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Motivations



Multivariate GARCH models

- GARCH models are very popular in econometrics to deal with extremes.
- The univariate GARCH models are well understood thanks to Kesten’s theory, see

Buraczewski et al. (2016).
- What about the most multivariate extensions?

Few literature
CCC-GARCH are treated in Starica (1999), factor-GARCH in Basrak and Segers
(2009). For all these models the tails of the margins are asymptotically equivalent
and regularly varying (multivariate regularly varying).

What about the popular BEKK-GARCH models?

3



Existence of a stationary solution



The BEKK-ARCH Process

Definition (BEKK-ARCH (or BEKK(1, 0, n)), Engle and Kroner (1995))

Let Xt ∈ Rd satisfying

Xt = H1/2
t Zt,

Ht = C +
n∑

i=1
AiXt−1X⊺

t−1A⊺
i ,

with Zt ∼ i.i.d.N(0, Id), C a d × d positive definite matrix, A1, ...,An ∈ Rd×d.

- Includes Scalar BEKK: n = 1 and A1 = aId with a ∈ R.
- Includes Diagonal BEKK: n = 1 and A1 diagonal.
- Contains the case of stacked independent univariate ARCH(1) processes:

Let n = d, C diagonal, and Ai = aieie⊺i with ai ∈ R, i = 1, ..., d.
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The SRE Representation

Recall that

Xt = H1/2
t Zt, Zt ∼ i.i.d.N(0, Id),

Ht = C +
n∑

i=1
AiXt−1X⊺

t−1A⊺
i .

Remark (Caporin & Mc Aleer, 2008)
Exploiting that Zt is Gaussian, we obtain the stochastic recurrence equation (SRE)
representation for Xt:

Xt = MtXt−1 + Qt,

with

Mt =
n∑

i=1
mitAi

and (mit : t ∈ Z) is an i.i.d. process mutually independent of (mjt : t ∈ Z) for i ̸= j,
with mit ∼ N(0, 1). Moreover (Qt : t ∈ Z) is an i.i.d. process with Qt ∼ N(0,C)
mutually independent of (mit : t ∈ Z) for all i = 1, ..., n.
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Geometric Ergodicity

Recall that

Xt = MtXt−1 + Qt, Qt ∼ i.i.d.N(0,C),

Mt =
n∑

i=1
mitAi, mit ∼ i.i.d.N(0, 1).

Exploiting the SRE representation we obtain the following result:
Theorem
Let (Xt : t = 0, 1, ...) be a BEKK-ARCH process. Suppose that

inf
k∈N

{
1
k

E
[

log
(∥∥∥∥∥

k∏
t=1

Mt

∥∥∥∥∥
)]}

< 0.

Then (Xt : t = 0, 1, ...) is geometrically ergodic, and for the associated stationary
solution, E[∥Xt∥s] < ∞ for some s > 0.

Note the following special case:

When n = 1, the condition corresponds to

ρ(A1)
2 < 3.56...,

which is similar to Nelson’s stationarity condition for univariate ARCH(1).
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Tail properties



Tail properties

Recall that

Xt = MtXt−1 + Qt, Qt ∼ i.i.d.N(0,C),

Mt =
n∑

i=1
mitAi, mit ∼ i.i.d.N(0, 1).

In order to determine the tail behavior of Xt, we exploit the SRE representation and
apply existing results for Rd-valued SREs:

- Kesten’s theory for SRE’s satisfying certain irreducibility and density conditions
(ID BEKK). (Alsmeyer and Mentemeier, 2012):
Essentially, Mt should have a suitable Lebesgue density. which is strictly positive
in a neighborhood around Id.

- Results of Buraczewski et al. (2009), where Mt is a similarity (Similarity BEKK).
This includes scalar BEKK.

Under the stationarity condition, Xt is multivariate regularly varying with index α > 0.
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Tail properties

Note that:
- The regular variation is in the Kesten sense, each component of Xt has the same

tail index, α > 0:
For i = 1, ..., d, P(Xt,i > x) ∼ cix−α as x → ∞ for some constant ci > 0.

- The ID and Similarity BEKK processes are not that interesting from an empirical
point of view.

What can be said about the Diagonal BEKK processes?
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Tail properties: Diagonal BEKK

Consider the Diagonal BEKK process:

Xt = MtXt−1 + Qt, Qt ∼ i.i.d.N(0,C),
Mt = mtA, mt ∼ i.i.d.N(0, 1),

where A is diagonal with non-zero diagonal elements, A11, ...,Add > 0.
Theorem (Goldie (1991))
Then each marginal of Xt satisfies the SRE

Xt,i = mtAiiXt−1,i + Qt,i, i = 1, ..., d.

It holds that

P(Xt,i > x) ∼ cix−αi , x → ∞,

with ci > 0 and αi > 0 depending on Aii.

Hence, in general the tail indices differ along the components of Xt!
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Asymptotic independence tails

Consider diagonal terms Aii that are different so that

Xt,i = mtAiiXt−1,i + Qt,i, i = 1, ..., d.

satisfies
P(Xt,i > x) ∼ cix−αi , x → ∞

for different αi.
Theorem (Mentemeier & W.)
For any i ̸= j we have

lim
x→∞

uP
(
Xt,i > x1/α1 , Xt,j > x1/α2

)
= 0.

Thus Xt is non-standard regularly varying with spectral measure degenerate on the
axis ei = (0, . . . , 0, 1, 0, . . . , 0).
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Tail properties: ID BEKK

Suppose that d = 2 and

Xt = MtXt−1 + Qt, Qt ∼ i.i.d.N(0,C),

Mt =
4∑

i=1
Aimit, mit ∼ i.i.d.N(0, 1),

with

A1 =

 a1 0
0 0

 A2 =

 0 0
a2 0

 , A3 =

 0 a3

0 0

 , A4 =

 0 0
0 a4

 ,

and

a1, a2, a3, a4 ̸= 0.

Under the stationarity condition Xt is multivariate regularly varying with α > 0.
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Tail properties: Similarity BEKK

Suppose that

Xt = MtXt−1 + Qt, Qt ∼ i.i.d.N(0,C),
Mt = m1tA1, m1t ∼ i.i.d.N(0, 1),

where A1 = aO, with a > 0 and O an orthogonal matrix.

Then Mt is a similarity with probability one.

Under the stationarity condition, Xt is multivariate regularly varying with α > 0.
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Tail properties: Diagonal BEKK

Suppose that

Xt = MtXt−1 + Qt, Qt ∼ i.i.d.N(0,C),
Mt = m1tA1, m1t ∼ i.i.d.N(0, 1),

where A1 is a diagonal matrix with distinct coeffcients on the diagonal.

Under the stationarity condition, Xt is non-standard regularly varying with different
tails indices αi.
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Simulations

A11 = 1, A22 = 2; =⇒ α1 = 1, α2 ≈ 0.3102022477.
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VSRV and tail chain



Vector scaling regular variation (VSRV)

We introduce the notion of vector scaling regular variation (VSRV):
Definition: VSRV

Let Xt ∈ Rd. Suppose that
- for some αi > 0, ci > 0, P(|Xt,i| > x) ∼ cix−αi , x → ∞, for i = 1, .., d,
- Xt is non-standard regularly varying in the sense of Resnick (2007).

Then the distribution of Xt is said to be VSRV.

Remarks:
- The ”vector scaling” is due to the non-standard regular variation:

There exists (x(s) : s ⩾ 0) with x(s) := (x1(s), ..., xd(s))⊺ ∈ Rd and a Radon
measure µ with non-null marginals, such that

sP(x(s)−1 ⊙ Xt ∈ ·) → µ(·) vaguely, s → ∞.

- We show that the VSRV Xt has a spectral decomposition YΘ0 ∼ µ(·; |x| > 1),
P(Y > y) = y−1, y > 1, Y independent of Θ0 ∈ Sd−1.
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Tail chain

Adapted from Perfekt (1997). Assume Xt ∈ Rd VSRV so that P(|Xt,i| > x) ∼ cix−αi ,
x → ∞ and define

∥x∥α =
∣∣∣(c−1

i |xi|αi )1⩽i⩽d
∣∣∣ .

Theorem (Pedersen & W.)

Let Xt ∈ Rd constitue a stationary VSRV SRE. The tail chain (Θt) satisfying Θt =

MtΘt−1, t ⩾ 1 is such that

P(∥X0∥−1
α (X0, . . . ,Xt) ∈ · | ∥X0∥α > x) → P((Θ0, . . . ,Θt) ∈ ·), x → ∞.

Similar tail process in the multivariate and non-standard regularly varying cases.
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An application: Asymptotics for sample covariance matrices

Let (Xt) be a stationary BEKK-ARCH process and VSRV.

Define the sample covariance matrix.

Σn :=
1
n

n∑
t=1

XtX⊺
t .

Stable limit theory

With αi,j =
αiαj
αi+αj

and assume there exists p > 0 such that

lim
n→∞

E[∥M1 · · ·Mn∥p]1/n < 1,

then we have(
min(

√
n, n1−1/αi,j )× (Σn − E[Σn]1αi,j>1)i,j

)
1⩽j⩽i⩽d

d→ S, n → ∞,

where Si,j is a min(αi,j, 2)-stable random variable for 1 ⩽ i ⩽ j ⩽ d.
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Conclusion and work in progress

Conclusion:
- Exploit a SRE representation of BEKK-ARCH.
- Mild conditions for geometric ergodicity.
- Tail properties. Vector scaling regular variation.
- Stable limit theory

Ongoing research:
- Tail behavior of more general processes.
- Hidden regular variation for Diagonal BEKK.
- QML estimation.

Thanks for your attention!
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