
Cosistency of Hill Estimators in a Linear Preferential
Attachment Model

Tiandong Wang
Joint Work with S.I. Resnick

School of Operations Research and Information Engineering,
Cornell University

June 21st, 2018

T. Wang (ORIE) Hill Est June 21st, 2018 1 / 21





Flickr Links Data:
(cf. KONECT: http://konect.uni-koblenz.de/networks/flickr-links)
Undirected network of Flickr users and their connections.

Nodes: Users.

Edges:
Connections.

For a node v ,
P(Degree(v) = k) ∼
k−1−α, for k large.

Goal:
Estimate the
power-law index α.
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Undirected Preferential Attachment Model

Notations:

G (n) := the random graph after n-steps.

[n] := {1, 2, . . . , n}, set of nodes in G (n).

Di (n) := Degree of node i ∈ [n].

δ > −1, parameter.

Initialize with a single node having a self loop.

1

This node is considered as having degree 2, i.e.

D1(1) = 2.
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From G (n) to G (n + 1), assuming linear preferential attachment function:
f (i) = i + δ:

n + 1

i

The new node n + 1 attaches to node i ∈ [n]
with probability

Di (n) + δ

(2 + δ)n
,

and Dn+1(n + 1) = 1.
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Define Nk(n) :=
∑n

j=1 1{Dj (n)=k}, then as n→∞,

Nk(n)/n
a.s.−→ pk ∼ C (δ)k−3−δ =: C (δ)k−1−α for k →∞.

How to estimate the power-law index α?

Option 1:

Find MLE of δ, δ̂MLE (cf. Gao and van der Vaart (2017)).

Plugging δ̂MLE into the theoretical value of α gives

α̂MLE = 2 + δ̂MLE .

However, the MLE approach is not ROBUST against modeling error,
compared to the extreme value estimation approach (cf. Wan, Wang,
Davis and Resnick (2017)).
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Option 2: Hill estimator.

Let X(1) ≥ . . . ≥ X(n) be order statistics of {Xi : 1 ≤ i ≤ n}, then the Hill
estimator Hk,n based on k upper order statistics of {Xi : 1 ≤ i ≤ n} is
defined as (cf. Hill (1975))

Hk,n =
1

k

k∑
i=1

log
X(1)

X(k+1)
.

ROBUST and widely used in practice, e.g. KONECT:
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Consistency of Hill Estimators

Suppose that {Xi : 1 ≤ i ≤ n} iid and non-negative with common
regularly varying distribution tail F ∈ RV−α, α > 0, then:

There exists a sequence {b(n)} such that

n∑
i=1

εXi/b(n) ⇒ PRM(να) in Mp((0,∞]),

with να(y ,∞] = y−α, y > 0.

For some intermediate sequence kn →∞, kn/n→ 0 as n→∞:

1

kn

n∑
i=1

εXi/b(n/kn) ⇒ να in M+((0,∞]).

The Hill estimator is consistent:

Hkn,n
P−→ 1/α.

T. Wang (ORIE) Hill Est June 21st, 2018 7 / 21



Network data is NOT iid!!! Will Hkn,n still be consistent?

Drawing analogies to the iid case, we want to show:

The degree sequence has empirical measure

n∑
i=1

εDi (n)/n1/(2+δ)

converging weakly to some random limit point measure in
Mp((0,∞]).

For some intermediate sequence kn and some function b(·):

1

kn

n∑
i=1

εDi (n)/b(n/kn) ⇒ ν2+δ, in M+((0,∞]).

This would facilitate proving consistency of the Hill estimator.
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Embedding

Idea: Embed the degree sequence (D1(n), . . . ,Dn(n), 0, . . .) into a
sequence of birth immigration processes (B.I. processes).

Preliminaries:

A linear birth process {ζ(t) : t ≥ 0} is a continuous time Markov
process taking values in the set N+ = {1, 2, . . .} and having a
transition rate qi ,i+1 = λi , i ∈ N+, λ > 0.

The linear birth process {ζ(t) : t ≥ 0} is a mixed Poisson process, i.e.
with ζ(0) = 1, we have

ζ(t) = 1 + N0

(
W (eλt − 1

)
, t ≥ 0,

where {N0(t) : t ≥ 0} is a unit rate homogeneous Poisson on R+

with N0(0) = 0 and W is a unit exponential random variable
independent of N0.

For ζ(0) = 1, e−λtζ(t)
a.s.−→W ∼ Exp(1).
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The linear birth process with immigration (B.I. process), {BI (t) : t ≥ 0},
having lifetime parameter λ > 0 and immigration parameter θ ≥ 0 is a
continuous time Markov process with state space N = {0, 1, 2, . . .} and
transition rate qi ,i+1 = λi + θ.

Suppose that Nθ(t) is the counting function of homogeneous Poisson
points 0 < τ1 < τ2 < . . . with rate θ.

Independent of Nθ(·), we have independent copies of a linear birth
process {ζi (t) : t ≥ 0}i≥1 with parameter λ > 0 and ζi (0) = 1 for
i ≥ 1.

Let BI (0) = 0, then the B.I. process is a shot noise process with form

BI (t) :=
∞∑
i=1

ζi (t − τi )1{t≥τi} =

Nθ(t)∑
i=1

ζi (t − τi ).

For BI (0) = k ≥ 0,

e−λtBI (t)
a.s.−→ σ ∼ Gamma(k + θ/λ, 1).
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B.I. Process Setup Let {BIi (t) : t ≥ 0}i≥1 be independent B.I. processes
such that

BI1(0) = 2, BIi (0) = 1, ∀i ≥ 2.

Each has transition rate is qj ,j+1 = j + δ, δ > −1.

Set T1 = 0 and relative to BI1(·) define T2 be the first time that
BI1(·) jumps.

Start the new B.I. process {BI2(t − T2) : t ≥ T2} at T2.

Let T3 be the first time after T2 that either BI1(·) or BI2(·) jumps.

Start a new, independent B.I. process {BI3(t − T3)}t≥T3 at T3.

Continue in this way.
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t

t

t

T1 = 0

BI1(0) = 2

T2 = τ
(1)
1

BI1(T2) = 3

T3 = τ
(2)
1 + T2

τ
(1)
2

· · ·
· · ·

BI2(0) = 1 τ
(2)
2 + T2

BI1(T3) = 3

BI2(T3 − T2) = 2

BI3(0) = 1

· · ·
· · ·

· · ·
· · ·

Figure 5.1: Embedding procedure for Model A assuming τ
(2)
1 + T2 < τ

(1)
2 .
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Embedding Results:
For each n, let D(n) := (D1(n),D2(n), . . . ,Dn(n), 0, . . .) and
D̃(n) := (BI1(Tn),BI2(Tn − T2), . . . ,BIn(0), 0, . . .). Then D(n) and D̃(n)
have the same distribution in R∞.

Degree Sequence ⇒ B.I. Processes.

Convergence of {Tn}:
The counting process N(t) := 1

2

∑∞
i=1 BIi (t − Ti )1{t≥Ti} is a pure birth

process with transition rate qi ,i+1 = (2 + δ)i . Also,

n

e(2+δ)Tn

a.s.−→W ,

where W is an exponential random variable with unit mean.
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Convergence of the Degree for a Fixed Node:
(i) Suppose that {σi}i≥1 is a sequence of independent Gamma random
variables with

σ1 ∼ Gamma(2 + δ, 1), and σi ∼ Gamma(1 + δ, 1), i ≥ 2,

then
Di (n)

n1/(2+δ)
⇒ W−1/(2+δ)σie

−Ti .

(ii) Set Di (n) := 0 for all i ≥ n + 1. For δ > −1,

max
i≥1

Di (n)

n1/(2+δ)
⇒ W−1/(2+δ) max

i≥1
σie
−Ti ,

Convergence of the Empirical Measure:
In Mp((0,∞]), we have for δ ≥ 0,

n∑
i=1

εDi (n)/n1/(2+δ)
(·)⇒

∞∑
i=1

εσie−Ti /W 1/(2+δ)(·).
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Consistency of Hill Estimators: Heuristics

From the limit measure:

Gamma random variables σi have light tailed distributions.

⇒ {σi : i ≥ 1} may not distort the consistency result.

Set Yi := e−Ti/W 1/(2+δ) and apply the Hill estimator to the Y ′s:

Hk,n =
1

k

k∑
i=1

log
( Yi

Yk+1

)
=

1

k

k∑
i=1

(Tk+1 − Ti ).

By the B.I. process construction, we have

Tn+1 − Tn
d
= En/(n(2 + δ)),

where En, n ≥ 1 are iid unit exponential random variables.

Provided that k →∞, we have

Hk,n =
1

k

k∑
i=1

k∑
l=i

(Tl+1 − Tl) =
1

k

k∑
l=1

El

2 + δ

a.s.−→ 1

2 + δ
.
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Set Yi := e−Ti/W 1/(2+δ) and apply the Hill estimator to the Y ′s:
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(Tk+1 − Ti ).

By the B.I. process construction, we have

Tn+1 − Tn
d
= En/(n(2 + δ)),

where En, n ≥ 1 are iid unit exponential random variables.

Provided that k →∞, we have
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For rigorous justifications we need:

For some function b(·) and some intermediate sequence {kn} wich
kn →∞ and kn/n→ 0 as n→∞,

1

kn

n∑
i=1

εDi (n)/b(n/kn) ⇒ ν2+δ, in M+((0,∞]).

Note that for any y > 0,

1

kn

n∑
i=1

εDi (n)/b(n/kn)(y ,∞] =
1

kn
N>b(n/kn)y (n).

Hence, we need to control:

(i) Bias:
∣∣N>b(n/kn)y − E(N>b(n/kn)y (n))

∣∣.
(ii) Concentration of E(N>b(n/kn)y (n))/n on p>b(n/kn)y :∣∣E(N>b(n/kn)y (n))− np>b(n/kn)y

∣∣.
(iii) Difference between n

kn
p>b(n/kn)y and y−(2+δ).
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We need the following: as n→∞,

(i) 1
kn

∣∣N>b(n/kn)y − E(N>b(n/kn)y (n))
∣∣ P−→ 0.

(ii) 1
kn

∣∣E(N>b(n/kn)y (n))− np>b(n/kn)y

∣∣ −→ 0.

(iii)
∣∣ n
kn
p>b(n/kn)y − y−(2+δ)

∣∣ −→ 0.

The third part can be justified using Stirling’s formula. We prove (i) and
(ii) by establishing the following concentration results:

Concentration of the Degree Sequence:
For δ > −1 there exists a constant C > 2

√
2, such that as n→∞,

P
(

max
k
|N>k(n)− np>k | ≥ C (1 +

√
n log n)

)
= o(1).

Such concentration results restrict the choice of kn, since:

P
(∣∣N>[b(n/kn)y ](n)− E(N>[b(n/kn)y ](n))

∣∣ > εkn
)

≤ P
(

max
k
|N>k(n)− E(N>k(n))| ≥ εkn

)
.
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Hence, the intermediate sequence kn must be large enough so that

P
(

max
k
|N>k(n)− E(N>k(n))| ≥ εkn

)
= o(1).

Sufficient condition:

lim inf
n→∞

kn/(n log n)1/2 > 0.

Convergence of the Tail Empirical Measure:
Let D(1)(n) ≥ D(2)(n) ≥ · · · ≥ D(n)(n) be the order statistics of the degree
sequence. Suppose that {kn} is some intermediate sequence satisfying

lim inf
n→∞

kn/(n log n)1/2 > 0 and kn/n→ 0 as n→∞,

then
1

kn

n∑
i=1

εDi (n)/D(kn)(n)
(·)⇒ ν2+δ,

in M+((0,∞]).
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Consistency of the Hill Estimator:
Define the Hill estimator as

Hkn,n =
1

kn

kn∑
i=1

log
D(i)(n)

D(kn+1)(n)
.

Let {kn} be an intermediate sequence satisfying

lim inf
n→∞

kn/(n log n)1/2 > 0 and kn/n→ 0 as n→∞.

Then

Hkn,n
P−→ 1

2 + δ
.

Proof idea: Write the Hill estimator as Hkn,n =
∫∞
1 ν̂n(y ,∞]dyy =: T (ν̂n),

and justify the the continuity of the mapping T at ν2+δ so that

Hkn,n =

∫ ∞
1

ν̂n(y ,∞]
dy

y
P−→
∫ ∞
1

ν2+δ(y ,∞]
dy

y
=

1

2 + δ
.
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Wrap-Up

Undirected linear preferential attachment model is widely used to
model social networks.

Generates power laws.

Practical issue: estimate the power-law exponent.

Hill estimator ⇒ More ROBUST.

Consistency of Hill estimator for network data:

Embedding technique:
Degree sequence 7→ A sequence of birth immigration processes.
Convergence of the tail empirical measure.
Convergence of Hill.
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