be a stationary BEKK-ARCH process and VSRV.

Define the sample covariance matrix.

1 n
Ypi=— XeXT.
n n; EANH

Stable limit theory
With a;; = 2% and assume there exists p > 0 such that
> ajtaj
lim E[[|My - - My||P]Y/" < 1,
n— oo
then we have

d

(min(a, t=Y/15) x (£, - E[Zn]lar.yj>1),-,j>1<j<i<d 45 oo,

where S;; is a min(a; j, 2)-stable random variable for 1 < i< j< d.

20



Conclusion and work in progress

Conclusion:
- Exploit a SRE representation of BEKK-ARCH.
- Mild conditions for geometric ergodicity.
- Tail properties. Vector scaling regular variation.
- Stable limit theory

Ongoing research:
- Tail behavior of more general processes.
- Hidden regular variation for Diagonal BEKK.
- QML estimation.

Thanks for your attention!
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